Document Type


Publication Date



The impact of a filtering half-face respirator and a half-face supplied air respirator use on blood lactate production was assessed during maximal exertion to determine if anaerobic strain increased compared to no respirator use. Twenty-eight participants performed a 30 second cycling Wingate anaerobic test (WAnT) wearing a half-face respirator. Blood lactate production was measured to evaluate if there was an increase in anaerobic strain from wearing a tight fitting half-face respirator compared to wearing no respirator. A supplied air respirator WAnT was then performed using 18 participants from the first experiment to evaluate if supplied air decreased anaerobic strain. Data from both experiments were compared to evaluate differences in the physiological effects due to respirator use during maximal exertion. A survey was administered following the second WAnT experiment to measure the participants' perception of acceptability and impact of supplied air respirator use in workplace. The blood lactate levels measured directly after the WAnT yielded lower overall mean values during the half-mask respirator trial (12.1 mmollL) and supplied air respirator trial (12.2 mmollL) than the no respirator trial (13.1 mmoI/L). However, differences in blood lactate levels were not statistically significant (p =0.597). Participants reported an average acceptability of 92.3% to wearing the supplied air respirator while performing light work. However, the average acceptability decreased as the exertion increased to moderate (78.8%) and heavy (46.6%) workloads. The supplied air respirator used provided no significant reduction in anaerobic strain within this study group compared to either the filtering half-face respirator or the no respirator condition. However, there were differences in physiological effects of respirators on each gender identified in this study. Further assessment of the anaerobic impact of respirators on each gender should be conducted.


This article was originally published in Journal of the International Society for Respiratory Protection, Vol. 26, Fall/Winter 2009: