
Montana Tech Library Montana Tech Library 

Digital Commons @ Montana Tech Digital Commons @ Montana Tech 

Graduate Theses & Non-Theses Student Scholarship 

Spring 5-4-2024 

Using Unmanned Aircraft System (UAS)-borne high-resolution Using Unmanned Aircraft System (UAS)-borne high-resolution 

hyperspectral imaging and gamma radiometry for rare earth hyperspectral imaging and gamma radiometry for rare earth 

element exploration in the Bearpaw Mountains, Montana USA element exploration in the Bearpaw Mountains, Montana USA 

Emma Kamp 
Montana Technological University 

Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch 

 Part of the Geological Engineering Commons 

Recommended Citation Recommended Citation 
Kamp, Emma, "Using Unmanned Aircraft System (UAS)-borne high-resolution hyperspectral imaging and 
gamma radiometry for rare earth element exploration in the Bearpaw Mountains, Montana USA" (2024). 
Graduate Theses & Non-Theses. 312. 
https://digitalcommons.mtech.edu/grad_rsch/312 

This Publishable Paper is brought to you for free and open access by the Student Scholarship at Digital Commons 
@ Montana Tech. It has been accepted for inclusion in Graduate Theses & Non-Theses by an authorized 
administrator of Digital Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu. 

https://digitalcommons.mtech.edu/
https://digitalcommons.mtech.edu/grad_rsch
https://digitalcommons.mtech.edu/stdt_schr
https://digitalcommons.mtech.edu/grad_rsch?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1400?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtech.edu/grad_rsch/312?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sjuskiewicz@mtech.edu


 

 

 

 

 

 

 

Using Unmanned Aircraft System (UAS)-borne high-resolution 

hyperspectral imaging and gamma radiometry for rare earth element 

exploration in the Bearpaw Mountains, Montana USA 

by 

Emma Kamp 
 

A thesis submitted in partial fulfillment of the  

requirements for the degree of  

 

Geoscience, Geophysical Engineering Option, M.S. 

 

 

 

Montana Tech  

2024 

 



ii 

Abstract 

The radiometric signature of thorium, in combination with the hyperspectral signature of 

carbonate minerals, can be a useful indicator of rare earth mineral occurrences in air-borne 

geophysical exploration. Recent technological advancements have allowed unmanned aircraft 

system (UAS)--borne spectral imaging and gamma-ray spectroscopy systems to acquire high-

spatial-resolution data. In this study, we attempted to define and map an area of interest for rare 

earth mineral exploration using UAS-borne spectral and gamma-ray spectroscopy systems. 

Gamma-ray spectroscopy data were used to define an area of interest. Short-wave infrared 

imagery was used to detect and map carbonate minerals within the area of interest. Gamma-ray 

spectroscopy data successfully outlined an area of interest for rare earth element exploration 

consistent with ground-truth rock samples, geochemical analysis, and previous geological 

mapping. Hyperspectral image classification using spectral angle mapper (SAM) and spectral 

information divergence-spectral angle mapper hybrid method (SID-SAM) methods mapped 

carbonate minerals within the defined area of interest most successfully. Combining high-

resolution UAS remote sensing with geophysical methods provides more robust results than a 

single method alone.   

 

Keywords: hyperspectral remote sensing; gamma-ray spectroscopy; rare earth minerals; 
Unmanned Aircraft System; geochemical analysis 
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*To be submitted for publication in the journal Remote Sensing of Environment  

1. Introduction 

Rare earth elements (REEs) have become vital to modern life due to their application in 

computers and smartphones, green energy technologies - especially wind turbines (permanent 

magnets), electric vehicles, and defense technologies (Van Gosen et al., 2014; Golroudbary et 

al., 2022).  In recent years, 85-95 percent of the world's REEs have been provided by China, 

leading to a worldwide increase in exploration for economic deposits of REEs (Van Gosen et al., 

2014). Carbonatites of alkaline-carbonate complexes are a main exploration target for REEs and 

critical minerals. Exploration for these deposits have primarily used traditional prospecting and 

geological methods, which can be time-consuming and expensive, and the spatial distribution of 

geochemical analysis is limited. Carbonatites, defined as an igneous rock containing more than 

50% modal primary carbonate (Le Maitre, 2002), lend themselves to remote sensing approaches 

because they often contain spectrally active minerals and trace amounts of radioactive materials 

that can be detected with hyperspectral and gamma-ray spectroscopy methods (Simandl & 

Paradis, 2018).  

Radiometric surveys provide spatial information about radioactive isotopes of potassium 

(K), thorium (Th), and uranium (U) concentrations, typically associated with carbonatites and 

REE-bearing minerals such as monazite, synchysite, and bastnaesite (Simandl & Paradis, 2018; 

Shives, 2015). A ground-based radiometric survey was used while investigating the carbonatites 

of the Rocky Boy Stock in the Bearpaw Mountains to help geologists define the extent of the 

radioactive zone related to the carbonatite intrusion and detect other areas containing radioactive 

minerals (McNary, 1981). The advent of airborne radiometric surveys provided a tool to explore 

more areas and terrain inaccessible to traditional geological methods. Shives (2015) and Simandl 

and Paradis (2018) explored several examples where radiometric surveys were helpful in 
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delineating carbonatites and their mineralized units by identifying variations in detected K, Th, 

and U.  

Field spectrometry data and airborne hyperspectral imaging are other geophysical 

methods that have been useful in identifying and mapping the mineralogy of carbonatite 

complexes (Neave et al., 2016; Rowan et al., 1995). Spectrometers and hyperspectral sensors 

collect information across the electromagnetic spectrum to create a spectral signature for a 

material or a pixel. This is useful because all materials have a unique spectral signature. REEs, 

specifically neodymium, and carbonate minerals have distinct absorption features in the visible-

near infrared (VNIR, 400 – 1,000 nm) and shortwave infrared (SWIR, 1,000 – 2,500 nm) region 

of the electromagnetic spectrum that can be used to detect carbonatites and REE mineralization 

(Neave et al., 2016; Rowan et al., 1986; Boesche et al., 2015).  

Using point spectroscopy methods, neodymium (Nd) shows characteristic narrow 

absorption features in the VNIR region centered around 580nm, 740nm, 800nm, and 870nm 

(Neave et al., 2016; Rowan et al., 1986; Boesche et al., 2015). Detecting these narrow absorption 

features with hyperspectral imaging requires high spectral and spatial resolution and signal-to-

noise ratio (Booysen et al., 2019, 2020; Herrmann, 2015). REE-bearing carbonates often occur in 

small geological structures, less than one meter to ten meters thick, such as dikes and plugs 

(Pecora, 1956).  

Current airborne and satellite hyperspectral imaging systems such as Airborne Visible 

InfraRed Imaging Spectrometer (AVIRIS), Hyperion, HyMap, and EnMap collect hyperspectral 

data at meter to tens of meter pixel resolution. Data collected at meter to ten-meter spatial 

resolution do not have the spatial resolution and signal-to-noise ratio to map Nd reliably in small 

(less than ten-meter) geologic structures (Neave et al., 2016; Boesche et al., 2015; Herrmann, 
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2015). Nd absorption features may get lost in larger pixel sizes because of spectral mixing and 

masking. Since hyperspectral imaging only detects superficially, the spectrum from iron oxide 

staining and lichen can mask or mix with the spectral signatures of rocks (Herrmann, 2015; 

Rautiainen et al., 2024; Rollin et al., 1994). 

The carbonate feature in the SWIR region has also been used as a more general remote-

sensing indicator for carbonatites associated with rare earth element mineralization (Rowan et 

al., 1995). Airborne and satellite hyperspectral SWIR data have proved beneficial in outlining 

carbonatite complexes (Bedini & Rasmussen, 2018; Booysen et al., 2019). Until recently, the 

SWIR region of hyperspectral imagery has been limited to airborne or satellite imagery in the 

scale of meters to tens of meters spatial resolution. Studies using airborne and satellite SWIR 

imagery have been limited to areas with sparse vegetation cover because of spectral mixing at 

those spatial resolutions. As REE-bearing carbonates often occur in small geologic structures, 

increasing spatial resolution is one approach to overcome spectral mixing caused by vegetation 

and weathering to improve the mapping of small geologic structures.  

UAS-borne hyperspectral imaging has become a valuable technique for obtaining high-

resolution data, in the centimeter scale, for research in agriculture (Vanegas et al., 2018), forestry 

(Sandino et al., 2018), mining (Barton et al., 2021), and exploration (Booysen et al., 2019, 2020; 

Jackisch et al., 2020). The method has been used in several studies to explore carbonatites and 

rare earth minerals (Booysen et al., 2019, 2020; Jackisch et al., 2020), but data have been limited 

to the VNIR spectral region, and detection of Nd has been limited by sensor signal-to-noise (SN) 

ratio and REE grades. Recent technological advancements have allowed UAS-borne spectral 

sensors in the SWIR region to detect and map carbonate, clay, phyllosilicates, and sulfate 

minerals (Barton et al., 2021). 
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Techniques combining multi-scale hyperspectral imaging and airborne geophysical 

methods, such as gamma radiometry and magnetic surveys, have been employed to improve the 

robustness of geologic mapping results (Bedini & Rasmussen, 2018; Jackisch et al., 2020). The 

work presented here is a pioneering study of UAS-based high-resolution hyperspectral imagery 

in the SWIR region, lidar, and gamma-ray spectrometry data for mapping and identifying areas 

of interest for rare earth mineral exploration. The primary goals of the study were to determine 

whether high-resolution hyperspectral imagery could reliably map the distribution of carbonate 

minerals in outcrops and trenches in a weathered and thinly vegetated environment and if this 

mapping can add to gamma mapping of an area to improve the delineation of areas of interest for 

rare earth mineral exploration. Geochemical analysis using scanning electron microscope energy 

dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray fluorescence 

(XRF) were used to evaluate rare earth minerals and critical materials from hand samples in the 

study area. Secondarily, two hyperspectral scans of the study area were collected at different 

elevations above ground level to examine the potential impact of differences in spatial resolution 

on UAS-based mineral exploration. 
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2. Study Area 

The Bearpaw Mountains, located in north-central Montana (Figure 1(a)), formed in the 

middle of the Eocene. They are a part of the Central Montana Alkaline Province. The Rocky Boy 

Stock is the most extensive and complex stock in the Bearpaw Mountains, covering about 12 

square miles. Most of the stock comprises pyroxenites, shonkinites and syenites, nepheline or 

pseudoleucite shonkinites and syenites, monzonites, and pegmatite-bearing nepheline syenites 

(Pecora, 1942).  

 The Bearpaw Mountains have been the focus of geologic mapping since the 1890’s. 

Major exploration of the mineral resources in the Rocky Boy stock of the Bearpaw Mountains 

began in the early 1930’s and continued into the 1990’s. The research during this time focused 

on mapping the geology of the Rocky Boy stock and commodity exploration, including natural 

gas, coal, and uranium (McNary, 1981). During this time, several rare-earth-bearing carbonates 

were identified, primarily in the carbonatite-pegmatite dikes of the Vermiculite Mine Prospects 
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of the Rocky Boy Stock (McNary, 1981; Pecora, 1962) (Figure 1(c)).

 

Figure 1: Maps of study area: (a) location of study area in Montana, (b) the approximate area of the 

Vermiculite Mine and Bower Peak Prospect (adapted from McNary (1981)), and (c) geology of the Bowery 

Peak prospects and surrounding area (adapted from Bergantino et al. (2002) and Pecora (1957)). The black 

box shows the approximate area of hyperspectral and gamma-ray data collection. 

The U.S. Bureau of Mines used soil samples, rock samples, and scintillometer readings to 

determine the extent of the carbonate-pegmatite dikes, identifying another area of alteration and 

carbonate rock named the Bowery Peak prospects. The Bowery Peak prospects are a 400 ft by 

600 ft (122 m by 183 m) area with three dozer-cut trenches (Trench 1, 2, and 3) (Figure 1(b)). 

Shonkinite country rock is cut by porphyritic syenite, aegerite, and latite dikes trending 

northeast. The best outcropping of alteration and carbonate material occurs in Trench 2 (Figure 

2), where weathered shonkinite blocks are found in a matrix of gray-to-white carbonate-rich 
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material and red-brown oxidized material thought to be altered shonkinite (McNary, 1981). 

Carbonate-rich and altered shonkinite float were also found in Trench 3 (McNary, 1981).  

The soil samples collected from the Bowery Peak prospects during the field 

investigations in 1978 and 1979 suggest elevated uranium southeast of Trench 2 (McNary, 

1981). The carbonate-rich veins and alteration material within Trench 2 were never formally 

defined as carbonatite. However, scintillometer readings collected using a Geometrics gamma-

ray spectrometer, and soil/rock sample analysis indicated elevated thorium and rare earth 

element levels within the alteration zone(McNary, 1981). Aside from the work by the U.S. 

Bureau of Mines, no further exploration of the Bowery Peak prospects has been conducted. 

 

Figure 2: Surface geologic map of Trench 2 in the Bowery Peak Prospect (adapted from McNary (1981) 

‘Surface Geologic Map of Trench 2’). 

2.1. Vegetation 

The Bowery Peak prospects were chosen due to their lack of tree cover compared to the 

Vermiculite Mine prospect. From the air, the view of the Bowery Peak prospects are not 

impeded by trees. The area outside the outcrops and trenches was covered by dry grass and 

occasionally by shrubs. Most outcrops in the area were weathered and covered in lichen. Lichen 
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is spectrally active in the SWIR range, which could impact the results of hyperspectral mapping 

(Rautiainen et al., 2024; Rollin et al., 1994). 

3. Materials and Methods 

3.1. Fieldwork 

Hyperspectral imagery and gamma data were collected on October 8, 2023. 

Hyperspectral imaging was carried out with the Headwall Photonics Co-Aligned HP (400 – 

2500nm) hyperspectral imaging plus lidar system. The sensor contains Headwall Photonics co-

aligned VNIR and SWIR systems, an integrated high-performance global positioning 

system/inertial measurement unit (GPS/IMU) system, and an integrated Velodyne Light 

Detection and Ranging (LiDAR) system. The SWIR system covers 900-2500 nm with 270 

spectral bands, and the VNIR system covers 400-1000 nm with 273 spectral bands. The co-

aligned system was hard-mounted to a Freefly AltaX drone. Two hyperspectral flights were 

flown midday between 11 am and 3 pm. The first flight was flown at an average height above 

ground of 80 m for an approximate spatial resolution of 5 cm. The data collected from this flight 

are referred to as the 5-cm dataset. The second hyperspectral flight flew at an average height 

above ground of 60 m for an approximate spatial resolution of 3 cm. The data from this flight are 

referred to as the 3cm dataset. Both VNIR and SWIR data were collected for the 3- and 5-cm 

datasets. Evaluation of the VNIR data in both datasets indicated that the signal-to-noise ratio was 

too low to reliably classify pixels containing neodymium using the methods presented in this 

paper. Due to this, only results for the classification of SWIR data will be displayed and 

discussed.  

Gamma data were collected after the hyperspectral scans using the Medusa MS-1000 

sensor. The sensor was mounted on a FreeFly AltaX drone. The average height above ground 
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was 80 m, the flight speed was set to 5 m/s, and the sampling frequency was 1hz, so that the 

sampling interval was approximately 5 m. The sensor was factory set for online radionuclide 

analysis of 40-K, 238-U, 232-Th, and 137-Cs.  

Ground truth samples were collected during the field campaigns of September 1-2 and 

September 22-23 from Trench 2 and outcrops in the surrounding area. Samples of each rock type 

were collected and scanned using a Spectral Evolution SR-5000 Spectroradiometer in the 

laboratory at Montana Tech, including scans of weathered, lichen, and fresh surfaces. The 

Spectral Evolution SR-5000 spectra were imported into The Spectral Geologist (TSG) software 

for classification and the ground truth library selection.  

3.2. XRF, XRD, SEM 

XRF scans were used to estimate the concentration of rare earth elements lanthanum (La) 

and cerium (Ce) in rock samples collected from Trench 2. Other measurements of interest were 

concentrations of iron (Fe), strontium (Sr), thorium (Th), and barium (Ba), which demonstrate 

compositional differences between the altered carbonate-rich (Figure 3(a)) and altered shonkinite 

(Figure 3(b)) Trench 2 samples. Concentrations of critical elements niobium (Nb) and yttrium 

(Y) were also evaluated.  
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Figure 3: Trench 2 (a) altered carbonate-rich and (b) altered shonkinite material. Dime shown for scale. 

XRD analysis was used for rock identification and mineral analysis of hand samples 

collected in the field. Trench 2 samples were chosen based on color and XRF results. Ground-

truth samples were chosen to be representative of the country rock, dikes, and altered material in 

the study area based on appearance and relative abundance of mafic to felsic minerals from hand 

sample analysis. 

One altered carbonate-rich sample collected from Trench 2 was chosen for further SEM 

analysis using TESCAN MIRA3. The work included SEM backscatter electron imagery (BSE) 

and SEM-EDS spot analysis.  

3.3. Endmembers for Hyperspectral Classification 

Figure 4 shows the primary spectral reflectance classes chosen based on Spectral 

Evolution SR-5000 spectra and XRF, XRD, and SEM-EDS results. The second column shows 

the spectrum reduced to the same bands as the co-aligned imaging system in SWIR spectral 

range as they were used in SWIR imagery classification. The spectral classes display absorption 

features in the SWIR region due to cellulose (lichen) (Rautiainen, 2024), CO3
2- radical 

(carbonate) (Rowan et al., 1986), and Mg-OH bonding (phlogopite) (Peyghambari & Zhang, 
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2021), as well as dispersed absorption in the VNIR range from Fe3+ (goethite) (Peyghambari & 

Zhang, 2021), Fe2+ (nepheline syenite/pyroxene +phlogopite), and transition series cations 

(pyroxene/aegirine) (Cloutis, 2002) which change the overall shape of the spectrum. Note that 

the rock-type spectrum demonstrates few absorption features after removing noisy, VNIR, and 

water bands, which may limit hyperspectral classification ability. 
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Figure 4: Endmember spectra chosen for classification and grouped for clarity (a) carbonate, (b) rock type, 

(c) weathering, and (d) vegetation. Noisy and water bands were removed, and the spectra were resampled to 

the Co-Aligned SWIR spectral bands, shown in the second column. 

 As shown in Figure 5, the spectra collected using the Spectral Evolution SR-5000 

spectroradiometer of an altered carbonate-rich rock sample from Trench 2 display parisite 

(Herrmann, 2015) and neodymium (Nd) (Rowan et al., 1986; Herrmann, 2015) absorption 
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features at 579 nm, 739 nm, 800 nm, 863 nm, 1455 nm, and 1550 nm. Despite the Spectral 

Evolution SR-5000 spectra results, absorption features that could be unequivocally assigned to 

REE were not noticed in the VNIR imagery pixels collected in the 3 cm or 5 cm datasets. 

 

Figure 5: Spectra collected from a Trench 2 carbonate rock sample measured by the Evolution SR-5000 

spectroradiometer show absorption features for Nd (579nm, 739 nm, 800nm, and 863 nm), parisite (1455 nm 

and 1550 nm), and carbonate (2339 nm). 

3.4. Data Processing 

The UAS-borne hyperspectral images collected by the co-aligned Hyperspectral imaging 

plus lidar system were reduced using Headwall Photonics Batch Processing Widget - 

SpectralView and MATLAB Image Processing Toolbox – Hyperspectral Imaging Library. A 

simplified flow chart of data processing steps is shown in Figure 6. Raw scan data were 

converted to spectral reflectance using SpectralView, using dark currents collected before 

scanning and scene white reference captured from a white reference panel placed in the scene. 

Spectral reflectance data were orthorectified using GPS data of the drone locations and a DEM 

created from LiDAR point cloud. Orthorectified images were then stitched into a multi-

orthorectified image using SpectralView. The SpectralView orthorectification process adjusts to 

a uniform scale, removing effects due to lens distortion, topography, and spectrometer angle 
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variation. Image pre-processing is necessary before image classification. Firstly, water bands at 

1346-1454 nm and 1796-1982 nm for each pixel were removed to enhance signal-to-noise ratio. 

Secondly, bands from 1628-1664 nm and > 2400 nm that have too much sensor noise were also 

removed. Thirdly, SWIR data were filtered using a Savitzky-Golay polynomial filter of order 3, 

and a moving window of size 100.  

The pre-processed image was then classified using the MATLAB Image Processing 

Toolbox—Hyperspectral Imaging Library. Three classification methods were used: spectral 

angle mapper (SAM), spectral information divergence (SID), and spectral information 

divergence-spectral angle mapper hybrid method (SID-SAM). Reference spectra were taken 

from the ground-truth samples using the Spectral Evolution SR-5000 spectroradiometer defined 

in section 3.3. 

The SAM algorithm (Equation 1) has been widely used in hyperspectral image analysis 

for mineral identification (Barton et al., 2021). The SAM method measures the similarity 

between the test spectrum at each pixel of an image to be classified and the library of reference 

spectra of target rocks or minerals (Kruse et al., 1993). The test spectrum (t) and a reference 

spectrum (r) are treated as vectors with as many dimensions (n) as the number of hyperspectral 

bands. The SAM algorithm computes the similarity or spectral angle (< 180°) between the two 

vectors by taking the inverse cosine of the dot product of the two spectra in the n-space: 

𝑎𝑎 =  cos−1(
∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑟𝑟𝑖𝑖

�∑ 𝑡𝑡𝑖𝑖2𝑛𝑛
𝑖𝑖=1 �∑ 𝑟𝑟𝑖𝑖2𝑛𝑛

𝑖𝑖=1

) (1) 

  
The smaller the spectral angle (a) is, the stronger the match between the reference and 

test spectra will be. For a test spectrum to be considered a match to a reference spectrum, the 

spectral angle must fall within a user-defined threshold. The lower the threshold value is, the 
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more similar the two spectra are, and fewer pixels in the image will be classified as the class of 

the reference spectrum. The SAM method has been shown to have advantages in identifying 

rocks and minerals with low albedo and flat spectral features, considering the overall shape of 

spectra rather than specific absorption features (Chen et al., 2010). The SAM method faces 

challenges with spectral mixing in medium-resolution images (Kale et al., 2017). 

The SID algorithm is not as widely used in hyperspectral image analysis, but SID-based 

lithological mapping has generated lithological maps comparable to those of the SAM algorithm 

(Rao & Guha, 2016). SID is a probabilistic method that calculates the statistical divergence to 

derive the similarity between the reference and test spectra (Equation 2) (Chang, 2000). 

Assuming r and t are vectors of reference and test spectra, respectively, SID is calculated as 

follows:  

𝑆𝑆𝑆𝑆𝑆𝑆 =  �𝑡𝑡𝑖𝑖 log �
𝑡𝑡𝑖𝑖
𝑟𝑟𝑖𝑖
�

𝑛𝑛

𝑖𝑖=1

+ �𝑟𝑟𝑖𝑖 log �
𝑡𝑡𝑖𝑖
𝑟𝑟𝑖𝑖
�

𝑛𝑛

𝑖𝑖=1

. (2) 

  
As with the SAM method, for a pixel spectrum (test spectrum) to be considered a match 

to a reference spectrum, the SID score must fall within a user-defined threshold value, with 

smaller SID scores indicating a more robust match.   

The SID-SAM method (Equation 3) combines the SAM and SID approaches, where a is 

the angle calculated by the SAM algorithm (Chang, 2004), and SIDSAM is calculated as 

follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆 × tan (𝑎𝑎). (3) 
  

 This method can increase spectral discriminability by making the similarity or 

dissimilarity of two spectra more distinct (Du et al., 2004).  
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Figure 6: Simplified flow chart of data processing steps. 

Radionuclide data collected from the Medusa MS-1000 sensor was converted to 

concentration in 238-U (ppm), 232-Th (ppm), and 40- K (%). Estimated concentration data was 

imported to Oasis Montaj for gridding minimum curvature method to produce three heat maps 

representing estimated concentrations of 238-U, 232-Th, and 40- K. 
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4. Results 

4.1. XRF, XRD, SEM 

Table 1 shows the XRF results of Trench 2 samples, displaying the compositional 

differences between the carbonate and altered shonkinite materials. The XRF detected higher La, 

Ce, Th, Sr, and Ba concentrations in the Trench 2 carbonate material. The XRF detected lower 

La, Ce, Sr, Th, and Ba concentrations and higher Fe concentrations in the altered shonkinite 

material. 

Table 1: Mean, median, and standard deviation XRF concentration results (unit: ppm) from 11 carbonate 

material scans and nine altered shonkinite material scans taken at different spots on the samples. Both 

materials were collected from Trench 2. Results for Strontium (Sr), Thorium (Th), Iron (Fe), Barium (Ba), 

Cerium (Ce), Lanthanum (La), Niobium (Nb), and Yttrium (Y).  

 Carbonate Material Altered Shonkinite Material 
Mean Median Std DevS Std DevP Mean Median Std DevS Std DevP 

Sr 2,360 2,320 314 299 524 461 265 250 
Th 1,030 972 502 458 81 86 32 30 
Fe 13,900 9,220 11,600 11,100 64,100 65,300 18,400 17,400 
Ce 4,790 3,720 2,780 2,650 628 636 332 313 
La 2,990 2,470 1,660 1,580 393 437 206 194 
Ba 20,900 16,800 11,100 10,600 3,350 3,220 2,435 2,300 
Nb 54 43 34 32 124 112 43 41 
Y 321 306 152 145 153 107 97 92 
 

The XRD results of the two Trench 2 materials showed that the white-gray carbonate 

material was primarily composed of calcite, and the red-brown oxidized material was composed 

of orthoclase and phlogopite. XRD results for remaining ground-truth samples indicated the 

appropriate mineral composition for mafic nepheline syenite, syenite, porphyritic nepheline 

syenite, and shonkinite based on the classification described by Bergantino et al. (2002).  

The results of XRD analysis and description of rock classes align well with previous 

investigations of the Rocky Boy Stock and the geology of alkalic-carbonatite complexes (Pecora, 
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1957, 1956, 1942; Bergantino et al., 2002; McNary, 1981). As noted in Section 3.3, endmember 

rock classes were reduced to shonkinite/syenite, nepheline syenite, and nepheline porphyry. The 

decision to reduce endmember rock classes was motivated by the similarity in spectral shape and 

spectral absorption features between syenite, shonkinite, and mafic nepheline syenite. 

Figure 7 shows a sample of the SEM imagery. The SEM-EDS results of the altered 

carbonate-rich material from Trench 2 indicate the presence of carbonate minerals with rare earth 

elements: synchysite—(Ce), bastnaesite—(Ce), and parisite—(Ce). Other carbonate minerals 

include calcite and strontianite. The presence of strontianite explains the XRF results showing 

elevated Sr. Quartz and barite were also identified. Trace amounts of thorium were also detected 

with the rare earth carbonate minerals.  
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Figure 7: The SEM-BSE images from the Trench 2 carbonate material sample. Brt – Barite, Str - 

strontianite, Qrz – quartz, Cal – calcite, Syn – synchysite, Par – parisite, Bas – bastnaesite. 

4.2. Gamma-ray spectrometry 

Figures 8(a-c) show the distribution of 40-K, 232-Th, and 238-U, respectively, from the 

hyperspectral (1024 bands) gamma-ray radiation measurements. The gamma-ray spectrometry 

results indicate increased radioactive material surrounding Trench 2 and Trench 3 - the results of 

40-K radionuclides (Figure 8(a)) display dispersed concentrations of radioactivity throughout the 

study area. The concentration map for 232-Th (Figure 8(b)) demonstrates a consolidated area of 

intense radiation covering both Trench 2 and Trench 3 and a secondary area southeast of the 

trenches. The white line is a contour line for 45 ppm that was used with hyperspectral 
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classification results to create an area of interest for high probability for carbonate and REE 

minerals. The concentration map for 238-U (Figure 8(c)), indicates a dispersed area of increased 

radiation around Trench 2, Trench 3, and the area southeast of the two trenches. Results of the 

uranium and thorium maps correlate well with analysis results from scintillometer, rock, and soil 

results at Bowery Peak by McNary (1981). 

 

Figure 8: Analyzed results from gamma-ray radiation: (a) 40-K concentrations (%), (b) 232-Th 

concentrations (ppm) with white contour line defining area of interest, and (c) 238-U concentrations (ppm). 
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4.3. Hyperspectral Classification 

 

The SWIR images with 3-cm and 5-cm resolutions collected using the co-aligned 

hyperspectral imaging and lidar system were classified using the endmembers described in 

Section 3.3 and classification methods in Section 3.4.

 

Figure 9: Classified images overlain on the false color images from the hyperspectral images of 3-cm 
resolution. Panel (a) shows the classification results using the SAM method, panel (b) shows the results using 
the SID method, and panel (c) shows the results using the SID-SAM method. The white contour shows the 45 

ppm 232-Th contour outlining an area of high probability for carbonate and REE minerals. 
 Figure 9(a-c) and figure 10(a-c) show the classification results of the 3cm and 5cm 

datasets using the SAM, SID, and SID-SAM algorithms. Classification results of 3-cm and 5-cm 

datasets are similar, the 5-ccm imagery covered more area and includes results over Trench 3. 

Figure 9(a) and 10(a) shows the results of the SAM algorithm, in both datasets, carbonate 

distribution is primarily within Trench 2. The SAM algorithm also primarily identified the 



22 

outcrops north of Trench 2 and 3 as goethite+phlogopite or limonite. Results of SID-SAM 

algorithm (Figure 9(c) and Figure 10(c)) identify more carbonate pixels but are consistent with 

the SAM algorithm and limit the distribution of carbonate within the Th outline, primarily within 

Trench 2. All three methods identify carbonate within Trench 3 from the 5-cm dataset which is 

likely the altered carbonate-rich float discussed in Section 2. Result of the SID algorithm (Figure 

9(b) and 9(c)) show the greatest distribution of carbonate and are not limited to the Th outline, 

these results are not consistent with the other two methods, gamma-ray results, ground truth 

sample collection, or historical mapping and indicate an over classification of carbonate. 

 

Figure 10: Classified images overlain on the false color images from the hyperspectral images of 5-cm 

resolution. Panel (a) shows the classification results using the SAM method, panel (b) shows the results using 

the SID method, and panel (c) shows the results using the SID-SAM method. The white contour shows the 45 

ppm 232-Th contour outlining an area of high probability for carbonate and REE minerals. 

Trench 2 has been identified as the prospect with best alteration, carbonate 

mineralization, and rare earth element enrichment. Figure 11(a-c) and Figure 12(a-c) show the 
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classification results over Trench 2 from the 3-cm and 5-cm datasets using the SAM, SID, and 

SID-SAM algorithms at a similar scale to Figure 2 for comparison. The SAM algorithm (Figure 

11(a) and Figure 12(a)) has the greatest distribution of classified pixels between the three 

methods. The SAM algorithm was the most successful at identifying shonkinite/aegirine and 

nepheline syenite at the northwest edge of the trench, consistent with the historic surface 

geologic map (Figure 2). Results from the SAM and SID-SAM algorithms (Figure 11(a,c) and 

Figure 12(a,c)) show three primary locations of carbonate distribution consistent with the 

carbonate-rich veins mapped in the historic surface geologic map (Figure 2).  
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Figure 11: Classification results of Trench 2 of the 3-cm dataset using (a) the SAM, (b) the SID, and (c) the 

SID-SAM methods. 
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Figure 12: Classification results of Trench 2 of the 5-cm dataset using (a) the SAM, (b) the SID, and (c) the 

SID-SAM methods. 

5. Discussion 

This study used the radiometric signature of Th and hyperspectral results to delineate a 

prospective area of rare earth enrichment to add detailed mapping of the study area. Both remote 
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sensing methods provided results consistent with previous field geologic methods; gamma-ray 

data were consistent with scintillometer reading and soil sampling results from McNary (1981), 

and SAM and SID-SAM hyperspectral classification (Figure 11(a,c) and Figure 12(a,c)) 

correlate with historical surface geologic mapping (Figure 2). Hyperspectral results show the 

greatest distribution of carbonate minerals occurring within Trench 2. The geochemical analysis 

further validates the presence of rare earth elements in Trench 2 and shows the enrichment of 

rare earth elements in Trench 2 altered carbonate-rich material. The results of XRF showed that 

Trench 2 altered carbonate-rich material is enriched in La, Ce, and Th when compared to Trench 

2 altered shonkinite material. The SEM-EDS results showed the presence of REE-carbonate 

minerals synchysite, bastnasite, and parisite. Trace amounts of thorium were found in the rare 

earth minerals within the altered carbonate-rich material through SEM-EDS analysis. Trench 2 

was not formally defined as a carbonatite; however, these geochemical results support using 

carbonate and Th as indicators for rare earth enrichment in this study area. This study highlights 

the advantage of high-resolution remote sensing techniques to identify small areas (less than one 

meter) of carbonate mineralization associated with rare earth element enrichment, and these 

techniques could apply to other alkaline complexes to explore small-scale carbonatites and 

carbonate mineralization.  

The biggest advantage of UAS-borne hyperspectral imaging is seen in the mapping of 

Trench 2. The alteration zone of Trench 2 is approximately 15 m x 2 m, and carbonate-rich veins 

are less than a meter wide. Airborne and satellite sensors such as AVIRIS, HyMap, Hyperion, 

Prisma, and EnMap collect data at meter to tens of meter pixel resolution, which lack the spatial 

resolution to map structures at the scale of Trench 2 with much detail. The UAS-borne 



27 

hyperspectral imaging from this study provided centimeter-scale mapping of small features that 

could be overlooked from lower-resolution platforms. 

The methods presented here offer a potential workflow for UAS-assisted exploration. 

Gamma-ray spectroscopy could be flown first to define larger-scale areas of potential interest 

based on variations in Th, U, and K values. Next, hyperspectral imagery could be flown over the 

areas defined by gamma-ray spectroscopy, and the data could be analyzed for carbonate 

minerals. Finally, detailed maps produced from hyperspectral imaging could be used to guide 

hand sample collection in the field for further geochemical analysis.  

Thorium results outline an area where one would most likely expect to find carbonate 

minerals associated with rare earth mineralization, and it would be less likely to find these 

minerals outside the defined area. Based on this assumption, the SAM method performed the 

best, as carbonate minerals were primarily distributed only within the defined area. Additionally, 

the SAM method showed the best distribution of shonkinite/syenite, nepheline syenite, and 

nepheline pegmatite consistent with the geologic map of Trench 2. The SID-SAM method also 

performed well, demonstrating thicker coverage of carbonate pixels in areas of known carbonate-

oxide material within Trench 2. The results of the SID method showed the greatest distribution 

of carbonate minerals but disagreed with the geologic mapping, ground truth results, and Th 

results. It is important to note that each method used a different threshold, therefore it is difficult 

to compare the quantity of pixels classified. Instead, the evaluation is based on the quality of 

classification in comparison to gamma-ray spectroscopy results, historic geologic mapping, and 

ground truth sample collection.  

One challenge of hyperspectral classification for mineral exploration was accurately 

differentiating rock types from weathered and lichen-covered outcrops. Geologic mapping and 
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ground truth results show that outcrops surrounding Trenches 2 and 3 are primarily 

shonkinite/syenite and nepheline syenite dikes. The SAM and SID-SAM methods classified 

these outcrops as limonite, goethite + phlogopite (weathering signatures), or lichen. As Section 

2.1 noted, outcrops outside the trenches were weathered and covered in lichen. Aside from 

carbonate, the rocks formed from alkalic-carbonatite intrusions have few spectral features 

(Neave et al, 2016; Rowan et al., 1986). Weathered surfaces and lichen can change the spectral 

signatures of rocks and minerals depending on the extent of the weathering and thickness of 

lichen coverage (Rautianinen et al., 2024; Rollin et al., 1994), limiting the detection and mapping 

of the minerals they are encrusting. Several studies have used spectral mixture analysis (SMA) to 

overcome the challenges of using satellite- or manned aircraft-borne hyperspectral imagery in 

high-vegetated areas due to low spatial resolution of tens of meters (Zhang et al., 2005; Rivard et 

al., 2009; Morison et al., 2014). Centimeter-resolution imagery collected through UAS-borne 

hyperspectral sensors may help overcome the challenges of spectral mixing. However, 

considering the small scale of exposed minerals in outcrops, spectral unmixing methods might 

also be used to improve mineral identification and mapping at the centimeter level.  

 Another challenge was the background noise in the spectrum. In the hyperspectral 

imagery, the spectrum became nosier at the longer end of the wavelength range (>2000 nm). 

Though this is generally an issue for most SWIR spectrometers, this presents a significant 

limitation on the identification of relevant minerals —the diagnostic absorption bands for 

carbonate lie in the noisy wavelength range (2330 nm -2340 nm). Due to the low spectral 

reflectance of alkaline rocks, noise in the imaging spectra can cause misclassification using any 

of the three classification methods. The Savitsky-Golay filter smooths the imagery spectrum but 

comes at the expense of spectral resolution and does not remove the noise altogether.  
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The classification results of the 3-cm and 5-cm datasets differ only slightly. From a data 

collection standpoint, this is promising. Each dataset was collected using one set of batteries. The 

5cm dataset was flown at 80 m and covered approximately ~66,400 m2, while the 3-cm dataset, 

flown at 60 m, covered just over half of the area, ~34,867 m2. The Headwall software calculates 

a recommended flight speed based on several factors, including exposure and height above 

ground. Though environmental factors out of our control determine exposure, flight height is 

within our control. Increasing height above ground decreases spatial resolution but allows for 

quicker flight speed and fewer lines flown, maximizing the area covered and battery life. In 

summary, decreased spatial resolution did not sacrifice the ability to classify carbonate 

signatures in small geologic structures in this study. Similar results between the two datasets 

could also indicate that spectral mixing is not as significant an issue at the cm scale. Instead, 

misclassification is more likely from noisy data and endmember reference spectra chosen for 

classification.  

6. Conclusions 

This study applied high-resolution SWIR imagery and gamma-ray spectroscopy to 

identify areas of interest for REE exploration by using carbonate and thorium as indicators. 

Additionally, this study looked at high-resolution SWIR imagery for mapping associated alkalic 

rocks, weathering signatures, and lichen. Though the Bearpaw Mountains and the Rocky Boy 

Stock have been focus areas for previous studies, this study adds to the limited body of research 

on the Bowery Peak prospects. It adds geochemical analysis of rock samples to identify rare 

earth elements in the Bowery Peak Prospects.  

• SEM-EDS analysis of Trench 2 carbonate material identified the rare earth minerals 

parisite, bastnaesite, and synchysite. XRF and XRD results defined the composition 
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difference between two Trench 2 altered materials: altered shonkinite and carbonate 

material.  

• The gamma-ray spectroscopy survey results, corroborated with historic soil/rock 

sampling and scintillometer readings, show an area of increased radiation around Trench 

2 and to the southeast.  

• The hyperspectral imagery SAM and SID-SAM classification results identified 

small areas (less than one meter) of carbonate mineralization within Trench 2 and Trench 

3. Historic geologic mapping and geochemical analysis supported the results.  

Results of UAS-borne gamma-ray spectroscopy and hyperspectral imagery complement 

each other. Gamma-ray spectroscopy defined a general area of interest and method for validating 

hyperspectral results, and hyperspectral imagery was used for detailed mapping. This study 

demonstrated a possible workflow for integrating UAS-borne geophysical data with traditional 

geological exploration methods. In the future, other methods of hyperspectral classification and 

integration of hyperspectral and gamma-ray data should be explored, such as machine learning 

and deep learning. UAS and geophysical sensor technology are quickly evolving; improvements 

in signal-to-noise ratios and hyperspectral sensor development allowing for the evaluation of the 

full VNIR/SWIR (400 nm - 25000 nm) will improve the classification of rare earth element 

carbonates by allowing researchers to evaluate Nd and carbonate absorption features. 
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