Date of Award
Spring 2019
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Geosciences
Committee Chair
Christopher Gammons
First Advisor
Glenn Shaw
Second Advisor
Douglas Cameron
Third Advisor
Gary Wyss
Abstract
Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges. Below 250ºC in the mixed experiments, reduction of sulfate was not observed, but reduction of arsenite by copper to form domeykite was prominent at temperatures down to at least 150ºC, and reduction of arsenite by nickel to form an un-named mineral, Ni3As, as a crystalline crust occurred as low as 150°C. The implication is that a low temperature fluid carrying both aqueous sulfate and arsenite will quickly precipitate metal-arsenide minerals at a reducing interface, whereas sulfate reduction is much slower, especially at temperatures below 250ºC. This helps to explain the abundance of metal-arsenide minerals and relative lack of metal-sulfide minerals in certain ore deposit types, including unconformity-type U-Ni and “5-element suite” vein deposits.
Recommended Citation
Allin, Nicholas, "EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION" (2019). Graduate Theses & Non-Theses. 213.
https://digitalcommons.mtech.edu/grad_rsch/213
Comments
A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option