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Abstract 

 Mining in Butte, Montana has been ongoing since the mid-19th century. The US 

Environmental Protection Agency (EPA) added the Butte Area to the National Priority List in 

1983, designating it a Superfund site. Butte is currently part of the largest EPA Superfund site in 

the United States. The EPA lists arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) as 

metal contaminants of concern for residents living in proximity to the Butte Area Superfund site. 

However, very limited human biomonitoring has been conducted in Butte and studies that have 

been published focus on Pb and, to a lesser extent, As. No synergistic, antagonistic, or additive 

studies have been conducted, even though it is widely accepted that the exposure in Butte is a 

metal mixture scenario, rather than single element exposure. Metals that are trace micronutrients, 

such as copper (Cu), manganese (Mn), and zinc (Zn) have been largely unrecognized as possibly 

having negative health effects on residents of Butte, despite the fact the metals have been 

historically released into the soil, water, and air through active blasting and crushing of ore and 

are known to be potential neurotoxins. This study aims to gather data on metal distribution in soil 

and dust samples from a neighborhood near active mining operations, determine the 

bioavailability of the metals present, extract and quantify proteins and inflammatory markers 

from meconium samples, and investigate metal mixture interactions in human bronchial 

epithelial cells (BEAS-2B) and human embryonic kidney cells (HEK-293). A physiological-

based extraction test (PBET), inductively coupled plasma mass spectrometry (ICP-MS), and 

inductively coupled plasma optical emission spectrometry (ICP-OES) were employed to assess 

metal distribution and bioavailability. To determine a link between metal exposure and possible 

health effects, inflammatory markers were measured by enzyme-linked immunoassays (ELISA), 

and metal-specific proteins were quantified by western blot assays. Metal distribution results 

showed that As, Mn, and Pb levels were highest in the soil samples, whereas levels of the Cd, 

Cu, and Zn were highest in the dust samples. The bioavailability of the metals was determined to 

be highest in the stomach phase for the dust samples and highest in the intestinal phase for the 

soil samples. Furthermore, expression of the mammalian proteins and cytokines of interest was 

affected differently by exposure to metal mixtures compared to single metal exposures. 

 

Keywords: Butte, Montana, Environmental Protection Agency, Superfund Site, Heavy Metals, 

Trace Micronutrients, Human Biomonitoring 
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1. Background 

Butte, Montana has been designated one of the largest Superfund sites in the U.S. due to 

150 years of historic mining and smelting (The City-County of Butte Silver Bow, n.d). 

Superfund sites are designated by the United States Environmental Protection Agency (U.S. 

EPA) as contaminated waste areas that require long-term cleanup due to the introduction of 

hazardous material through a variety of agricultural processes including manufacturing facilities, 

processing plants, landfills, and mining sites (US EPA, 2015). Cleanup of these locations is 

necessary due to the risks presented to human or environmental health (McDermott et al., 2020). 

About 15 million people, including approximately 3.5 million children live within one mile of a 

federal Superfund site in the U.S. (US EPA, 2015). Exposure to metals occurs mainly through 

inhalation, dermal absorption, and ingestion of contaminated foods, soil, and dust (Imperato et 

al., 2003). The U.S. EPA reports that the general population ingests soil and dust particles at a 

rate of 100 mg/day and 50 mg/day for children and adults respectively (Hong et al., 2016). 

Mining for Cu has been occurring in Butte since the late-19th century, which has 

introduced large quantities of waste into the surrounding air, water, and soils, from mining, 

milling, blasting, and smelting processes (The City-County of Butte Silver Bow, n.d.; SILVER 

BOW CREEK/BUTTE AREA Site Profile, n.d.). Due to this contamination, Butte was officially 

designated a U.S. EPA Superfund site in 1983, with As, Cd, Pb, and Hg being listed as 

contaminants of concern for those residing within the Butte Area Superfund site (SILVER BOW 

CREEK/BUTTE AREA Site Profile, n.d). Limited biomonitoring has been performed for Butte 

residents, and most studies have focused on the historical waste concerns in the area, but little is 

known about the effects of the current surface mining within city limits (Hailer et al., 2017). The 

restricted studies that have been performed have included testing of Pb blood levels in children 
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and to a much lesser extent, urine As levels of residents from Anaconda, MT. Anaconda is a 

town 25 miles northwest of Butte, in Deer Lodge County, with a population of approximately 

3,500 that is part of the area designated as the mining Superfund site in combination with the 

Butte area (ATSDR, 2019). 

Additionally, all published studies that have been performed investigate only single- 

metal exposure scenarios, even though contaminant exposure in Butte is widely accepted to be a 

metal mixture scenario. Yet, no published synergistic, antagonistic, or additive studies have been 

conducted in Butte. Furthermore, the trace micronutrients, Cu, Mn, and Zn, that are present in 

the soil, and dust of Butte have been largely unrecognized as possibly having negative health 

impacts on the residents, even though these are metals known to be potential neurotoxins, 

especially upon chronic exposure (Turker et al., 2013; Karri et al., 2016; Lucchini et al., 2017). 

By furthering human biomonitoring studies in the Butte area, the impact of environmental 

chemical elements and their metabolites on living organisms can be assessed by measuring 

biomarkers in body fluids or tissues (WHO, 2015; Iwata et al., 2018).  

1.1. Previous Work 

In a previous study, 116 volunteers from Butte and 86 volunteers from Bozeman, 

Montana submitted hair and blood samples and a complete lifestyle survey (Hailer et al., 2017). 

Blood samples were representative of short-term exposure levels, while hair samples provided 

insight into long-term exposure levels. In addition to the biological samples, three air monitors 

were stationed around Butte to collect air particulate throughout four summer months and soil 

samples from 32 volunteers were also obtained (Hailer et al., 2017) (Figure 1). Inductively 

coupled mass spectrometry (ICP-MS) was used for elemental analysis of all sample types 

collected (Hailer et al., 2017). The results of this study showed that aluminum (Al), As, Cd, Cu, 
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Mn, Mo, and uranium (U) were statistically elevated in hair samples, while As was statistically 

elevated in blood samples (Hailer et al., 2017) (Table II and Table III). Additionally, detectable 

levels of As, Pb, Cu, Mn, and Cd were found in the soil samples with As and Cu being elevated 

in some samples, and air sampling analysis revealed elevated levels of As and Mn (Hailer et al., 

2017).  

 
Figure 1: Butte, MT Study Area 

Soil (blue squares) and air (green circles) samples were collected. Soil samples were collected once and air 

samples were collected weekly from May through October 2015. Weather information was collected at 

Bert Mooney Airport weather station (yellow triangle) (Hailer et al., 2017). 

 

Table I: ICP-MS Hair Analysis Median ppm Concentration 

Element Butte Bozeman 

Aluminum* 5 3 

Arsenic* 0.07 0.05 

Cadmium* 0.03 0.02 

Copper* 22 18 

Lead 1 1 

Manganese* 0.53 0.17 

Molybdenum* 0.05 0.04 

Strontium 2.1 2.4 

Uranium* 0.07 0.04 

Zinc 170 180 

ICP-MS analysis of 202 hair samples, 116 from Butte and 86 from Bozeman. Results are represented in 

average ppm between groups. “*” indicates the distribution of element concentrations are statistically 

significant by Wilcoxon rank-sum test (Hailer et al., 2017). 
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Table II: ICP-MS Whole Blood Analysis Median ppb Concentration 

Element Butte Bozeman U.S. Avg 

Aluminum 217.8 190.6 NA 

Arsenic* 14.2 9.2 0-12 

Cadmium nd nd 0.33 

Copper 814.9 800.8 802.4 

Lead (µg/dL) 1.2 1 1.30 

Manganese 12.5 14.8 9.4 

Molybdenum* 6.2 5.8 1.2-4.8 

Selenium 197.8 211.9 192 

Strontium 38.5 37.6 NA 

Uranium 5.7 6.2 NA 

Zinc 4911 5330 4665 

ICP-MS analysis of 141 blood samples, 69 from Butte and 72 from Bozeman. Results are represented in 

average ppb between groups. *As was found to be significant by Wilcoxon Rank Sum analysis. NA = 

Published average for whole blood is unavailable (Hailer et al., 2017). 

 

In a published epidemiological study that compared the rates of brain and other nervous 

system cancers for Silver Bow and Deer Lodge Counties to rates in other counties of Montana 

and the US, it was identified that there was a significant increase in the rate ratio (IRR) of cancer 

in the brain and nervous system for residents ages 0 - 4 years and 30 - 34 years of Silver Bow 

and Deer Lodge counties compared to the remaining 54 counties in Montana (Zhang et al., 

2020). Cancers of the brain and nervous system are the 13th most common types of cancer in 

Montana and represent approximately 2% of all new cancer cases in the state (Montana 

Department of Public Health and Human Services, 2019). Increased risk for brain cancer and 

other nervous system cancers was also found in adults 30 -34 years of age who were born before 

the declaration of superfund sites (1981-1985), but it is not known how many of these 

individuals continuously resided in Silver Bow or Deer Lodge County (Zhang et al., 2020). 

Overall, this study suggested that the elevated risk of brain cancer and other cancers of the 

nervous system in very young children and adults is cause for concern for resident of Silver Bow 

and Deer Lodge Counties (Zhang et al., 2020). 

More recently, a pilot study was performed to assess intrauterine metal exposure of 

fetuses from mothers living in Butte, Montana (McDermott et al., 2020). Meconium samples 
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were collected from 17 infants in Columbia, South Carolina as a comparison population and 15 

infants from Butte (McDermott et al., 2020). The metal concentrations found in the Columbia 

samples were similar to low levels identified in other meconium studies however, in comparison, 

the Butte samples were found to be 1792-fold higher for Cu, 1650-fold higher for Mn,1883-fold 

higher for Zn, and 23-fold higher for As (McDermott et al., 2020) (Table III). Metals were 

quantified via ICP-MS and a t-test and Wilcoxon rank-sum test were used to determine statistical 

differences between the Butte and Columbia samples (McDermott et al., 2020).  

Table III: Meconium Metal Detection (Units: μg kg-1) in Newborns in Butte Montana (MT) and Columbia 

South Carolina (SC)  

 

As  

(μg kg-1) 

Cu  

(μg kg-1) 

Mn  

(μg kg-1) 

Mo  

(μg kg-1) 

Pb  

(μg kg-1) 

Zn  

(μg kg-1) 

Butte 

N=15 

Median:32 

Min:16 

Max:49 

Mean:35 

Std. Dev:10 

Median:26,311 

Min: 1,006 

Max:47,270 

Mean:28,134 

Std. Dev:10,411 

Median:5,364 

Min:388 

Max:18,120 

Mean:6,870 

Std. Dev:5,726 

Median:32 

Min:16 

Max:49 

Mean:35 

Std. Dev:13 

Median:# 

Mean:5 

Std. Dev:5 

Median:81,642 

Min:22,120 

Max:312,695 

Mean:109,154 

Std. Dev:82,772 

Columbia 

N=17 

<LoD 

Median: 14.68 

Min: 2.40 

Max: 27.42 

Mean: 14.75 

Std. Dev: 7.68 

Median: 3.25 

Min: 0.20 

Max: 27.42 

Mean: 4.67 

Std. Dev: 4.48 

< LoD < LoD 

Median:43.34 

Min:12.17 

Max:117.25 

Mean:53.74 

Std. Dev:36.16 

ICP-MS Analysis of Metal Meconium Concentrations from Newborns in Butte, MT and Columbia SC. LoD 

for MT samples: As = 5.0, Cu = 5.0, Mn = 5.0, Mo = 0.1, Pb = 0.1, Zn = 5.0. LoD for SC samples: As = 1.4, Cu 

= 0.5, Mn = 0.5, Mo = 0.7, Pb = 0.6, Zn = 1.8. #sample was above LoD. (McDermott et al., 2020). 
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2. Introduction 

2.1.  General Heavy Metal Details 

The term “heavy metals” is often used to describe metals and metalloids that have been 

associated with contamination and potential toxicity or ecotoxicity (Duffus, 2002). Typically, 

heavy metals have a specific density above 5 g/cm3 with an atomic weight greater than 40.04 

g/mol (Engwa et al., 2019). These metals are ubiquitous environmental elements that are non-

biodegradable, environmentally persistent, bioaccumulative in nature, and have varying toxic 

effects on living systems. (Engwa et al., 2019; Ali and Khan, 2019). Bioaccumulation is defined 

as the amount of a contaminant accumulated in an organism as a result of its uptake from both 

the surrounding abiotic environment and its diet (Ali and Khan, 2019). Once metals are 

accumulated in the body and its tissues, elimination can be difficult, especially in the context of 

non-essential metals (Kalay and Canli, 2000).  

Natural sources of heavy metals in the environment include weathering of metal-bearing 

rocks and volcanic eruptions (Ali and Khan, 2019). The major anthropogenic sources include 

natural emissions, burning of fossil fuels, mining, smelting, and other agricultural and industrial 

activities (Ali and Kahn, 2019). Environmentally, the most relevant and hazardous heavy metals 

and metalloids include chromium (Cr), nickel (Ni), Cu, Zn, Pb, Hg, and As (Barakat, 2011). The 

usage and subsequent concentrations of these elements within the environment are increasing, 

leading to greater toxic effects on biological systems (Wongsasuluk et al., 2014). Depending on 

the dose absorbed, and route and duration of exposure to these toxicants, negative effects can 

eventually be seen in the organs and tissues of living organisms. Exposure can be acute, meaning 

that contact with the toxicant is short-term, whereas chronic exposure refers to contact that is 

continuous or repetitive over a long period. Generally, these contaminants are more toxic as 
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cations or organic species, and some can cross the blood-brain and placental barriers, which 

increases the negative effects these toxicants can cause since they may be able to have a direct 

effect on the brain or placenta (Zheng et al., 2003) 

2.2. Essential and Nonessential Heavy Metals and Metalloids 

Typically, these heavy metals are trace elements, meaning that they are found in small 

amounts in the environment. Additionally, some play important roles in pathways of biological 

systems and are further characterized as trace micronutrients or essential elements. Too low and 

too high of a concentration of essential elements can lead to varying health effects for humans 

(Ali and Kahn 2019). Three of the four metals investigated in this study, Cu, Mn, and Zn, are 

well-known human trace micronutrients (Figure 2), meaning that a certain concentration of each 

metal is needed within the human body for important biological functions. When bound to 

proteins, essential metals facilitate catalytic reactions and stabilize structural domains, or can 

also serve as intracellular secondary messengers and modulators of synaptic transmissions 

(Schlief et al., 2005; Yamasaki et al., 2007; Dodani et al., 2014; Que et al., 2015). Because of 

these biological requirements, dose-response curves for essential elements indicate areas of 

deficiency and excess that can result in negative health effects (Figure 3) (Klaassen, 2019). 

Furthermore, metals that are not required for biological functions are referred to as “non-

essential”. Of the 6 metals investigated in the preliminary bioavailability study, As, Pb, and Cd, 

are considered to be nonessential for humans. 
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Figure 2: Periodic Table Indicating Essential Elements for Humans 

Periodic table indicated the metals that are known to be essential for humans (blue), those that are 

suggested to be essential for humans (green), and those that are not known to be required for any 

biological processes in humans. The metals and metalloids of interest for the bioavailability study are 

indicated by a bold, black box (modified from Essential Elements for Life, n.d.) 

 

 
Figure 3: Essential Element Dose-Response Curve 

Figure depicting a dose-response curve of an essential metal in which it can be observed that too low and 

too high of a dose of an essential element can become toxic for biological systems (Klaassen, 2019). 
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Non-essential metal toxicants with threshold concentrations will remain nontoxic to 

humans until a certain concentration is surpassed, whereas those without a threshold level are 

toxic to humans even at very low concentrations (Klassen, 2019) (Figure 4). The toxicity curves 

for metal mixtures are relatively unknown, but it is assumed that threshold and toxicity levels are 

different from single-metal exposure curves.  

 
Figure 4: Dose-Response Curve for a Nonessential Element with a Threshold Dose 

Figure depicting a dose-response curve for a non-essential element possessing a toxicity threshold dose in a 

biological system. Once the threshold dose is reached, a response will be encountered and will increase 

until the maximum effect dose is reached, typically resulting in death (adapted from Klaassen, 2019). 

 

The retention of these toxicants in organisms greatly depends on the metal speciation and 

physiological mechanisms developed by the organisms to maintain homeostasis and detoxify the 

heavy metal (Ali and Khan, 2019). In eukaryotes, regulation mechanisms typically involve 

changes in expressions of genes needed for transport of these micronutrients (Bird, 2015). This is 

because fact that living systems do not have the means to degrade heavy metals, which plays a 

major role in the accumulation of these species to harmful levels (Beyersmann and Hartwig, 

2008). Continual heavy metal exposure can result in an internal imbalance, which can result in 
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the body using the accumulated metals as substitutes for essential elements (Rehman et al., 

2018). These stored toxicants destroy major metabolic processes and create antioxidant 

imbalances as well as influence the activity of various hormones and essential enzymes and 

increase the body’s susceptibility toward infection due to alterations in carbohydrate, protein, 

and lipid metabolism (Safty et al., 2009; Mukke and Chinte, 2012).  

2.3. Heavy Metal Interactions 

There is a substantial evidence base indicating that metal mixtures can cause significantly 

increased effects on mammalian models and human health when compared to single metals. 

Currently, few studies investigate the effect of low-dose, toxic metals and the effect that they 

have on essential metals in an organism (Cobbina et al., 2015a). Most toxic metals are found in 

low concentrations within the environment; however, it has been established that there is the 

potential for interaction with essential elements even under low-level exposure to toxic metals 

(Cobbina et al., 2015a).  

The interactions of these elements can also lead to the generation of reactive oxygen 

species (ROS), such as the hydroxide radical (HO), superoxide radical (O2
-), and hydrogen 

peroxide (H2O2) (Wang and Fowler, 2008). This can increase the overall oxidative stress in the 

organism and possibly deplete antioxidant reserves (Wang and Fowler, 2008). Interactions with 

sulfhydryl macromolecules may result in inhibition of the enzymes involved in cellular energy 

production and depletion of major antioxidants of cells, particularly those that include a thiol 

group (Jadhav et al., 2007; Wang and Fowler, 2008) In excess concentrations, some heavy 

metals can bind to glutathione (GSH), leading to the depletion of this major antioxidant molecule 

and possible subsequent health effects (Figure 5). 
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Figure 5: Reaction Between Two Glutathione Molecules and a Metal Ion 

Depiction of two glutathione molecules reacting with and sequestering a metal ion, through the 

replacement of a hydrogen molecule from each thiol group in the compound (Ali et al., 2019). 

 

Micronutrients with similar physical and chemical properties and shared absorption 

pathways are known to compete with transport proteins (Sandström, 2001). Metals typically 

associate with protein metal-binding sites according to the Irving-Williams series in which the 

relative stability of complexes formed with essential metals is: Mn (II) < Fe (II) < Ni (II) < Co 

(II) < Cu (II) > Zn (II), indicating that Cu (II) and Zn (II) are bound preferentially over other ions 

such as Mn (II) (Bird, 2015). The major question surrounding toxic heavy metal interactions has 

been whether or not the interactions are synergistic, antagonistic, or additive. A recent toxicity 

study on low dose exposures to these toxicants suggested that these interactions were synergistic 

and that heavy metal mixtures showed higher toxicities than single metal exposures (Cobbina et 

al., 2015b)  
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2.4. Arsenic 

2.4.1. Arsenic General Information 

Arsenic (As) is a metalloid, possessing both metal and non-metal properties, that is 

released into the atmosphere as a byproduct of soil/rock erosion and industrialization or 

agricultural processes (Garza-Lombó et al., 2019). This metalloid is present in the soil, air, and 

water and is the 12th most abundant element in the human body (Garza-Lombó et al., 2019).  

Typically, the most common route of exposure to As is through contaminated food and water, 

and once in circulation, As can affect virtually every organ and tissue in the body (Garza-Lombó 

et al., 2019). Due to the prevalence of As in the atmosphere, the numerous anthropogenic 

processes that release it into the environment, potential for human exposure, and the magnitude 

and severity of possible As-induced health problems, the United States Agency for Toxic 

Substances and Disease Registry (ATSDR) has ranked As at the top of its priority list (Shen et 

al., 2013). Arsenic is also classified as a human carcinogen by the International Agency for 

Research on Cancer (IARC) and the U.S. Environmental Protection Agency (EPA) (Shen et al., 

2013).  

The oxidation state of As can vary greatly depending on the redox status, biological 

activities, and pH of the environment it is in (Shen et al., 2013). The environmental behavior, 

physical and chemical properties, toxicity, mobility, and biotransformation are extremely 

different between each species (Cullen and Reimer, 1989). When in combination with elements 

such as oxygen, sulfur, and chlorine, As is referred to as inorganic As (iAs), and when combined 

with hydrogen or carbon, it is referred to as organic As (Jomova et al., 2011). There are two 

oxidations states in which iAs can occur, which are arsenite +3 (iAsIII) and arsenate +5 (iAsV) 

(Garza-Lombó et al., 2019). These species can be monomethylated to form monomethylarsonic 

acid (MMAV) or dimethylated to form dimethylarsinic acid (DMAV) by a protein known as 
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arsenic (+3 oxidation state) methyltransferase (AS3MT) (Jomova et al., 2011). Biomethylation, 

involving reductases and methyltransferases, is the major metabolic pathway for iAs in humans 

and most animals (Stýblo et al., 2002) 

Inorganic As can cross the blood-brain barrier (BBB) through the use of 

aqua(glycerol)porins (AQP), organic anion transporters, and glucose transporters (GLUT) for 

iAsIII and phosphate transporters for iAsV, which is quickly reduced to iAsIII after transport 

into the cells (Liu et al., 2002; Torres-Avila et al., 2010; Calatayud et al., 2012) (Figure 6). 

Methylation of iAs can also occur via enzymatic or nonenzymatic conjugation with GSH, 

generating As triglutathione (As(GS)3) (Garza-Lombó et al., 2019). Once inside the brain, iAs is 

methylated by AS3MT in areas that express this protein (Sánchez-Peña et al., 2010). 

Additionally, iAsIII and iAsV are suggested to accumulate in the brain more readily during 

development when the BBB is not fully developed (Garza-Lombó et al., 2019). Inorganic As has 

also been reported to alter the BBB gap junction, which could allow for other toxic heavy metals 

to more easily cross the BBB and have increased deleterious effects (Manthari et al., 2018; 

Golmohammadi et al., 2019). 
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Figure 6: Arsenic Transport Mechanisms and Reactions 

Arsenic transport across the blood-brain barrier via various transporters and the subsequent reactions 

that occur once As enters mammalian cells (derived from Khairul et al., 2017; Garza-Lombó et al., 2019). 

 

2.4.2. Arsenic and Neurological Disorders 

There are numerous mechanisms in which As can alter human cellular function, most of 

which are related to its neurotoxic nature (Garza-Lombó et al., 2019). Based on clinical 

observations, it has been concluded that iAs can have a serious impact on the neurological 

system after inhalation and/or oral exposure (Lagerkvist and Zetterlund, 1994; Calderón et al., 

2001; Uede and Furukawa, 2003). Ingestion of iAs can cause nervous system damage, with 

exposure levels of 2 mg/kg As per day leading to encephalopathy, headaches, metal confusion, 

seizures, and a coma (Bartolome et al., 1999; Jomova et al., 2011) Chronic exposure to lower 

levels of iAs around 0.03–0.1 mg/kg As per day typically results in symmetrical peripheral 

neuropathy (Foy et al., 1992; Chakraborti et al., 2003; Jomova et al., 2011). 
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Upon exposure to the central nervous system (CNS), induction of cognitive delay, 

reductions in full-scale intelligence quotients (IQ) and memory, neurodevelopmental alterations, 

and neurodegenerative disorders may be observed (Garza-Lombó et al., 2019). It has been 

determined that high levels of urinary iAs and low levels of dimethylarsinic acid (DMAV) are 

associated with an increased risk of developing Alzheimer’s disease (AD) (Yang et al., 2018). 

Additionally, rat brains treated with iAs showed increased levels of pro-inflammatory cytokines, 

indicating a strong inflammatory response, which plays a part in increasing the levels of amyloid 

precursor protein (APP) (Escudero-Lourdes et al., 2016; Mao et al., 2016; Firdaus et al., 2018; 

Niño et al., 2018; Garza-Lombó et al., 2019). Inorganic As is also known to increase proteotoxic 

stress, synergize with dopamine to trigger neurotoxicity, and induce the accumulation and 

oligomerization of α-synuclein, which is the pathological biomarker of Parkinson’s disease (PD) 

(Shavali and Sens, 2008; Cholanians et al., 2016). The molecular mechanisms and complete 

metabolism of As can be used to explain how As damages the CNS by way of oxidative stress, 

energy failure, mitochondrial dysfunction, epigenetics, neurotransmitter and synaptic transmitter 

homeostasis alterations, cell death pathways, and inflammation (Garza-Lombó et al., 2019). 

2.4.3. Arsenic Metabolism 

The common form of As that enters the body is iAsIII, which does so via a simple 

diffusion mechanism (Cohen et al., 2006; Jomova et al., 2011). A small amount of iAsV can 

cross the cell membrane via an energy-dependent transport system but is immediately reduced to 

iAsIII (Cohen et al., 2006; Jomova et al., 2011). The toxicity of iAsV is partially accounted for 

by its conversion to iAsIII in many metabolic pathways (Garza-Lombó et al., 2019). Metabolism 

of iAs, which tends to be far more toxic than organic As, involves a two‐electron reduction of 

iAsV to iAsIII, mediated by glutathione, followed by oxidative methylation by AS3MT, using S-
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adenosylmethionine (SAM) as a co-substrate (Hughes, 2002; Shi et al., 2004; Valko et al., 2005; 

Garza-Lombó et al., 2019).  

The protein, AS3MT, methylates iAsIII to monomethylarsonic acid or arsenate (MMAV) 

which is reduced further to monomethylarsonous acid (MMAIII), to be dimethylated to 

dimethylarsinic acid (DMAV), which can then be reduced to dimethylarsinous acid (DMAIII) 

(Toxicological Profile for Arsenic, 2007; Watanabe and Hirano, 2013; Garza-Lombó et al., 

2019) (Figure 7). Most end products of these biomethylation reactions are excreted through the 

urine (Jaishankar et al., 2014). However, MMAIII, which is highly toxic, is not excreted and 

remains in the cells as an intermediate product and has been linked to As-carcinogenesis (Singh 

et al., 2007; Jaishankar et al., 2014). 

 
Figure 7: Arsenic Metabolism 

Arsenic methylation and reduction reactions involved in the metabolism of the metal within the human 

body (Chen et al., 2013). 
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2.4.4. Arsenic and Oxidative Stress 

Some of the deleterious effects of As are due to the ability of the element to bind to thiol 

groups in proteins, leading to disruption of catalytic activity and overall inhibition of enzymes, 

many of which are important for cellular energy metabolism (Jomova et al., 2011). It has been 

shown that, at biologically relevant concentrations, all three trivalent arsenic species (iAsIII, 

MMAIII, and DMAIII) can inhibit the Pyruvate Dehydrogenase (PDH) complex, resulting in an 

overall decrease in citric acid cycle activity and cellular adenosine triphosphate (ATP) 

production (Petrick et al., 2001; Bergquist et al., 2009; Shen et al., 2013). It is suggested that 

inorganic arsenate (HAsO4
2-), a molecular analog of phosphate (HPO4

2-), can compete for 

phosphate anion transporters and mimic inorganic phosphate in the generation of adenosine 

triphosphate (ATP) during oxidative phosphorylation, creating adenosine diphosphate-arsenate 

instead of ATP (Hughes, 2002; Jomova et al., 2011). This mimicry results in the replacement of 

ATP by ADP‐arsenate in glycolysis and cellular respiration and an overall uncoupling of 

oxidative phosphorylation due to the absence of high-energy phosphate bonds (Hughes, 2002; 

Jomova et al., 2011). Inhibition of cellular glucose uptake, gluconeogenesis, fatty acid oxidation, 

and further production of acetyl CoA, and subsequent cell death can also be resultant of As-

induced enzyme inactivation (Miller et al., 2002).  

Oxidative damage mediated by ROS, as well as morphological changes to mitochondrial 

integrity that lead to a rapid decline of mitochondrial membrane potential are key traits in As 

pathogenesis (Jomova et al., 2011). Upon As exposure, both animals and humans experience an 

increase in ROS/reactive nitrogen species (RNS) formation, including peroxyl radicals (ROO•), 

the superoxide anion radical (O2
-•), singlet oxygen (1O2), hydroxyl radical (OH•), hydrogen 

peroxide (H2O2), the dimethylarsenic radical ((CH3)2As•)), and the dimethylarsenic peroxyl 

radical ((CH3)2AsOO•) during metabolism of the element (Jomova et al., 2011). 
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Monomethylated and dimethylated iAs are suggested to be the most potent due to their 

ability to produce such radicals (Zamora et al., 2014). Mitochondria are a primary source of iAs-

induced ROS formation due to the inhibition of certain enzymes, which leads to a depletion of 

the mitochondrial NADH pool, resulting in oxidative stress, and an imbalance in ROS (Shen et 

al., 2013). Additionally, a major contributor to the overall increase in oxidative stress is the 

prevention of GSH production, limiting the amount of the antioxidant available to protect cells 

against oxidative damage by iAsIII (Miller et al., 2002). Cascade mechanisms of these free 

radical formations, combined with glutathione‐depleting agents, increase the sensitivity of cells 

to As and other heavy metal toxicity (Garza-Lombó et al., 2019). 

2.4.5. Arsenic Protein of Interest 

The major methyltransferase responsible for As biomethylation in humans is As (+3 

oxidation state) methyltransferase (AS3MT), which is also referred to as Cty 19 (Shen et al., 

2013). Little information is known about AS3MT in the context of human metabolism, but it has 

been established that it catalyzes the transfer of the methyl group of S-adenosylmethionine 

(SAM) to trivalent As (Cullen and Reimer, 1989; Marapakala et al., 2012; Stýblo et al., 2002; 

Ajees et al., 2012). Since AS3MT requires SAM as a co-substrate, excessive As exposure and 

the resulting AS3MT activity is thought to lead to a depletion of SAM levels (Zhao et al., 1997; 

Reichard et al., 2007; Coppin et al., 2008). This depletion then leads to high S-

adenosylhomocysteine (SAH) levels, which can in turn negatively regulate the activity of SAM-

dependent methyltransferases such as AS3MT (Zhao et al., 1997; Reichard et al., 2007; Coppin 

et al., 2008). Due to these possible conflicting activities of AS3MT and its required co-substrate 

SAM, it is not clear whether the expression of the protein will increase or decrease in the 

presence of As. However, since AS3MT is the major protein responsible for the metabolism of 
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As in the human body, it is predicted that an increase of protein expression will occur in an 

environment where As is in excess. 

2.4.6. Arsenic Conclusions 

Arsenic is readily released into the atmosphere by a variety of anthropogenic activities as 

well as natural processes, which compound to steadily increase the amount of As an individual 

may be exposed to through the environment. Although it is prevalent in the human body, As is 

identified as a human carcinogen and can be highly toxic to humans through a variety of 

mechanisms. The toxicity of As depends majorly on the species and type of exposure, but 

overall, exposure to inorganic As species leads to more deleterious effects in humans than 

organic arsenic species. Arsenic exposure can cause a variety of neurological health effects, most 

of which are related to oxidative damage caused by As interactions in the body. This oxidative 

damage is linked mainly to the compound’s affinity to bind to thiol groups in proteins, which can 

lead to the deactivation of enzymes involved in cellular glucose uptake, the citric acid cycle, and 

the production of glutathione and ATP. Overall, As itself has not been proven to be a direct 

neurotoxin, but rather exposure to As increases susceptibility to neurological disorders through 

many mechanisms, most of with are linked to oxidative damage. 

2.5. Copper 

2.5.1. Copper General Information 

Copper is the third most abundant essential transition metal in humans with the highest 

Cu content in the body being found in the liver, followed closely by the brain (Szerdahelyi and 

Kása 1986; Lewińska-Preis et al. 2011). Natural sources of Cu include meats, vegetables, and 

cereals, but exposure occurs mainly due to industrialization processes such as mining (Bost et 

al., 2016). Copper is essential as a cofactor and/or structural component for several biologically 
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important enzymes (Scheiber et al., 2014). Cu acts as a major cofactor for Cytochrome C oxidase 

and proteins from the superoxide dismutase family (Davies et al., 2013; Scheiber et al., 2014). 

Cytochrome C oxidase is a member of the superfamily of heme-copper-containing oxidases and 

catalyzes the final step of the electron transport chain when cytochrome c is oxidized or reduced 

by dioxygen (Ferguson-Miller and Babcock 1996). Superoxide dismutase 1 and 3 are Cu-

dependent and responsible for converting superoxide to oxygen and hydrogen peroxide, playing 

a major role in antioxidant defenses (Perry et al., 2010). 

 Copper is also suggested to play a role in biological processes such as cellular 

respiration, free-radical defense, and neurotransmitter synthesis (Zatta and Frank, 2007; Desai 

and Kaler, 2008; Scheiber and Dringen, 2013). Homeostasis of Cu within the body is tightly 

regulated since it is an essential element, but the upper and lower limits of homeostatic 

regulation remain unclear (Araya et al., 2006). In the case of neurodegenerative diseases, these 

homeostatic mechanisms may fail as a result of Cu deficiency or overload (Bulcke et al., 2017).  

2.5.2. Copper Metabolism 

The absorption of Cu occurs by the small intestine and is then transferred to the liver via 

the portal vein from which it is further distributed to the muscle and brain through the 

bloodstream (de Romaña et al., 2011). Copper transport protein 1 (CTR1) is essential for the 

absorption of Cu via the small intestine, making it clear that CTR1 is required for Cu to be 

bioavailable (Nose et al., 2006). Accumulation of Cu in the cytosol of cells may result in 

toxicity, but under physiological conditions, Cu concentrations within cells are kept around 10-8 

M, by the binding of Cu to metallothioneins (MTs) and GSH (Rae et al., 1999; Scheiber et al., 

2014). Approximately 90% of Cu found in the serum is bound to ceruloplasmin, a major copper-

binding protein, as well as albumin and transcuprein proteins (Prohaska, 2008; van den Berghe 
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and Klomp, 2009; Lutsenko, 2016;). Cells work to keep cytosolic Cu levels low by utilizing 

chaperone and Cu-binding proteins, because when in excess, free, unbound Cu can drive the 

production of ROS due to its chemical redox capabilities and its potential to displace other 

metals in metalloproteins (Robinson and Winge, 2010; Palumaa, 2013; Bird, 2015).  

2.5.3. Copper and Neurological Disorders 

 The brain contains approximately 7.0% of the body’s Cu content, yet a 

disproportionately low level of antioxidants, increasing the brain’s susceptibility to oxidative 

stress induced by Cu and its high redox activity (Hung et al., 2010; Hung et al., 2013). Brain Cu 

homeostasis is regulated by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier 

(BCB), with the main entry route of Cu into active brain tissues being the BBB, through the 

combined action of CTR1 and ATP7A (Choi and Zheng 2009; Monnot et al., 2011; Zheng and 

Monnot 2012; Fu et al., 2014) (Figure 9). It has been suggested that the BCB’s role in Cu 

homeostasis is to remove Cu from the cerebrospinal fluid (CSF) into the blood (Andrade et al., 

2017). However, in developing brains, the BCB has been indicated to be the main route of Cu 

entry (Donsante et al., 2010).  
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Figure 8: Brain Copper Homeostasis 

Mechanisms of Cu transport into the brain and the proteins that play a role in maintaining brain Cu 

homeostasis (Bulcke et al., 2017). 

 

Total brain Cu content has been estimated to be 3.1 μg/g wet weight in humans, but the 

brain has many anatomically and physiologically different regions which vary in specific Cu 

content (Lech and Sadlik 2007; Davies et al., 2012; Krebs et al., 2014; Ramos et al., 2014). 

Altered homeostasis and mislocation of brain Cu are commonly linked to AD and other 

neurodegenerative disorders (Mathys and White, 2017). Alzheimer’s disease is the most 

common form of adult neurodegeneration characterized by a progressive loss of cognitive 

function and eventual death (Mathys and White, 2017). Amyloid plaque and tau neurofibrillary 

tangle formation, chronic neuroinflammation, oxidative stress, and disruption in essential metal 

homeostasis are the major neuropathological hallmarks of this disease (Mathys and White, 

2017). Major changes in the levels and localization of Cu have been identified in the brains of 

people with AD, with Cu accumulation being seen in the amyloid deposits and subsequent Cu 

deficiency being observed in other brain regions (Mathys and White, 2017). 
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Furthermore, Cu binding sites are present in the amyloid precursor protein (APP) and 

amyloid beta (Aβ) peptide, which can lead to possible Cu interactions that may result in the 

formation of ROS and potential neurotoxic outcomes (Mathys and White, 2017). Specifically, it 

is suggested that the Cu+2 reductase activity that is present within the Cu binding domain of APP 

contributes majorly to free radical formation that is sufficient enough to promote Cu-mediated 

neurotoxicity (Hung et al., 2010). Extracellular Cu in the brain may also activate the 

Fenton/Haber-Weiss reactions, leading to an overall increase in the brain oxidative stress load 

(Brewer, 2008; Gybina et al., 2009) (Figure 9).  

 
Figure 9: Fenton/Haber-Weiss Reactions Involving Copper  

Depiction of the generation of reactive oxygen species through the participation of Cu in the Fenton/Haber-

Weiss reactions (derived from Mathys and White, 2017). 

 

The mechanisms involved in this mis-location of Cu are not fully understood, however 

CTR1 and ATP7A and ATP7B are the main transporters involved in the regulation of Cu+1 in the 

brain, while the Divalent Metal Transporter 1 (DMT1) is thought to play a major role in the 

delivery of Cu+2 in the brain (Kuo et al., 2006; Zheng and Monnot 2012; Yu et al., 2017) (Figure 

10). Additionally, molecular chaperones of Cu, such as antioxidant protein-1 (ATOX1), 

cytochrome oxidase c copper chaperone (COX17), and copper chaperone protein for superoxide 

dismutase (SOD), are all thought to play a part in brain Cu localization (Harris, 2001; Zheng and 

Monnot 2012). Divalent Cu is also involved in the expression of the matrix metalloproteinases 

(MMP) responsible for the degradation of Aβ, the major components of amyloid plaques, by 
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activating a glycogen synthase pathway, which also contributes to tau hyper-phosphorylation (Li 

et al., 2017). In the synaptic cleft, Cu also can bind to Aβ and facilitate the formation of senile 

plaques (Li et al., 2017). 

 
Figure 10: Copper Transport and Association with Alzheimer’s Disease 

Proteins involved in Cu transport into and out of the brain as well as the proteins that are associated with 

Cu and its association with Alzheimer’s Disease (Li et al., 2017). 

 

2.5.4. Copper and Oxidative Damage 

The redox activity of Cu occurs as it cycles between the Cu+1 and Cu+2 states. The role of 

Cu in the pathology of neurodegenerative disorders such as AD and Parkinson’s Disease (PD) is 

largely due to its redox capabilities, as well as its ability to bind with molecular oxygen (McCord 

and Fridovich, 1969). The mitochondria are one of the major targets for Cu-induced oxidative 

damage (Bulcke et al., 2017). However, this redox capacity is important for biological energy 

metabolism performed by cytochrome C oxidase, ceruloplasmin-driven iron metabolism, 

antioxidant activity controlled by Cu and Zn superoxide dismutase (SOD1), and neurotransmitter 

synthesis by dopamine-β-monooxygenase (Davies et al., 2013; Scheiber et al., 2014). 
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The oxidative damage caused by Cu and/or Cu-induced oxidative stress may also lead to 

activation of the tumor suppressor protein P53, which triggers apoptosis (Wang et al., 2014; 

Phatak and Muller, 2015). Inflammation is normally a protective response for the brain to 

prevent cell injury, but during periods of Cu dis-homeostasis in AD, inflammation can be 

triggered by abnormal protein aggregation or by pro- and anti-inflammatory cytokine imbalances 

(Wyss-Coray and Mucke, 2002; Minghetti, 2005; Mathys and White, 2017). Copper is known to 

play a major role in both toxic and protective inflammatory reactions, and it is well established 

that Cu induces peripheral secretion of IL-6 and IL-8 (Kennedy et al., 1998; Schmalz et al., 

1998; Choo et al., 2013). 

2.5.5. Copper Protein of Interest 

The high-affinity copper transport protein 1 (CTR1), coded by the gene SLC31A11, is 

known to be ubiquitously expressed in all tissue types (Kuo et al., 2001). Most importantly, 

CTR1 is responsible for making Cu bioavailable so it can be used by proteins for proper 

functioning (Gupta and Lutsenko, 2009). It has been found CTR1 is expressed in the placenta, 

aiding in the transport of Cu between fetal and maternal circulation (Kuo et al., 2001; Michelsen-

Correa et al., 2021). This Cu transport protein is controlled at the post-transcriptional level based 

on the Cu concentration of the cells (Petris et al., 2003). The protein is localized in a stable form 

on plasma membranes under Cu-depleted conditions, but losses stability in the presence of 

excess Cu levels (Molloy and Kaplan, 2009) Additionally, in an experiment with cultured HEK 

cells, it was observed that high levels of Cu induce CTR1 endocytosis and degradation (Guo et 

al., 2004). It is hypothesized that CTR1 expression will be decreased under high Cu conditions. 

This is expected to prevent the uptake of excessive Cu, which could lead to detrimental health 
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effects. There may also be an increased presence of a precursor protein in the presence of excess 

Cu, as an indicator of CTR1 inactivity. 

2.5.6. Copper Conclusions 

Copper is an essential element required for a wide array of biological processes ranging 

from cellular respiration to free radical synthesis. It also acts as an essential cofactor for proteins 

that play a role in antioxidant defenses. Even though Cu is an essential element, excessive 

concentrations in humans can result in negative health effects, so tight homeostatic regulation 

exists. Copper is majorly absorbed through the small intestine and the copper transport protein 

(CTR1) is partially responsible for the bioavailability of Cu in the human body as well as Cu 

transport into the brain. Altered Cu homeostasis in the brain is the key factor in AD, which 

involves Cu mis-locations rather than excess or deficiency. However, excess Cu may exacerbate 

some health conditions, leading to loss of Cu function in certain cell types and Cu-mediated 

toxicity in others. The ability of Cu to easily cycle between Cu+1 and Cu+2 states results in the 

generation of reactive oxygen species, leading to oxidative stress-induced damage in mammalian 

cells, one of the major contributing factors to the toxic nature of Cu. 

2.6. Manganese 

2.6.1. Manganese General Information 

Manganese (Mn) is one of the most abundant naturally occurring metals in the earth’s 

crust (Soares et al., 2017). Manganese can transition between 5 valence states but is majorly 

found as Mn2+ or Mn3+ (Aschner et al., 2007). There are many environmental sources of Mn, 

which include erosion of metal-bearing rocks and soils, decomposed plants, use of fungicides, 

mining and smelting, and combustion of Mn-containing emissions (O’Neal and Zheng, 2015). 

Manganese exposure can occur in a variety of environmental settings, and through the ingestion 
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of contaminated food and water, contact with contaminated soils, or inhalation of contaminated 

dust (O’Neal and Zheng, 2015). In the environment, Mn is majorly found in an oxidized form as 

MnO2 or Mn3O4 (Post, 1999).  

In the human body, Mn primarily exists as Mn2+ or Mn3+, of which Mn2+ in the blood is 

bound to albumin and -globulin (Harris and Chen, 1994; Reaney et al., 2002; O’Neal and 

Zheng, 2015). Meanwhile, virtually all Mn3+ is bound to transferrin (Tf) to form a stable 

complex (Michalke and Fernsebner, 2014). In the tissues of bones and major organs, Mn exists 

primarily as Mn2+ (Crossgrove and Zheng, 2004). Manganese is absorbed quickly by the human 

body via oral and inhalation exposures but has a much shorter half-life in the blood compared to 

the tissues once inside the body (O’Neal and Zheng, 2015). Data has suggested that Mn 

accumulates extensively in human bone with a half-life of 8-9 years (O’Neal and Zheng, 2015).  

Manganese is essential to human health, as it acts as an active site co-factor for many 

enzymes required for overall development, brain development and functioning, maintenance of 

nerve and immune cell functions, and regulation of blood sugar and vitamins (Aschner et al., 

2007; Crossgrove and Zheng, 2004; Guilarte, 2010). However, overexposure to Mn can be toxic 

to the human body. In human tissues, normal Mn concentrations should be around 1 mg/kg in 

bone, 1.04 mg/kg in the pancreas, 0.98 mg/kg in the kidney, and 4-15 g/L overall in the human 

body (Rahil-Khazen et al., 2002; Liu et al., 2014; Manganese | Toxicological Profile | ATSDR, 

n.d.). Manganese in the human body is transported and regulated by many macromolecules such 

as zinc transport protein 10 (ZNT10), MT, DMT1, Cp, and SOD1 (Gibbons et al., 1976; Au et 

al., 2008; Sheng et al., 2012; DeWitt et al., 2013). 
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2.6.2. Manganese Metabolism 

Manganese absorption occurs primarily through the gastrointestinal tract, but also can 

occur in the lungs following inhalation of contaminated materials, or through oral exposure 

(Nadaska et al., 2012). Gastrointestinal absorption is influenced by Fe metabolism; therefore, an 

Fe deficiency increases the absorption of Mn through transport proteins shared by the metals 

(DeWitt et al., 2013). The highest Mn uptake occurs in the liver, second only to the brain, but 

inhaled Mn can bypass the liver, entering directly into the bloodstream and then into the brain 

via the olfactory tract, allowing it to bypass the BBB (Chua and Morgan, 1997; Lucchini et al., 

2012; Zoni et al., 2012).  

Once Mn enters the circulation, it accumulates mainly in the liver, brain, and bone 

(Subramanian and Meranger, 1985; Rahil-Khazen et al., 2002; Krebs et al., 2014; Liu et al., 

2014). The liver is known to store high amounts of Mn and hepatobiliary excretion accounts for 

80% of Mn elimination (Chua and Morgan, 1997; O’Neal and Zheng, 2015). Due to the high 

excretion responsibility of the liver, damage to this organ can result in excessive accumulation of 

brain Mn and an increased risk of neurodegeneration with continued Mn exposure (Long et al., 

2009; Squitti et al., 2009). 

2.6.3. Manganese and Neurological Disorders 

The brain is said to be the target organ of Mn toxicity, with Mn accumulating in regions 

of the brain that have high Fe concentrations (Robison et al., 2013; O’Neal and Zheng, 2015). 

Divalent Mn (Mn2+) is thought to be transported into the brain mainly by DMT1, but citrate 

transporters, and a Zn transport protein (ZIP8), are also suggested to play a role in its delivery 

(Chua and Morgan, 1997; Aschner et al., 2007; Yokel, 2009; Michalke and Fernsebner, 2014). 

Trivalent Mn (Mn3+), is thought to enter the brain primarily through complexation with Tf via a 
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transferrin receptor (Tfr)-mediated process (Zheng and Chodobski, 2005). Once inside the brain 

tissues, Mn accumulates in certain brain structures and has a half-life of about 5-7 days 

(Grünecker et al., 2013; O’Neal and Zheng, 2015). Elimination of Mn from the brain is much 

slower than that of other organs, which is thought to be caused by slow eliminations from the 

CSF or that redistribution from bone to the CNS may occur (Crossgrove and Zheng, 2004; 

O’Neal et al., 2014; O’Neal and Zheng, 2015).  

It has been demonstrated that pregnant women accumulate Mn at increased levels 

compared to others, and since Mn is transported through the placenta, elevated maternal Mn 

exposure can lead to fetal overload (Takser et al., 2004; Erikson et al., 2007; Oulhote et al., 

2014).  As a result, there may be accumulation in the developing brain as well as changes in 

neurological structures, which may cause motor, cognitive, and behavioral impairments 

(Lucchini et al., 2017). Children also accumulate higher levels of Mn and eliminate less Mn than 

adults, making them more susceptible to Mn toxicity (O’Neal and Zheng, 2015). Inhalation of 

airborne particles is one of the primary sources of early-life exposure, and those living near 

industrialization processes may be at higher risk for child developmental issues (Lucchini et al., 

2017). 

Exposure to Mn has been proven to result in clinical signs and symptoms similar to PD 

with notable variations (O’Neal and Zheng, 2015). Similar clinical observations are thought to 

lie within changes in neurotransmission rather than massive dopamine neuronal cell loss which 

are selectively lesioned in PD, but remain intact following excessive Mn exposure (Guilarte, 

2010; O’Neal and Zheng, 2015). Once the signs and symptoms of Mn neurotoxicity appear, they 

are typically irreversible and progress despite removal from the exposure environment (O’Neal 

and Zheng, 2015). It has been shown that Mn may alter neuron repair processes by competing 
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with Cu for transport, intracellular storage, and trafficking, which may contribute overall to the 

non-motor symptoms seen in Mn-induced Parkinsonian disorder (O’Neal and Zheng, 2015). 

Additionally, interactions with Mn and Pb or As are known to lead to severe neurodevelopmental 

deficiencies compared to single-metal exposures (Claus Henn et al., 2012; Rodrigues et al., 

2016).  

2.6.4. Manganese and Oxidative Damage 

Manganese-induced neurotoxicity is regulated by many factors such as oxidative injury, 

mitochondrial dysfunction, protein misfolding, and neuroinflammation (Harischandra et al., 

2019). Since Mn is a redox-active element possessing a high reduction potential, accumulation of 

Mn under altered homeostatic conditions can lead to the formation of ROS, and an overall 

increase in the oxidative stress load in an organism (Harischandra et al., 2019). Manganese can 

also impair cellular antioxidant machinery, leading to an imbalance between ROS generation and 

its elimination, which plays a major role in Mn-induced neurodegenerative processes 

(Harischandra et al., 2019). In the brains of humans exposed to Mn, glial cell activation occurs, 

which plays an important role in increasing Mn-induced neurotoxicity by causing the release of 

ROS and pro-inflammatory cytokines (Harischandra et al., 2019). It is suggested Mn 

accumulation can occur in many organelles under acute exposure, however, under chronic 

exposures, Mn is found majorly in the mitochondria, leading to mitochondrial dysfunction 

(Morello et al., 2008). Manganese transport into cells and organelles is controlled but a wide 

variety of transporters (Figure 11) 
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Figure 11: Cellular Manganese Transport 

Depiction of the different proteins involved in manganese transport into mammalian cells (Harishchandra 

et al., 2019) 

 

2.6.5. Manganese Protein of Interest 

The solute carrier, ZNT10, coded by the gene SLC30A10, has been suggested to regulate 

Mn export from cells and play a protective role against Mn toxicity (O’Neal and Zheng, 2015; 

Zogzas and Mukhopadhyay, 2017). This protein is highly expressed in the liver and possesses a 

higher specificity for Mn over Zn (O’Neal and Zheng, 2015). An autosomal-recessive mutation 

that blocks the Mn efflux activity of this protein results in increased Mn accumulation in cells, 

which can lead to adult-onset Parkinsonism (Quadri et al., 2012). In a study of a patient 

harboring a homozygous mutation in SLC30A10, approximately a 10-fold increase was seen in 

blood Mn levels and the patient developed difficulty walking and conducting fine hand motor 

movements (Tuschl et al., 2008). It is hypothesized that ZNT10 will be upregulated in the 

presence of high Mn concentrations to export excess Mn out of the cells to avoid Mn-induced 

toxicity. 
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2.6.6. Manganese Conclusions 

Manganese is an essential trace element that acts as an active site co-factor for many 

enzymes and is also required for brain development and functioning. In excess, Mn can become 

harmful to the human body, so there is a strict homeostatic mechanism to control the levels of 

Mn within the cells. This homeostatic mechanism involves the transport of Mn by zinc transport 

protein 10 (ZNT10), as well as other metal transporters. Manganese absorption into the human 

body occurs mainly via the gastrointestinal tract and once in circulation, the brain is one of the 

major organs in which Mn accumulates. Manganese can also cross the BBB and placental 

barrier, increasing its toxicity since it can bypass these two major protective barriers. Excessive 

Mn exposure has been proven to result in Manganese-induced Parkinsonism, which presents 

with symptoms similar to PD.  

2.7. Zinc 

2.7.1. Zinc General Information 

Zinc is the second most abundant transition metal after Fe in living organisms and is the 

only metal cofactor found in more than 300 enzymes (Rink, 2000; VasÃik, 2000). The major 

role of Zn in biological systems is to stabilize the structure of proteins, including signaling 

enzymes that are part of signal transduction and transcription factors (Beyersmann, 2002). Zinc 

is an essential catalyst and co-catalyst in enzymes that control DNA synthesis, normal growth, 

brain development, membrane stability, bone formation, and wound healing (Barceloux, 1999; 

Mocchegiani et al., 2000). Zinc is also considered to be crucial for immune responses, as it 

influences and interacts with many components of the immune system (Chasapis et al., 2012).  

Around 85% of Zn within the human body is localized in bone and muscle and 11% in 

the skin, liver, and remaining tissues (Chasapis et al., 2012). Daily dietary intake of Zn is 
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recommended to be 15 mg/day, and the tolerable upper intake level of Zn is listed at 25 mg/day 

(MacDonald, 2000; Tapiero and Tew, 2003). The effect of Zn on the body depends majorly on 

the dose and length of exposure, where long periods or high exposure may provoke Zn 

accumulations with subsequent toxicity (Chasapis et al., 2012). Zinc ions within the body are 

hydrophilic and are unable to cross membranes by passive diffusion, but rather transport has 

been described as possessing saturable and non-saturable components depending on the Zn 

concentration (Chasapis et al., 2012). 

2.7.2. Zinc Metabolism 

Chronic and acute exposure can lead to Zn poisoning, so cellular levels of Zn are 

typically maintained in the range of 0.1 and 0.5 mM (Eide, 2006). To maintain this homeostatic 

range, eukaryotes possess MTs that control cellular Zn levels, as well as compartmentalization 

techniques (Maret, 2003). Metallothioneins play a major role in the detoxification of metals, 

specifically Zn and Cu due to high binding efficiencies for these metals (Chasapis et al., 2012). 

This homeostatic control works to avoid excessive Zn accumulation and is controlled mainly by 

a Zn-importer (ZIP) family and a Zn-exporter family (ZNT) (Figure 12) (Lichten and Cousins 

2009).  
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Figure 12: Zinc Transport in Mammalian cells 

Cellular Zn localization within mammalian cells via ZNT and ZIP transporters (John et al., 2010). 

 

A disruption of Zn homeostasis in the brain is associated with altered expression of MTs 

and ZNT1 (Chasapis et al., 2012). When MTs bind to Zn, they protect against oxidative stress 

and work to suppress cell death via apoptotic pathways by redistributing cellular Zn (Chasapis et 

al., 2012). Additionally, MTs play an important regulatory role in the uptake, distribution, 

storage, and release of Zn and may also play a competing role in Zn absorption with the common 

transport proteins (VasÃik, 2000). When Zn is high, it can also reduce Cu bioavailability via MT 

induction (Michelsen-Correa et al., 2021). Therefore, Zn excess may lead to Cu deficiency 

(Michelsen-Correa et al., 2021).   

2.7.3. Zinc and Neurological Disorders 

Zinc-induced neurotoxicity has been indicated to play a role in neuronal damage often 

associated with stroke, seizures, and neurodegenerative disorders (Morris and Levenson, 2017). 

In addition to neuronal damage, the mechanisms that lead to Zn-induced neurotoxicity include 

mitochondrial and energy production dysfunction as well as the aggregation of Aβ peptides 
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found in AD (Morris and Levenson, 2017). One of the metal’s major roles in neurodegenerative 

disorders is linked to its ability to modulate N-methyl-D-aspartate (NMDA) receptors, which are 

permeable to Zn ions (Inoue et al., 2015; Morris and Levenson, 2017). Free, excess Zn ions not 

only modulate these receptors, but also act as intermediates in biochemical cascade events such 

as calcium dysregulation, ROS production, mitochondrial disruption, and excitotoxicity that 

leads to neuronal damage or death (Granzotto and Sensi 2015; Wang et al., 2015; Morris and 

Levenson, 2017).  

Several studies have shown that Zn metabolism is altered in AD and other 

neurodegenerative diseases (Aschner, 1996; Wang et al., 2010). Post-mortem analyses have 

shown that there are marked accumulations of Zn in Aβ plaques, which is thought to be because 

the Aβ peptide has several Zn-bindings sites (Dong et al., 2003; Friedlich et al., 2004; 

Stoltenberg et al., 2005). Because of these binding sites, Zn is the only physiologically available 

metal can precipitate with A plaques, so this observed enrichment indicates that Zn binding 

plays a role in the formation of the Aβ plaques (Faller, 2009) (Figure 13).  

 
Figure 13: Zinc Transport and Association with Alzheimer’s Disease 

Interaction of Zn and beta-amyloid oligomers in AD after NMDAR-assisted influx into neurons (Choi et 

al., 2020). 
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2.7.4. Zinc and Oxidative Damage 

Excess Zn can easily become sequestered by the mitochondria, which triggers the 

generation of ROS by interfering with the activity of complex III of the electron transport chain 

(Frazzini et al., 2006). This leads to mitochondrial dysfunction and neuronal death, which is a 

major link between Zn and a variety of neurodegenerative disorders (Frazzini et al., 2006). 

Unlike other transition metals, Zn does not undergo redox reactions, due to the additional 

stability that the metal possesses with a fully occupied d shell (Chasapis et al., 2012). Zinc is 

suggested to have a dual effect on the secretion of pro-inflammatory cytokines, as it is known to 

trigger as well as suppress the release of these molecules (Bao et al., 2003). Supplementation of 

Zn in humans has been associated with decreases in IL-6 and TNFa (Zhou et al., 2004; Chasapis 

et al., 2012). 

Even though excess Zn levels can lead to the induction of oxidative stress in some 

situations, Zn is known to play a major protective role against oxidative stress in the body 

(Marreiro et al., 2017). Zinc can act as an anti-inflammatory agent by providing structural 

stability to cell membranes and induced metallothionein synthesis, which is involved in the 

reduction of hydroxyl radicals and the sequestration of ROS (Marreiro et al., 2017). 

Additionally, Zn is a structural component of SOD, which plays a role in reducing the overall 

toxicity of the ROS within the cell (Marreiro et al., 2017). 

2.7.5. Zinc Protein of Interest 

The protein, Zinc Transporter 1, (ZNT1), is the only member of the SLC30 family of 

proteins that transports the metal directly across the plasma membrane, whereas other members 

of the family employ vesicles knowns as zincosomes to aid in Zn sequestration (Haase and Maret 

2003; Taylor et al., 2008). This protein, coded by gene SLC30A1, is ubiquitously expressed in 
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all tissues and becomes upregulated in the intestine, brain, and placenta when dietary Zn intake 

increases (Andrews et al., 2004; Chowanadisai et al., 2005; Helston et al., 2007; Huang and 

Tepaamorndech, 2013). In mice, it has been found that ZNT1 plays an essential role in 

embryonic development, maternal Zn transport to the embryo, and cellular Zn homeostatic 

maintenance (Andrews et al., 2004). It is predicted that excess Zn levels will result in increased 

expression of ZNT1 in orders to avoid accumulation of Zn in cells. 

2.7.6. Zinc Conclusions 

Zn is an essential element that is a metal co-factor in more than 300 enzymes, acting to 

stabilize protein structures. Since excess Zn can be toxic to humans, a homeostatic mechanism 

involving metallothioneins and two families of Zn transporters is used to maintain Zn levels in a 

desirable range. The transport protein ZNT1 is ubiquitously expressed in mammalian cells and is 

upregulated in most tissues in the presence of excess Zn. Disruption of Zn homeostasis has been 

linked to several neurodegenerative diseases, including AD. Even though excess Zn levels can be 

linked to the formation of reactive oxygen species and lead to neurological disorders, Zn is also 

known to play a protective role against oxidative stress in the human body. 

2.8. Meconium 

Meconium is the first stool secreted by a newborn and is made up of accumulated waste 

material ingested from the amniotic fluid beginning from the 12th week of gestation forward 

(Michelsen-Correa et al., 2021). Meconium is normally excreted by the fetus in the first day or 

two after birth (Michelsen-Correa et al., 2021). Since meconium indicates material accumulation 

over 6 months, analysis of meconium samples has been used to assess long-term exposure to 

heavy metals for gestating mothers living in highly polluted environments (Li et al., 2008). 

Essential metals such as Zn, Fe, Cu, and Mn are needed for the synthesis of cofactors that 
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perform many functions during fetal development but are also detrimental if the fetus becomes 

exposed to excess concentrations (Michelsen-Correa et al., 2021).  

Exposure to Cu, Mn, Zn, As, and other metals through inhalation, dermal absorption, and 

ingestion of contaminated food, soil, and dust has been shown to significantly increase the risk 

for neurodevelopmental disabilities in children exposed in utero and/or during childhood (Liu et 

al., 2010; McDermott et al., 2011; Ciesielski et al., 2012; McDermott et al., 2013; Rodríguez-

Barranco et al., 2013; Al-Saleh et al., 2014; Claus Henn et al., 2017; Aschner and Costa, 2011–

2018). Meconium provides an ideal matrix to assess pre-natal metal exposure for infants, as 

collection is non-invasive and easy to perform (McDermott et al., 2020). However, even when 

metals are found to be present in meconium samples, it is difficult to differentiate between 

“background” metal exposure from anthropogenic source exposure or to determine what 

concentration will be detrimental to the fetus (Michelsen-Correa et al., 2021). 

During gestation, foreign substances, including metals, are predominantly deposited in 

meconium directly from bile secretion or the fetus swallowing amniotic fluid containing the 

toxicants (Ortega García et al., 2006). Although maternal blood and hair, infant hair, and cord 

blood can be used to assess metal exposure, a higher percentage of metals has been detected 

through meconium analysis than the other sample matrices (Ostrea et al., 2008). Additionally, 

metal analyses of maternal and cord blood only indicate recent exposures and fetal exposure 

around the time of birth, unless the metals have been mobilized from maternal stores (Michelsen-

Correa et al., 2021).  

Meconium formed during development and passed by the neonate may contain proteins 

that provide a characterization of the intrauterine environment (Lisowska-Myjak et al., 2018). 

However, meconium protein composition can vary throughout intrauterine development 
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(Lisowska-Myjak et al., 2018). A wide variety of proteins have been identified in meconium 

samples, including proteolytic enzymes, protease inhibitors, enzymes involved in lipid and 

carbohydrate metabolism, immunoglobulins, and neutrophil-derived proteins (Lisowska-Myjak 

et al., 2018).  

Ionic metals and other elements may be transported from the mother to the fetus via 

simple diffusion at the placental interface (Michelsen-Correa et al., 2021). Due to similarities of 

charge, size, and structure, some metals, such as Cd, can pass through channels that are 

biologically designated to actively transport essential metals such as Fe or Zn (Ballatori, 2002; 

Bridges and Zalups, 2005). The placenta plays a multi-level protective role against xenobiotic 

transfer to the fetus, with one of the major protective agents being proteins that are expressed by 

cells along with the placental interface that sequester, detoxify, or transfer toxic substances back 

to maternal circulation (Michelsen-Correa et al., 2021). The ability of the placenta to control the 

transfer of essential and non-essential metals may differ throughout development (Mikheev et 

al., 2008).  

Metals that primarily undergo fecal excretion include Mn, Cu, and Zn, while As relies on 

both urinary and fecal excretion routes (Gregus and Klaassen, 1986). Metals may also 

accumulate in the liver and kidney or other fetal tissues in addition to deposition in meconium 

during gestation (Kuriwaki et al., 2005; Thévenod and Wolff, 2016; Michelsen-Correa et al., 

2021). It is unknown whether metal mixture exposures have different depositions in meconium 

than single metal exposures (Michelsen-Correa et al., 2021). 
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2.9. Inflammatory Markers 

2.9.1. Interleukin 6 

Interleukin-6 (IL-6) is a pro-inflammatory cytokine that plays major roles in host defense, 

inflammation, cancer, and cellular growth and hypertrophy (Hunter and Jones, 2015; Rose-John, 

2015). Interleukin 6 is important for hepatocyte regulation and processes in the placenta, nervous 

system, and endocrine system (Kishimoto et al., 1995). This cytokine is found to be activated in 

the CNS during neuroinflammation associated with CNS infection or injury as well as several 

other conditions (Erta et al., 2012). This suggests that IL-6 plays a critical role in maintaining 

homeostasis of neuronal tissue, however, overproduction of this cytokine in the brain can result 

in neurodegeneration (Rothaug et al., 2016). 

Under physiological conditions, low levels of IL-6 are present, but a dramatic increase in 

IL-6 secretion and expression is observed in various neurological disorders such as AD and PD 

(Benveniste, 1998; Rothaug et al., 2016). Additionally, IL-6 can exert neuroprotective properties 

by increasing MT I and II, which are both known to inhibit cell death and brain damage and 

promote tissue recovery (Penkowa, 2006). Many cytokines, such as Tumor Necrosis Factor alpha 

(TNF-α), inflammatory factors, neurotransmitters, and neuropeptides have been shown to change 

IL-6 regulation in brain cells, mainly driven by membrane depolarization (Sallmann et al., 2000; 

Erta et al., 2012). Since exposures to the metals of interest are known to increase ROS formation, 

it is expected that IL-6 expression will be increased to deal with the increased oxidative stress 

load caused by the exposures. 

2.9.2. Tumor Necrosis Factor alpha 

Tumor necrosis factor alpha (TNF-) is a homotrimer protein of approximately 17 kDA 

subunits that is identified as a pro-inflammatory cytokine (Santello and Volterra, 2012). This 
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cytokine and its receptors regulate many physiological functions, including immune surveillance, 

immune reactions, induction of cell death, and play important roles in the CNS (Locksley et al., 

2001; Bradley, 2008; Incorvaia et al., 2008; Clark et al., 2010). Due to its participation in many 

physiological processes, the expression of TNF- is tightly regulated at the transcriptional, post-

transcriptional, and translational levels to maintain important homeostasis (Decourt et al., 2017). 

There has been increasing evidence suggesting that TNF-α, along with its receptors, are 

present in the normal brain and display various specificities of expression and action (Santello 

and Volterra, 2012). Signaling of TNF-α plays a role in many CNS conditions and diseases such 

as PD and AD, as these constitutively expressed levels likely undergo deleterious 

transformations during CNS pathologies (Santello and Volterra, 2012). Once chronic brain 

inflammation is initiated, an upward spiral occurs, maintaining excessive levels of TNF-α, which 

can stimulate Aβ synthesis and neuronal loss (Koenigsknecht-Talboo, 2005). It has also been 

indicated, through in vivo studies, that TNF-α signaling exacerbates Aβ and tau pathologies seen 

in AD (Decourt et al., 2017). Expression of TNF-α is expected to be increased to manage the 

increased oxidative stress load caused by exposure to metals and metal mixtures.  
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3. Research Goals 

A preliminary bioavailability study was performed to determine the average 

concentrations of As, Cd, Cu, Pb, Mn, and Zn from residential soil and household dust samples 

from houses near current and historic mining operations (Figure 14). The average overall 

concentrations of the metals present in the samples as well as concentrations obtained from a 

physiological based extraction test (PBET) performed on the same samples were used to 

determine the percent of the metals bioavailable in each sample type. These values were then 

identified as the baseline concentrations of which cultures of two mammalian cell lines would be 

exposed to in order to investigate single metal and metal-mixture effects on mammalian cells. 

 
Figure 14: Map of Sampling Location for Preliminary Bioavailability Study 

Visualization of the large surface mining activities within city limits. Greely neighborhood, outlined in red, 

and the proximity to the mining concentrator, outlined in yellow. The red markers within the Greely 

neighborhood boundary indicate the locations from which samples were collected. 

 

It has been hypothesized that exposure to single metals and metals mixture found in Butte 

Montana’s mining contaminated environment will affect the expression of four select proteins 

and two inflammatory markers, which can lead to the development of numerous health issues, 

such as neurodevelopmental and neurodegenerative disorders. To determine a link between metal 
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exposure in Butte and possible health effects, the inflammatory cytokines, Tumor Necrosis 

Factor alpha (TNF-a) and Interleukin-6 (IL-6), were measured by enzyme-linked immunoassay 

(ELISA). The arsenic methyltransferase protein (AS3MT), copper transport protein (CTR1), zinc 

transporter protein (ZNT10), and zinc transporter protein (ZNT1), were analyzed by western blot 

experiments. Expression of these proteins was investigated from previously collected meconium 

samples, as well as cultures from a human bronchial epithelial cell line (BEAS- 2B), and a 

human embryonic kidney cell line (HEK-293), that were exposed to varying concentrations of 

single metals and metals mixtures to potentially mimic chronic, low-level exposure over two 

weeks. 

There is a limited knowledge base about the impact of metal mixtures in humans. 

Information on the interactions of metals that are essential elements is even more limited. This 

research will attempt to provide information on the impact of metal mixtures, some of which are 

essential elements, in mammalian cells. This is the beginning step towards gaining an 

understanding of how these mixtures affect the complete organism. Furthermore, this study can 

be used to provide a framework for preventive interventions, including specific environmental 

monitoring requirements that can help to minimize adverse health impacts for populations at risk 

due to single metal and metal mixture contamination in their communities. Lastly, this research 

has the potential to define new metals and metal mixtures that should be considered by 

environmental and public health regulatory agencies to protect human health.  
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4. Research Methods 

4.1. Preliminary Bioavailability Study 

4.1.1. Trace Metal Cleaning Protocol 

To trace metal clean the polypropylene bottles (Environmental Express, Ultimate Cup-

50mL) used for the bioavailability study, the bottles, lids and, digestion caps were submerged in 

a container filled with 10% nitric acid (v/v) (Fisher Chemical, nitric acid trace metal grade 67-

70%) and placed in a clean hood for 24 hours. The bottles and other components were then 

removed from the 10% nitric acid, rinsed thoroughly with ultrapure water, then submerged in a 

container filled with ultrapure water and placed in the cleaned hood for 24 hours. The contents 

were then rinsed a final time and placed in the cleaned hood for two days to dry. If the tubes 

were not used immediately after drying, they were placed into a trace metal-cleaned Ziploc bag 

and stored for future use. The Ziploc bags were trace metal cleaned in the same manner, 

however, the bags were filled with the 10% nitric acid or water and then sealed rather than being 

submerged in the solutions. 

4.1.2. Sample Collection 

Ten volunteers were recruited by email through the Greely Neighborhood Coalition. The 

metals, As, Cd, Cu, Pb, Mn, and Zn were chosen based on a previous study by the PI (Hailer et 

al., 2017). Researchers collected residential soil samples following a procedure outlined by the 

Montana Department of Environmental Quality (MTDEQ). Approximately one inch of 

undisturbed topsoil from 3 higher traffic locations was collected with a plastic hand trowel and 

placed into trace metal cleaned Ziploc bags (MTDEQ, 2013). Once collected, the soil samples 

were then allowed to air dry in a trace metal cleaned hood for a week.  
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Volunteers were asked to collect dust from the floors of at least three main rooms of the 

house by using a broom on hard flooring or a vacuum cleaner on carpet flooring. The sample was 

then placed in trace a metal cleaned Ziploc bag provided by the researchers. The volunteers were 

asked to provide at least 2.0 g of dust and were encouraged to perform more than one round of 

dust collection to provide researchers with an adequate amount of dust. An information 

collection sheet was also provided to the volunteers in which they provided the collection 

date(s), rooms from which the samples were collected from, and method in which they used to 

collect the samples. The dust and soil samples were cleaned of debris and standardized by 

sieving the contents to 149 m with stainless steel sieves (U. S. Standard Sieve, ATM 

Corporation). The sieves were thoroughly cleaned with ultrapure water before and after each 

standardization. 

4.1.3. Preparation and Digest for Total Metal Content 

Approximately 0.1 g of standardized soil or dust was weighed out and placed in an acid-

washed 50 mL polypropylene digestion tube to determine total metal concentrations. To each 

sample, 3 mL of nitric acid and 1.5 mL of ultra-pure water were added. The samples were then 

digested in a hot block set at 90ºC for 4 hours. The samples were allowed to cool and 1 mL of 

30% hydrogen peroxide (Sunlight Supply Inc., Hydrogen Peroxide Technical Grade 34%) was 

added to each sample. The samples were then placed in a hot block set to 70ºC for 30 minutes. 

Once digested, the samples were diluted to 50 mL with ultra-pure water and filtered with 0.2 µm 

sterile nylon filters (Fisher Scientific, .20 µm) before ICP-OES analysis. This digest method was 

derived and modified from U.S. EPA method 3050A, Acid Digestion of Sediment, Sludges, and 

Soils (U.S. EPA, 1992). 
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4.1.4. Preparation and Digest of Stomach Samples 

The bioavailability of metals present in both sample types was evaluated by first 

digesting the contents in conditions that mimicked those of the gastrointestinal tract. Gastric 

solution for the stomach and intestinal phase digestions was prepared following published 

protocols (Sialelli et al., 2010). Approximately 0.4 g of soil or dust was added to 40 mL of 

gastric solution (pH=2.5, 1.25 g pepsin activity 800-2500 units/mg, 0.50 g citrate, 0.50 g malate, 

420 µL lactic acid, 500 µL acetic acid) in an acid-washed 50 mL polypropylene bottle and placed 

in a shaker incubator set at 150 rpm and 37ºC for 1 hour. The samples were subsequently 

centrifuged at 3000 rpm for 10 minutes and a 5 mL aliquot representing the stomach phase was 

removed from each sample and filtered with 0.2 µm sterile nylon filters before ICP-MS analysis. 

4.1.5. Preparation and Digest of Intestinal Samples 

To the bottles containing the stomach samples, 5 mL of gastric solution was added to 

retain the solid: solution ratio of 0.4 g: 40 mL. The sample mixtures were then neutralized to a 

pH of 7.0 by adding solid sodium hydrogen carbonate (Puratronic, sodium hydrogen carbonate 

99.998%, metal basis). To the neutralized samples, 70 mg bile salts (Oxoid, bile salts, pH (2% 

solution) 6.0 at 25C) and 20 mg of pancreatin (MP Biomedicals, Pancreatin USP) were added. 

The mixtures were then placed in a shaker incubator set to 150 rpm and 37ºC for 2 hours and 

subsequently centrifuged at 3000 rpm for 10 minutes. A 10 mL aliquot was removed from each 

sample and filtered with 0.2 µm sterile nylon filters. From the filtered 10 mL aliquots, 5 mL 

aliquots were then removed and diluted to 50 mL with a 5% nitric acid matrix. The diluted 

samples representing the intestinal phase were then analyzed using ICP-MS. 
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4.1.6. Bioavailability Determination 

The bioavailability and distribution data collected were then used to determine the 

percent bioavailability of each metal in the stomach and intestinal digest phases as compared to 

the amount of metal found in the total digest (1).  

𝑀𝑒𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝐵𝐸𝑇 𝑠𝑡𝑜𝑚𝑎𝑐ℎ 𝑜𝑟 𝑖𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑝𝑝𝑚)

𝑀𝑒𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑔𝑒𝑠𝑡 𝑜𝑓 𝑠𝑎𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑝𝑝𝑚)
× 100 (1) 

4.2. Biological Experiments 

4.2.1. Mammalian Cell Line Metal-Exposure Determination 

The average total metal concentrations from each sample type for each metal, determined during 

the preliminary bioavailability study, were used to calculate what concentration of each metal the 

mammalian cell cultures should be exposed to as to potentially represent chronic, low-level 

metal exposure in Butte (Table IV). Determination of exposure concentration for all metals was 

performed using the same calculation shown below for As (2). Determination of exposure 

volume for each metal was also performed following the calculation included for As below (3) 

The standard solutions of As, Cu, Mn, and Zn were also the standards used for generation 

of spikes and controls for ICP-MS and ICP-OES analysis in the preliminary bioavailability study 

(all standards were purchased from CPI International, Single-Element Aqueous RM, 1000 

g/mL concentrations and 2% HNO3 matrix).  

𝐴𝑣𝑔. 𝑠𝑜𝑖𝑙 𝑎𝑛𝑑 𝑑𝑢𝑠𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
(19.81

𝑚𝑔
𝑘𝑔

+ 38.37
𝑚𝑔
𝑘𝑔

)

2
= 29.09

𝑚𝑔

𝑘𝑔

≈ 30.0
𝑚𝑔

𝑘𝑔
 𝐴𝑠 

(2) 

30.0 𝑚𝑔 𝐴𝑠

𝑘𝑔 𝑠𝑎𝑚𝑝𝑙𝑒
×

0.00001 𝑘𝑔 𝑠𝑎𝑚𝑝𝑙𝑒

50.0 𝑚𝐿 𝑆𝑎𝑚𝑝𝑙𝑒
= 6.00 × 10−5  

𝑚𝑔

𝑚𝐿
 𝐴𝑠  

6.00 × 10−5  
𝑚𝑔

𝑚𝐿
 𝐴𝑠 ×

1𝑔 

1000 𝑚𝑔
×

1000 𝑚𝐿

1𝐿
×

1 𝑚𝑜𝑙 𝐴𝑠

74.92 𝑔 𝐴𝑠
= 8.01 × 10−7

𝑚𝑜𝑙

𝐿
 𝐴𝑠  
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 where avg. is average, sample dilution is 50.0 mL, sample weight is 0.00001 kg, and 

74.92 g is the molar mass of As. 

 

Table IV: Calculated Metal Exposure Concentrations 

 Arsenic Copper Manganese Zinc 

Concentration 

(mol/L) 
8.01x10-7 2.25x10-5 1.84x10-5 2.04x10-5 

 

(6.00 × 10−5  
𝑚𝑔

𝑚𝐿
 𝐴𝑠) × (20.0 𝑚𝐿 𝑚𝑒𝑑𝑖𝑎) = (

0.1 𝑚𝑔

𝑚𝐿
 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐴𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) (𝑥) (3) 

𝑥 = 0.001 𝑚𝐿 𝐴𝑠 ≈ 1 µ𝐿 𝐴𝑠 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

4.2.2. Cell Culture Preparation 

Control flasks of two mammalian cell lines, human embryonic kidney cells (HEK-293) 

(ATCC, 293; Embryonic Kidney; Human (homo sapiens)) and human bronchial epithelial cells 

(BEAS-2B) (ATCC, BEAS-2B; Bronchial Epithelium; Human (Homo sapiens)), were prepared 

by seeding 1 mL of frozen stock of each cell type into 20 mL of DMEM growth media (Corning, 

Dulbeco’s Modification of Eagle’s Medium, 4.5 g/L, L-glutamine, and sodium pyruvate) 

containing 10% fetal bovine serum (FBS) (v/v) (Fisher Scientific, Research Grade Fetal Bovine 

Serum, 500 mL, Triple 0.1m Sterile Filtered) and 1% Penicillin/Streptomycin (v/v) (Lonza, 

BioWhittaker Penicillin/Streptomycin) and allowed to grow to 90% confluency in a tissue 

culture flask (Fisher Scientific, 75 cm2, Vented cap, TC treated, Sterile).  

Once the cells in the control flasks reached 90% confluency, the growth media was 

removed from the flasks and 5 mL of Trypsin was added to each flask (Corning 0.25% Trypsin, 

2.21 mM EDTA, 1x [-] sodium bicarbonate) to dissociate the adherent cells from the bottom of 

the flasks. The 5 mL of Trypsin from each control flask of the same cell type was then removed 

from the flasks and combined in a sterile falcon tube to be re-aliquoted for preparation of culture 

flask for each exposure scenario (Table V). 
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Table V: Mammalian Cell Line Metal Exposures  

 
Arsenic (As) Copper (Cu) Manganese (Mn) Zinc (Zn) 

Exposure 1 Control Control Control Control 

Exposure 2 As Cu Mn Zn 

Exposure 3 As:Cu Cu:As Mn:As Zn:As 

Exposure 4 As:Mn Cu:Mn Mn:Cu Zn:Cu 

Exposure 5 As:Zn Cu:Zn Mn:Zn Zn:Mn 

Exposure 6 As:Cu:Mn:Zn As:Cu:Mn:Zn As:Cu:Mn:Zn As:Cu:Mn:Zn 

 

The flasks were maintained over a two-week period, during which, all flasks were split 

and re-fed on the same schedule. When the cells were split or re-fed, the same concentration of 

metal, calculated to potentially represent chronic, low-level exposure was re-added to the culture 

flask (Table IV).  

4.2.3. Protein Extraction Process 

4.2.3.1. Mammalian Cell Cultures 

For extraction of the proteins from all sample types, a RIPA (radioimmunoprecipitation 

assay) protein extraction protocol was used. To begin, a 7X protease inhibitor was prepared by 

adding 1 protease inhibitor pellet (cOmplete Mini, EDTA-free Protease Inhibitor Cocktail 

tablets) to 1.5 mL of biological grade water (Fisher Scientific, HyPure Molecular Biology 

Grade Water, Nuclease-Free). A mixture of RIPA buffer (Boston BioProduct Inc. RIPA Buffer 

pH=7.40.15) and diluted 7X protease inhibitor (1X RIPA + protease inhibitor) was prepared. 

Samples were collected from the cell cultures by removing growth media from the cell 

culture flasks and adding 5 mL of Trypsin to dissociate the adherent cells from the bottom of the 

flask. All 5 mL of Trypsin was then collected and added to a labeled 15 mL sterile falcon tube. 

The falcon tubes were then added to a centrifuge and spun at 1400 rpm for 5 minutes to pellet the 

cells. The cells were then washed in cold, filtered 1X PBS (Gibco, Dulbecco’s Phosphate 

Buffered Saline, [-] Calcium Chloride [-] Magnesium Chloride) and re-pelleted in the same 
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manner as above. The supernatant was then aspirated off and the tubes were immediately placed 

onto ice. The pelleted cells were then re-suspended in 250 L of 1X RIPA + protease inhibitor 

and the tubes were vortexed for 10 seconds and placed back on ice to incubate for 10 minutes. 

This process was repeated 3 times for a total of 30 minutes. The mixtures were then transferred 

to a 1.5 mL microcentrifuge tube and the tubes were spun in a pre-chilled 4C centrifuge for 15 

minutes at top speed (18,000 rpm). The supernatant or unreduced lysate was then transferred to a 

new, labeled microcentrifuge tube and stored in the -80C freezer for further use. 

4.2.3.2. Meconium Samples 

Approximately 0.01 g of each of the 13 meconium samples collected in a previous study, 

was added to a labeled microcentrifuge tube. To each tube, 150 L of 1X RIPA + protease 

inhibitor was added to each meconium sample in the tube. The tubes were immediately placed on 

ice and vortexed for 10 seconds and incubated on ice for 10 minutes for 3 rotations totaling 30 

minutes. The tubes were then spun in a pre-chilled 4C centrifuge for 15 minutes at top speed 

(18,000 rpm). The supernatant or unreduced lysate was then transferred to a new, labeled 

microcentrifuge tube and stored in the -80C freezer for further use. 

4.2.4. Determination of Sample Protein Concentration(s) 

To determine the total protein concentration in each sample, a Bicinchoninic Acid Assay 

(BCA) was performed for all samples collected throughout the experiment. To do so, the 

protocol provided in the PierceTM BCA Protein Assay Kit was followed and all reagents used 

were those provided by the kit (Fisher Scientific, Pierce BCA Protein Assay Kit).   

A standard curve was generated ranging from 0 – 300 µg/mL bovine serum albumin 

(BSA) using stock BSA provided (2 mg/mL in 0.9% saline and 0.05% sodium azide) (Appendix 

A, Table IX). Additionally, total protein levels were assumed to be significant so 1:50 and 1:100 
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dilutions were performed on each sample type to be analyzed to ensure protein concentrations 

fell within the range of the standard curve (Appendix A, Table X). All dilutions were performed 

in potassium phosphate buffer (100 mM pH=7.5) prepared in the laboratory. 

Samples and standard dilutions were plated in 25 µL triplicates in a 96-well plate and 200 

µL of a working reagent (WR) consisting of 50 parts BCA reagent A (sodium carbonate, sodium 

bicarbonate, bicinchoninic acid, and sodium tartrate in 0.1 M sodium hydroxide) and 1 part of 

BCA reagent B (4% cupric sulfate), both provided in the PierceTM BCA Protein Assay Kit, was 

added to each well. An ultraviolet-visible spectrophotometer (UV-Vis) was then used to obtain 

absorbance measurements at 450 nm and 620 nm.  

To determine the total amount of protein present in each sample, multiple BCA assays 

were performed. Before generation of the standard curve, a calculation was performed to correct 

the absorbance of all samples (4). A standard curve was then generated and a linear regression 

equation was obtained (Figure 15). The linear regression equation and dilution factor were then 

used to determine the protein concentration in each sample (5). A calculation was then 

performed to determine what volume of each sample was required to load 40 µg protein into the 

SDS-PAGE gels (6). 

Std. and unk. abs – Avg blank abs= corrected abs signal  (4) 

where std is standard, unk is unkown, abs is absorbance, and avg is average.  
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Figure 15: Meconium Sample BCA Analysis (450 nm) 

Standard curve graph obtained from a UV-Vis spectrophotometer at a wavelength of 450 nm. Generated 

from a BCA assay of meconium samples. 

 

𝑌 = 0.0002𝑥 − 0.0008 (5) 

𝑥 = 0.0114  

𝑥 =  
0.0114 + 0.0008

0.0002
= 6̅1.0

𝜇𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑚𝐿 𝑠𝑎𝑚𝑝𝑙𝑒
× 100 = 6̅. 1 × 102

𝜇𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑚𝐿 𝑠𝑎𝑚𝑝𝑙𝑒
  

where the value for x was obtained from the average standardized values of meconium 

Sample 3 and the bar above the numbers denotes significant figures. 

40.0 𝜇𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ÷  6̅. 1 × 102
𝜇𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑚𝐿 𝑠𝑎𝑚𝑝𝑙𝑒

= 6̅. 56 µ𝐿 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

(6) 

where the bar above the numbers denote significant figures.  

This method of protein content determination was used for all samples in this 

investigation to ensure that equal amounts of protein were loaded into each SDS-PAGE gel. A 

y = 0.0002x - 0.0008

R² = 0.9963
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table of the overall protein concentrations and calculated loading volumes in all the metal 

exposure cell samples and meconium samples can be found in Appendix B (Table XI). 

4.2.5. Western Blot Analysis 

Using the calculated total protein concentrations, it was determined what volume was 

required of each sample so that the sample wells in the sodium dodecyl sulfate-polyacrylamide 

(SDS-PAGE) gel were loaded with 40 µg of overall protein (Appendix B, Table XI). The 

unreduced samples were then diluted 3:1 in sample buffer (Bio-Rad 4x Laemmli sample buffer) 

with β-mercaptoethanol (βME) (Fluka, 2-Mercaptoethanol, 0.5 M in H2O, 20C). The now 

reduced samples were then added to a hot block at approximately 90C for 10 minutes to 

denature the sample proteins. The samples were then quickly spun down in a mini centrifuge 

before being added to a 4-15% SDS-PAGE gel (Bio-Rad, Mini-PROTEAN® TGX™ precast gel 

4-15%) in an electrophoresis cassette chamber filled with 1X SDS running buffer (Bio-Rad, 10X 

Tris/Glycine/SDS Buffer). To the gels containing samples, 8 µL of protein standard (Bio-Rad, 

Precision Plus Protein Standards, Dual Color) was added to a sample well on each end of the 

gel. The gel was electrophoresed at 200 V for approximately 35 minutes. 

To transfer the proteins from the SDS-PAGE gel to a nitrocellulose membrane, a 

sandwich was prepared in the following order in a dish containing transfer buffer: (25 mM Tris 

base, 190 mM glycine, 0.1% SDS, 20% methanol, pH=8.3), sponge, 2 sheets of filter paper (Bio-

Rad, Mini Trans-Blot Filter paper, 75.x10 cm) SDS-PAGE gel, nitrocellulose membrane (Bio-

Rad, Nitrocellulose Membranes, 0.45 m, 7x8.5 cm ), 2 additional sheets of filter paper, sponge. 

The sandwich was then placed inside the cassette, with the side of the cassette closer to the 

nitrocellulose membrane facing the positive (red) electrode. The chamber was filled with transfer 
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buffer and electrophoresis was performed on the apparatus for 1.5 hours at 150 mA constant 

current.  

After electrophoresis was complete, the membrane was rinsed quickly with deionized 

water, dried in between two paper towels, and transferred to a labeled Ziploc bag. At this step, 

the western blots containing meconium samples were stained with Ponceau S stain (Research 

Products International, Ponceau S Staining Solution) to visualize protein loading, as it was 

determined that the western blot loading control protein, Vinculin, was not detected in the 

meconium samples. After a staining period of 30 minutes, an image was captured of the 

membranes and 1X TBST was used to rinse the stain from the membranes so they could be used 

for the rest of the western blotting procedure.  

The membrane was then wet with 1X Tris-buffered saline (TBS) diluted from 10X TBS 

(24 g Tris-HCl, 5.6 g Tris base, 88 g NaCl, pH=7.6) and washed 2 times for 5 minutes each in 

1X TBST (Tris-buffered saline, 0.1% Tween 20). The membrane was then added to a Ziploc bag 

containing 50 mL of blotto solution made of 7.5% non-fat dry milk (NFDM) (w/v) in 1X TBST 

and placed on a tilt table in the walk-in refrigerator set at 4C to block overnight.  

The blocking solution was discarded, and the membrane was washed in 1X TBST 3 times 

(twice fast, once for 10 minutes). The membrane was then cut to allow incubation of two primary 

antibodies, the Vinculin control and the metal-specific protein of interest. Each membrane 

section was then added to a labeled Ziploc bag containing 10 mL of primary antibody diluted 

1:1000 in 1X TBST with 5% NFDM (w/v) and incubated at room temperature for 1.5 hours. 

 The primary antibody solutions were then removed from the bags and 3 room 

temperature 1X TBST washes were performed on the membranes (1 quick, 2 for 10 minutes 

each). The membranes were blocked one last time in 1X TBST containing 10% NFDM (w/v) for 
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20 minutes. The membranes were then added to a new Ziploc bag containing 10 mL of 

secondary antibody diluted 1:10000 in 1X TBST containing 5% NFDM (w/v) and incubated at 

room temperature for an hour. Three room temperature washes (1 quick, 2 for 10 minutes each) 

were then performed with 1X TBST. The membranes were then incubated in 1X enhanced 

chemiluminescence (ECL) substrate, prepared following the protocol provided with the ECL kit 

(Invitrogen, Novex ECL, HRP Chemiluminescent Substrate Reagent Kit), for 2 minutes and 

then analyzed using a ChemiDoc XRS+ imager (Bio-Rad, Molecular Imager, ChemiDoc 

XRS+ with Image Lab software). The software provided with the imager was then used to 

annotate and normalize densitometric values between control samples and exposure samples to 

obtain quantitative values for the western blots. 

 To analyze As exposure blots, a primary antibody specific for the human AS3MT 

protein was used (proteintech, AS3MT Rabbit Polyclonal Antibody, 27270-1-AP). To analyze 

Cu exposure blots, a primary antibody specific for a high-affinity copper transport protein, 

CTR1, was used (abcam, Anti-SLC31A1/CTR1 antibody [EPR7936], ab129067). To analyze Mn 

exposure blots, a primary antibody specific for a multi-metal transport protein, ZNT10, was used 

(abcam, Anti-SLC30a10 antibody, ab229954). To analyze Zn exposure blots, a primary antibody 

specific for a Zn transport protein, ZNT1 (Invitrogen, SLC30a1 Polyclonal Antibody, Pa5-

42481) was used. The same anti-rabbit secondary antibody was used for all the western blots 

(abcam, Goat Anti-Rabbit IgG (HRP), ab205718). To analyze the control protein, an antibody 

specific for the protein Vinculin (Sigma-Aldrich, Monoclonal Anti-Vinculin antibody produced 

in mouse, V4505) and a rabbit anti-mouse secondary antibody (Invitrogen, ZyMax, Rabbit 

anti-Mouse IgG (H+L) HRP Conjugate) were used on the mammalian cell lines membranes. 
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4.2.6. Enzyme-Linked Immunoassay Analysis 

In order to obtain data for cytokine expression of Human Tumor Necrosis Factor alpha 

(TNF-α) and Interleukin-6 (IL-6), enzyme-linked immunoassays (ELISA) were performed. The 

protocols provided with the TNF-α kit (Invitrogen, Human TNF alpha Uncoated ELISA, 88-

7346) and IL-6 kit (Invitrogen, Human IL-6 Uncoated ELISA, 88-7066) were followed directly 

and all reagents used were those provided by the kits or additional materials required by the kit 

manufacturer. All sample dilutions, 1:10 for the meconium samples and 1:250 for the cell 

cultures, were performed in ELISA/ELISAPOT Diluent provided in the kit. For preparation of 

coating buffer and wash buffer, 1X PBS was used, and Tween 20 (Thermo Fisher, Tween 20, 

Ultrapure) was also used for the wash buffer. Additionally, 2 N sulfuric acid (H2SO4) was used 

as the stop solution for the assays (Fisher Scientific, Sulfuric Acid, Trace Metal Grade).  

Following the protocol, a standard curve was generated, and the linear regression 

equation and R-squared values obtained from the standard curve graph were used to calculate the 

concentration of each cytokine in the samples. The data obtained from the ELISA plates were 

then used to calculate cytokine expression from each metal exposure scenario compared to the 

control for both cell lines. Cytokine concentrations were determined for each meconium sample 

using the data, as no control meconium samples were able to be obtained, so comparisons were 

not able to be made.  

  



57 

5. Results 

5.1. Preliminary Bioavailability Study 

For the preliminary study, As, Cd, Cu, Mn, Pb, and Zn were selected to be quantified 

from the Greely neighborhood environmental samples collected. Each participant submitted a 

yard soil sample and a household dust sample. All samples were acid digested and analyzed for 

total metal concentrations via ICP-OES. The samples were then subjected to conditions found in 

the human stomach and intestinal digest phases and quantified by ICP-MS. The total amount of 

metal found in a sample was then compared to the amount of that metal found in the simulated 

stomach or intestinal fraction of the same sample and this allowed for determination of metal 

bioavailability (Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21). The raw data 

used to generate the boxplots can be found in Appendix C (Table XII, Table XIII, Table XIV, 

Table XVI, Table XV, and Table XVII) 

 
Figure 16: Arsenic Total Metal and Bioavailability Data 

Arsenic soil and dust data from ICP-OES (total) and ICP-MS (stomach and intestinal) analysis of three 

different digestion methods utilized in this study N=10. 

 

Arsenic 
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Figure 17: Cadmium Total Metal and Bioavailability Data  

Cadmium soil and dust data from ICP-OES (total) and ICP-MS (stomach and intestinal) analysis of three 

different digestion methods utilized in this study N=10. 

 

 
Figure 18: Copper Total Metal and Bioavailability Data 

Copper soil and dust data from ICP-OES (total) and ICP-MS (stomach and intestinal) analysis of three 

different digestion methods utilized in this study N=10. 

 

Cadmium 

Copper 
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Figure 19: Lead Total Metal and Bioavailability Data 

Lead soil and dust data from ICP-OES (total) and ICP-MS (stomach and intestinal) analysis of three 

different digestion methods utilized in this study N=10. 

 

 
Figure 20: Manganese Total Metal and Bioavailability Data 

Manganese soil and dust data from ICP-OES (total) and ICP-MS (stomach and intestinal) analysis of three 

different digestion methods utilized in this study N=10. 
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Figure 21: Zinc Total Metal and Bioavailability Data 

Zinc soil and dust data from ICP-OES (total) and ICP-MS (stomach and intestinal) analysis of three 

different digestion methods utilized in this study N=10. 

 

In the stomach phase, Zn from the dust samples had the highest median percent 

bioavailability at approximately 30%, while Cd from the soil samples had median percent 

bioavailability at approximately 46% (Table VI and Table VII). For the intestinal phase, As had 

the highest median percent bioavailability in both samples at approximately 42% from the dust 

samples and 74% from the soil samples (Table VI and Table VII). Refer to Appendix D for the 

average metal concentrations and bioavailability percentages in the stomach (Table XVIII) and 

intestinal digest samples (Table XIX). It was determined that total Cd levels were overall 

relatively low in the Butte environmental samples, and, while Pb was present in all samples, the 

bioavailability of the metal was low in both stomach and intestinal phases and numerous studies 

have focused solely on Pb in the community already. The bioavailability work determined that 

As, Cu, Mn, and Zn would be the four metals of interest for the in-vitro cell study to determine 

protein expression.  

Zinc 
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Table VI: Bioavailability Analysis of Dust Samples 

Metal 

Average 

Total 

Conc. 

(mg/kg) 

±0.01 

Median 

Total 

Conc. 

(mg/kg) 

±0.01 

Stomach 

Bioavailability 

Range 

Median 

Stomach 

Bioavailability 

Intestinal 

Bioavailability 

Range 

Median 

Intestinal 

Bioavailability 

Arsenic 19.81 15.98 4.18% - 17.94% 13.07% 20.72% - 48.64% 42.16% 

Cadmium 2.99 2.99 19.85% 19.85% BDL BDL 

Copper 737.10 688.81 1.25% - 7.65% 3.66% 0.17% - 1.60%  0.70% 

Manganese 330.52 327.67 0.92% - 48.52% 25.61% 3.90% - 43.35%  7.69% 

Lead 106.94 96.56 0.03% - 11.37% 6.58% 0.39% - 4.74% 2.11% 

Zinc 733.25 687.31 2.19% - 49.77%  30.42% 0.93% - 5.31% 2.61% 

ICP-MS analysis of dust samples for the stomach and intestinal phases compared to ICP-OES data for the 

total dust metal concentrations to determine percent bioavailability 

 

Table VII: Bioavailability Analysis of Soil Samples 

Metal 

Average 

Total 

Conc. 

(mg/kg) 

±0.01 

Median 

Total  

Conc. 

(mg/kg) 

±0.01 

Stomach 

Bioavailability 

Range 

Median 

Stomach 

Bioavailability 

Intestinal 

Bioavailability 

Range 

Median 

Intestinal 

Bioavailability 

Arsenic 38.37 38.61 3.11% - 16.32% 11.11% 53.97% - 84.08%  73.68% 

Cadmium 2.91 2.74 10.53% - 75.44% 46.02% 12.97% - 20.47%  16.55% 

Copper 694.27 648.77 1.94% - 12.65% 4.85% 2.83% - 22.93% 19.13% 

Manganese 680.05 688.06 2.96% - 29.11% 12.73% 1.31 – 43.75% 23.36% 

Lead 237.39 157.27 0.46% - 6.28% 2.23% 2.89% - 19.25% 4.96% 

Zinc 598.97 567.62 8.12% - 38.35% 22.95% 1.41% - 25.85% 7.41% 

ICP-MS analysis of soil samples for the stomach and intestinal phases compared to ICP-OES data for the 

total dust metal concentrations to determine percent bioavailability 

 

The overall metal concentrations were used to determine what metal concentrations 

would represent low-level metal exposure in the Butte environment (Table VIII). These values 

were approximated since the concentrations in the Greely neighborhood were not completely 

representative of the entire area of Butte. These calculated concentrations were then used to 

determine the overall exposure ratio for a mixture of the four metals of interest for this study 

(Table VIII). It is important to acknowledge this ratio, as the metals are not distributed equally in 

the Butte environment, which may impact competition between metals in certain proteins or 

other molecules in the human body. 
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Table VIII: Metal Exposure Ratios for Study Elements of Concern 

Metal 
Average Total Concentration 

(mol/L) 
Exposure Ratio 

Arsenic 8.01x10-7 0.04 

Cadmium 2.25x10-5 1.00 

Copper 1.84x10-5 0.82 

Manganese 2.04x10-5 0.91 

 Overall Exposure Ratio 0.04As: 1.00Cu: 0.82Mn: 0.91Zn 

5.2. Biological Experiments 

5.2.1. Meconium Protein Determination 

It was determined that the Vinculin control protein was not present or possibly expressed 

at such low levels in the meconium samples that it was not a viable control. Therefore, Ponceau 

S Stain was used to visualize protein loading for the meconium sample western blots (Figure 22). 

 
Figure 22: Ponceau S-Stained Nitrocellulose Membrane Containing Meconium Samples 

Lane 1 (far right): Precision Standard, Lane 2: Blank, Lane 3: Sample 10, Lane 4: Sample 9, Lane 5: 

Sample 8, Lane 6: Sample 7, Lane 7: Sample 3, Lane 8: Sample 2, Lane 9: Sample 1, Lane 10: Precision 

Plus Protein Standard. White text on figure indicating relevant kDa values. 
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From the Ponceau S-stained western blots, researchers were able to ensure that protein 

transfer from the SDS-PAGE gel to the nitrocellulose membrane was successful. The stained 

membranes also provided a general idea of the size of proteins present in the meconium samples. 

In Figure 22, dark bands can be seen between 25-50 kilodaltons (kDa). All meconium western 

blots showed similar results for the Ponceau S-Stained membranes. 

5.2.2. Arsenic Protein Expression Analysis 

5.2.2.1. Meconium Western Blots 

To determine whether any of the proteins present in the meconium samples were the 

arsenic biomethylation protein, AS3MT, western blots were performed on the 13 meconium 

samples previously collected (Figure 23 and Figure 24). Originally, 16 meconium samples were 

collected, but the complete content of samples 4-6 was used in the previous study. 

 
Figure 23: AS3MT Western Blot Analysis of Meconium Samples 1-3 and 7-10 

Lane 1: Protein Standard, Lane 2: Blank, Lane 3: Sample 10, Lane 4: Sample 9, Lane 5: Sample 8, Lane 6: 

Sample 7, Lane 7: Sample 3, Lane 8: Sample 2, Lane 9: Sample 1, Lane 10: Protein Standard. 
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Figure 24: AS3MT Western Blot Analysis of Meconium samples 11-16  

Lane 1: Protein Standard, Lane 2: Sample 16, Lane 3: Sample 15, Lane 4: Sample 14, Lane 5: Sample 13, 

Lane 6: Sample 12, Lane 7: Sample 11, Lane 8: Protein Standard. 

 

If AS3MT was present in any of the samples, bands should have appeared around 39-41 

kDA on the western blots (AS3MT Rabbit Polyclonal Antibody, 27270-1-AP: Data Sheet). 

Bands did appear on the AS3MT analysis western blots, but not at the correct molecular weight, 

suggesting that AS3MT was not able to be detected in the samples. Since the control protein, 

Vinculin, was not detected in the western blot samples and a control meconium sample was not 

able to be obtained, densitometric and comparison analysis were not able to be performed on the 

meconium samples. 

5.2.2.2. HEK293 Western Blot 

The western blots performed on the HEK293 samples exposed to different As exposure 

scenarios (Table V) were used to determine if AS3MT was present in any of the samples from 

this cell line (Figure 25). Since it was determined that the Vinculin control protein, a 

cytoskeleton protein found in adherent cell lines, was present in both cell lines, it was not 
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necessary to stain the membranes to determine protein loading. Once the western blots were 

analyzed using the ChemiDoc XRS+, the Image Lab software was then used to obtain 

densitometric data that could be normalized against the control cell culture to assess the protein 

content of each sample. 

 
Figure 25: AS3MT Western Blot Analysis of Varying Metal Exposures in HEK293 Cells  

Lane 1: Protein Standard, Lane 2: Blank, Lane 3: As:Cu:Mn:Zn Exposure, Lane 4: As:Zn Exposure, Lane 

5: As:Mn Exposure, Lane 6: As:Cu Exposure, Lane 7: As Exposure, Lane 8: Control, Lane 9: Protein 

Standard. 

 

If Vinculin was present, bands should have appeared around 130 kDA (Monoclonal Anti-

Vinculin antibody, V4505: Data Sheet) and if AS3MT was present, bands should have appeared 

between 39-41 kDa (AS3MT Rabbit Polyclonal Antibody, 27270-1-AP: Data Sheet). In Figure 

25, it can be seen that bands are present between 100-150 kDA and between 37 - 50 kDA. The 

bands appearing at the higher molecular weight represent Vinculin, and the bands at the lower 

molecular weight represent AS3MT. These results indicate that the AS3MT protein was present 

in all the As-exposed HEK293 samples.  
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To determine if there was a change in protein expression in any of the samples, 

densitometric values of the Vinculin bands were collected for the varying exposure samples and 

normalized against the densitometric value for the Vinculin in the control sample. This gave a 

normalization factor for each sample, which was then multiplied by the normalized densitometric 

volume collected for the bands representing the AS3MT proteins. These normalized AS3MT 

values were then compared to the control value, set at 100%, and the percent expression of 

AS3MT in each sample type was calculated (Figure 26). 

 
Figure 26: AS3MT Expression in Arsenic-Treated HEK293 Cells  

Graph of AS3MT protein expression (%) in different As exposure scenarios in comparison to control in 

HEK293 cells. 

 

Based off the normalized data collected, AS3MT expression was shown to decrease in all 

but one As exposure scenario. The samples that were calculated to have the highest decrease in 

percent expression were those exposed to the mixture of As and Zn and the mixture of all four 

metals. Expression of AS3MT in both samples was calculated have a 63% decrease in protein 
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expression when compared to the control. The raw normalization data for the As-exposed 

HEK293 cells can be seen in Appendix E (Table XX). 

5.2.2.3. BEAS-2B Western Blot 

The western blots performed on the BEAS-2B samples exposed to different As exposure 

scenarios (Table V) were used to determine if AS3MT was present in any of the samples in this 

cell line (Figure 27). 

 
Figure 27: AS3MT Western Blot Analysis of Varying Metal Exposures in BEAS-2B Cells 

Lane 1: Precision Plus Protein Standard, Lane 2: Blank, Lane 3: As:Cu:Mn:Zn Exposure, Lane 4: As:Zn 

Exposure, Lane 5: As:Mn Exposure, Lane 6: As:Cu Exposure, Lane 7: As Exposure, Lane 8: Control, 

Lane 9: Precision Plus Protein Standard. 

 

Upon analysis of AS3MT western blots in BEAS-2B cell cultures, it can be seen that 

bands are present between 100-150 kDA and between 37 - 50 kDA. The bands appearing at the 

higher molecular weight verify that Vinculin is present in all the AS-exposed BEAS-2B samples 

analyzed. The bands that appeared between 37 and 50 kDa indicate that the AS3MT was also 

present in all the BEAS-2B samples analyzed. Densitometric and normalized values were 
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collected to assess AS3MT expression as a result of different metal exposure scenarios in the 

BEAS-2B cell line (Figure 28).  

 
Figure 28: AS3MT Expression in Arsenic-Treated BEAS-2B Cells 

Graph of AS3MT protein expression (%) in different As exposure scenarios in comparison to control in 

BEAS-2B cells. 

 

Based on the normalized data collected, percent expression of AS3MT was calculated to 

be decreased in three exposure scenarios. All exposure scenarios calculated to have a decrease in 

expression from the As-exposed BEAS-2B cells were also calculated to have decreased 

expression in the As-exposed HEK-293 cells. The cell culture exposed to the mixture of As and 

Cu showed the highest increase of expression, at 66%, followed by the cell culture exposed to 

the mixture of As and Mn, which was calculated to be increased by 16%. The culture exposed to 

the mixture of all four metals was calculated to have a decrease in expression of 47% when 

compared to the control. This was the exposure scenario that resulted in the greatest decrease in 

percent expression. The raw normalization data for the As-exposed BEAS-2B cells can be seen 

in Appendix E (Table XXI).  
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5.2.3. Copper Protein Expression Analysis 

5.2.3.1. Meconium Western Blots 

To determine whether any of the proteins present in the meconium samples were the 

copper transport protein of interest, CTR1, a western blot was performed on the 13 meconium 

samples previously collected (Figure 29 and Figure 30). These western blots were also stained 

with Ponceau-S stain but showed identical results to the stained membrane shown previously 

(Figure 22).  

 
Figure 29: CTR1 Western Blot Analysis of Meconium Samples 1-3 and 7-10  

Lane 1: Protein Standard, Lane 2: Blank, Lane 3: Sample 10, Lane 4: Sample 9, Lane 5: Sample 8, Lane 6: 

Sample 7, Lane 7: Sample 3, Lane 8: Sample 2, Lane 9: Sample 1, Lane 10: Protein Standard. 

 

Analysis of the western blot for samples 1-3 and 7-10 shows that two bands that appeared 

in Lane 9 (Sample 1) and are of the same molecular weight as the two bands that were in Sample 

1 for the AS3MT analysis of the meconium samples (Figure 23).  
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Figure 30: CTR1 Western Blot Analysis of Meconium samples 11-16 

Lane 1: Protein Standard, Lane 2: Blank, Lane 3: Sample 16, Lane 4: Sample 15, Lane 5: Sample 14, Lane 

6: Sample 14, Lane 7: Sample 13, Lane 8: Sample 12, Lane 9: Sample 11, Lane 10: Protein Standard. 

Sample 14 was loaded twice due to a pipetting error. 

 

The CTR1 antibody used in this study is known to bind to both a CTR1 precursor protein 

around 28 kDA and the mature protein around 35 kDa (Anti-SLC31A1/CTR1 antibody 

[EPR7936]: Data Sheet). The bands that appeared on this western blot are approximately the 

correct molecular weight, however they are the same molecular weight as the bands that 

appeared on the western blots analyzing the AS3MT protein. Because of this, it is more likely 

that these proteins are the same ones that appeared on the western blots analyzing AS3MT. The 

molecular weights of the bands seen in Lanes 5 and 6 are close enough to the 35 kDa mark, that 

they could be representative of the mature form of CTR1, but additional western blot analyses 

are warranted to confirm this result. 
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5.2.3.2. HEK 293 Western Blot 

The western blots performed on the HEK293 samples exposed to different Cu exposure 

scenarios (Table V) were used to determine if CTR1 was present in any of the samples in this 

cell line (Figure 31). 

 
Figure 31: CTR1 Western Blot Analysis of Varying Metal Exposures in HEK293 Cells  

Lane 1: Protein Standard, Lane 2: Blank, Lane 3: As:Cu:Mn:Zn Exposure, Lane 4: Cu:Zn Exposure, Lane 

5: Cu:Mn Exposure, Lane 6: As:Cu Exposure, Lane 7: Cu Exposure, Lane 8: Control, Lane 9: Protein 

Standard. 

 

Analysis of the CTR1 western blot for HEK293 cells shows that bands are present 

between 100-150 kDA and between 25-37 kDa. The bands seen between 100-150 kDa indicate 

that Vinculin was present in all the Cu-exposed HEK293 samples analyzed. As previously 

mentioned, the CTR1 antibody used in this study is known to bind to both a CTR1 precursor 

protein around 28 kDA and the mature protein around 35 kDa. In Lanes 5 (CuMn exposure) and 

6 (AsCu exposure), clear bands are present at both these molecular weights. In lanes 4 (CuZn 

exposure) and 7 (Cu exposure), a clear band is present at 35 kDa, as well as, what appears to be, 

a faint band around 28 kDa. This indicates that both the mature protein and the precursor protein 
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for CTR1 were present in these samples. Densitometric and normalized values were collected to 

assess CTR1 expression as a result of different metal exposure scenarios in the HEK293 cell line 

(Figure 32).  

 
Figure 32: CTR1 Expression in Copper-Treated HEK293 Cells  

Graph of CTR1 protein expression (%) in different Cu exposure scenarios in comparison to control in 

HEK293 cells 

 

Based on the normalized densitometric data collected, the expression of CTR1 was 

calculated to be decreased in four exposure scenarios and increased in one exposure scenario. 

Expression of CTR1 in the culture exposed to Cu only was calculated to increase by 72%. 

Meanwhile, expression of CTR1 in the culture exposed to the mixture of Cu and Zn was 

calculated to be decreased by 69%, followed closely by the culture exposed to all four metals, 

which was decreased by 59% when compared to the control. The normalized data for the Cu-

exposed HEK29 cells can be seen in Appendix E (Table XXII). 
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5.2.3.3. BEAS-2B Western Blot 

The western blots performed on the BEAS-2B samples exposed to different Cu exposure 

scenarios (Table V) were used to determine if CTR1 was present in any of the samples in this 

cell line (Figure 33). 

 
Figure 33: CTR1 Western Blot Analysis of Varying Metal Exposures in BEAS-2B Cells  

Lane 1: Protein Standard, Lane 2: Control, Lane 3: Cu Exposure, Lane 4: As:Cu Exposure, Lane 5: 

Cu:Mn Exposure, Lane 6: Cu:Zn Exposure , Lane 7: As:Cu:Mn:Zn Exposure, Lane 8: Blank, Lane 9: 

Protein Standard. 

 

Upon analysis, it can be seen that bands are present between 100-150 kDA and between 

25-37 kDa. The bands seen between 100-150 kDa indicate that Vinculin is present in all the Cu-

exposed BEAS-2B samples. All the sample lanes show a clear band at 35 kDa and some show a 

faint band at 28 kDa. This indicates that the mature CTR1 protein was present in all the samples 

and the precursor protein was present in some. Densitometric and normalized values were 

collected to assess CTR1 expression as a result of different metal exposure scenarios in the 

BEAS-2B cell line (Figure 34). 
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Figure 34: CTR1 Expression in Copper-Treated BEAS-2B Cells  

Graph of CTR1 protein expression (%) in different Cu exposure scenarios in comparison to control in 

BEAS-2B cell 

 

Based on the normalized densitometric data collected, the expression of CTR1 was 

calculated to be decreased in three exposure scenarios and increased in two exposure scenarios. 

The cell culture exposed to Cu and As was calculated to have the greatest increase of expression, 

at 18%, followed by the cell culture exposed to Cu only, which was increased by 11% when 

compared to the control. Meanwhile, the cell culture exposed to Cu and Mn was calculated to 

have the greatest decrease in expression, at 31%, and the cell cultures exposed to the mixture of 

Cu and Zn and the mixture of all four metals were both downregulated by about 20%. The 

normalized data for the Cu-exposed BEAS-2B cells can be seen in Appendix E (Table XXIII) 

5.2.4. Manganese Protein Expression Analysis 

5.2.4.1. Meconium Western Blots 

To determine whether any of the proteins present in the meconium samples were the 
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meconium samples previously collected (Figure 35 and Figure 36). The western blots for 

analysis of this protein were also stained with Ponceau-S stain but showed identical results to the 

stained membrane above (Figure 22).  

 
Figure 35: ZNT10 Western Blot Analysis of Meconium Samples 1-3 and 7-9 

Lane 1: Protein Standard, Lane 2: Sample 1, Lane 3: Sample 2, Lane 4: Sample 3, Lane 5: Sample 7, Lane 

6: Sample 8, Lane 7: Sample 9, Lane 8: Blank, Lane 9: Protein Standard. 

 

 
Figure 36: ZNT10 Western Blot Analysis of Meconium Samples 10-16 

Lane 1: Protein Standard, Lane 2: Sample 10, Lane 3: Sample 11, Lane 4: Sample 12, Lane 5: Sample 13, 

Lane 6: Sample 14, Lane 7: Sample 15, Lane 8: Sample 16, Lane 9: Blank, Lane 10: Protein Standard. 
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If ZNT10 was present in any of the samples, bands should have appeared around 53 kDA 

on the western blots (Anti-SLC30a10 antibody, ab229954: Data Sheet). Bands at this molecular 

weight did not appear on either of the western blots, suggesting that ZNT10 was not able to be 

detected in the samples. The bands that did appear are approximately the same molecular weight 

as the ones that appeared on all other meconium western blots analyzed as well as the Ponceau 

S-stained membrane.  

5.2.4.2. HEK293 and BEAS-2B Western Blots 

The western blots performed on the HEK293 and BEAS-2B samples exposed to different 

Mn exposure scenarios (Table V: Mammalian Cell Line Metal Exposures) were used to 

determine if ZNT10 was present in any of the samples in both cell lines (Figure 37 and Figure 

38). 

 
Figure 37: ZNT10 Western Blot Analysis of Varying Metal Exposures in HEK293 Cells 

Lane 1: Protein Standard, Lane 2: Blank, Lane 3: As:Cu:Mn:Zn Exposure, Lane 4: Mn:Zn Exposure, 

Lane 5: Cu:Mn Exposure, Lane 6: As:Mn Exposure, Lane 7: Mn Exposure, Lane 8: Control, Lane 9: 

Protein Standard. 
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Figure 38: ZNT10 Western Blot Analysis of Varying Metal Exposures in BEAS-2B Cells 

Lane 1: Protein Standard, Lane 2: Control, Lane 3: Mn Exposure, Lane 4: As:Mn Exposure, Lane 5: 

Cu:Mn Exposure, Lane 6: Mn:Zn Exposure , Lane 7: As:Cu:Mn:Zn Exposure, Lane 8; Blank, Lane 9: 

Protein Standard. 

 

The only bands that appeared on the HEK293 (Figure 37) and BEAS-2B (Figure 38) 

western blots analyzing the presence of ZNT10 were those representatives of Vinculin, between 

100-150 kDA. In Figure 37, multiple random lines can be seen towards the top of the membrane, 

but these bands are suggested to be from non-specific antibody binding of proteins that are not 

ZNT10. Since bands were not observed for the ZNT10 protein, densitometric analysis could not 

be performed to assess the expression of the protein in the different Mn exposure scenarios. 

5.2.5. Zinc Protein Expression Analysis 

5.2.5.1. Meconium Western Blots 

To determine whether any of the proteins present in the meconium samples were the Zinc 

transport protein of interest, ZNT1, a western blot was performed on the 13 meconium samples 

previously collected (Figure 39 and Figure 40). The western blots for analysis of this protein 
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were also stained with Ponceau-S stain but showed identical results to the stained membrane 

above (Figure 22).  

 
Figure 39: ZNT1 Western Blot Analysis of Meconium Samples 1-3 and 7-9 

Lane 1: Protein Standard, Lane 2: Blank, Lane 3: Sample 9, Lane 4: Sample 8, Lane 5: Sample 7, Lane 6: 

Sample 3, Lane 7: Sample 2: Lane 8: Sample 1, Lane 9: Protein Standard. 

 

 
Figure 40: ZNT1 Western Blot Analysis of Meconium Samples 10-16 

Lane 1: Protein Standard, Lane 2: Blank, Lane 3: Sample 16, Lane 4: Sample 15, Lane 5: Sample 14, Lane 

6: Sample 13, Lane 7: Sample 12, Lane 8: Sample 11, Lane 9: Sample 9, Lane 10: Protein Standard. 
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If ZNT1 was present in any of the samples, bands should have appeared around 70 kDA 

on the western blots (SLC30a1 Polyclonal Antibody, PA5-42481: Data Sheet). Bands at this 

molecular weight did not appear on either of the western blots (Figure 39 and Figure 40), 

suggesting that ZNT1 was not able to be detected in the samples. The bands that did appear are 

approximately the same molecular weight as the ones that appeared on all other meconium 

western blots analyzed as well as the Ponceau S-stained membrane.  

5.2.5.2. HEK293 and BEAS-2B Western Blots 

The western blots performed on the HEK293 and BEAS-2B samples exposed to different 

Zn exposure scenarios (Table V: Mammalian Cell Line Metal Exposures) were used to 

determine if ZNT1 was present in any of the analyzed samples in both cell lines (Figure 41 and 

Figure 42) 

 
Figure 41: ZNT1 Western Blot Analysis of Varying Metal Exposures in HEK293 Cells  

Lane 1: Protein Standard, Lane 2: Blank, Lane 3: As:Cu:Mn:Zn Exposure, Lane 4: Mn:Zn Exposure, 

Lane 5: Cu:Zn Exposure, Lane 6: As:Zn Exposure, Lane 7: Zn Exposure, Lane 8: Control, Lane 9: Protein 

Standard. 
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Figure 42: ZNT1 Western Blot Analysis of Varying Metal Exposures in BEAS-2B Cells 

Lane 1: Protein Standard, Lane 2: Control, Lane 3: Zn Exposure, Lane 4: As:Zn Exposure, Lane 5: Cu:Zn 

Exposure, Lane 6: Mn:Zn Exposure , Lane 7: As:Cu:Mn:Zn Exposure, Lane 8: Blank, Lane 9: Blank, 

Lane 10: Protein Standard. 

 

The only bands that appeared on the HEK293 (Figure 41) and BEAS-2B (Figure 42) 

western blots analyzing the presence of ZNT1 were those representatives of the Vinculin control 

protein between 100-150 kDA. Since bands were not observed for ZNT1, densitometric analysis 

could not be performed to assess the expression of the protein in the different Zn exposure 

scenarios. 

5.2.6. Tumor Necrosis Factor alpha Analysis 

5.2.6.1. HEK293 ELISA  

To assess the expression of cytokine TNF-α as an indicator of oxidative stress, an 

Enzyme-Linked Immunoassay (ELISA) was performed on all the metal exposure scenarios in the 

HEK293 cells (Figure 43). 
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Figure 43: TNF-α ELISA Plate Results in HEK293 Cells 

Graph of TNF- cytokine expression (%) in different metal exposure scenarios compared to the control in 

HEK293 cells. 

 

Analyses of the ELISA plates was carried out using a UV-VIS spectrophotometer and the 

concentration of the cytokine in each HEK293 cell culture was calculated based on the equation 

generated from the standard curve. The same calculations that were performed to determine 

overall sample protein concentration through the BCA assays were used to calculate the cytokine 

content of the samples. The percent expression of TNF-α in each HEK293 exposure sample was 

calculated through comparison to the control sample. The raw and calculated data for the ELISA 

TNF-α analysis of the HEK293 cell cultures can be seen in Appendix F (Table XXIV).  

Eight samples showed increased expression of TNF-α, while two showed decreased 

expression in comparison to the control. The expression of TNF-α in the cell culture exposed to 

Zn was calculated to be 1861% higher than the control, which seems disproportionately high. 

This was the cell culture calculated to have the highest greatest increase in percent expression of 

the cytokine, but others showed a considerable amount of upregulation as well. The culture 

100 186 235 241

1961

636

0 9 32
230 311 382

0

500

1000

1500

2000

2500
T

N
F

-α
E

x
p

re
ss

io
n

 i
n

 C
o
m

p
a
ri

so
n

 t
o
 

C
o
n

tr
o
l 

(%
)



82 

exposed to the mixture of As and Zn was calculated to have TNF- expression 91% lower than 

the control. This was the sample calculated to have the greatest percent decrease of cytokine 

expression. Expression values were not able to be calculated for the culture that was exposed to 

the mixture of As and Mn.  

5.2.6.2. BEAS-2B ELISA 

To assess the expression of cytokine TNF-α as an indicator of oxidative stress, an ELISA 

was performed on all the metal exposure scenarios in the BEAS-2B cells (Figure 44). 

 
Figure 44: TNF-α ELISA Plate Results in BEAS-2B Cells 

Graph of TNF alpha cytokine expression (%) in different metal exposure scenarios compared to the 

control in BEAS-2B cells. 

 

Four BEAS-2B samples were calculated to have increased expression of TNF-, while 

six showed decreased expression in comparison to the control. The expression of TNF-α in the 

cell culture exposed to the Cu and Mn mixture was calculated to be 346% greater than the 

control. This was the cell culture showing the greatest percent increases of TNF-α expression. 

The cell cultures exposed to Mn and the mixture of Mn and Zn were calculated to have an 87% 
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decrease in TNF-α expression when compared to the control. These two samples had the percent 

greatest decrease of TNF-α expression. Values were not able to be calculated for the cell culture 

exposed to the mixture of all four metals. The raw and calculated data for the ELISA TNF-α 

analysis of the BEAS-2B cell cultures can be seen in Appendix F (Table XXV). 

5.2.6.3. Meconium ELISA 

To assess the expression of cytokine TNF-α as an indicator of oxidative stress, an ELISA 

was performed on all the meconium samples (Figure 45). 

 
Figure 45: TNF-α ELISA Plate Results of the Meconium Samples  

Graph of TNF- cytokine concentration (pg/mL) in the 13 meconium samples investigated in this study. 

 

A control sample was not able to be obtained for the meconium samples, so percent 

comparison of TNF-α expression was not able to be calculated for these samples. However, the 

concentration (pg/mL) of TNF-α in each sample was able to be calculated using the standard 

curve equation. Meconium Sample 1 was found to have the highest concentration of TNF-α at 

92.58 pg/mL, while Sample 9 showed the lowest concentration of TNF-α at 0.78 pg/mL. 
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Including Sample 9, six samples were calculated to have a TNF-α concentration lower than 

20.00 pg/mL, while Sample 1 was the only sample calculated to have a TNF- α concentration 

greater than 50.00 pg/mL. Cytokine concentrations were not able to be calculated for meconium 

Samples 3 and 7. The raw and calculated data for the TNF-α ELISA analysis of the meconium 

samples can be seen in Appendix F (Table XXVI). 

5.2.7. Interleukin 6 Analysis 

5.2.7.1. HEK293 ELISA 

To assess the levels of the cytokine IL-6 as another indicator of oxidative stress, an 

ELISA was performed on all metal exposure scenarios in HEK293 cell cultures (Figure 46), 

BEAS-2B cell cultures (Figure 47), and meconium samples. Expression of IL-6 was not able to 

be detected in any of the meconium samples.  

 
Figure 46: IL-6 ELISA Plate Results in HEK293 Cells  

Graph of IL-6 cytokine expression (%) in different metal exposure scenarios compared to the control in 

HEK293 Cells. 
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Analysis of percent IL-6 expression in HEK293 cells indicated that nine cell cultures 

showed increased expression, while only two were calculated to have decreased expression when 

compared to the control. The percent expression of IL-6 in the cell culture exposed to the 

mixture of As and Mn was calculated to be 56% higher than the control, which was the cell 

culture showing the greatest percent increase of IL-6 expression. The samples exposed to As 

only and Cu only were calculated to have similar decreases in percentage expression when 

compared to the control, around 15%. The raw and calculated data for the IL-6 ELISA analysis 

of the HEK293 samples can be seen in Appendix G (Table XXVII). 

5.2.7.2. BEAS-2B ELISA 

To assess the levels of the cytokine IL-6 as another indicator of oxidative stress, an 

ELISA was performed on all metal exposure scenarios in the BEAS-2B cell cultures (Figure 47). 

 
Figure 47: IL-6 ELISA Plate Results in BEAS-2B Cells  

Graph of IL-6 cytokine expression (%) in different metal exposure scenarios compared to the control in 

BEAS-2B Cells. 
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Analysis of percent IL-6 expression in BEAS-2B cells indicates that five cell cultures 

showed increased expression, whereas six were calculated to have decreased expression when 

compared to the control. The expression of IL-6 in the cell culture exposed to Mn was calculated 

to be 76% higher than the control. This was the cell culture showing the greatest percent increase 

in IL-6 expression. The sample exposed to the mixture of As and Mn was calculated to have the 

greatest percent decrease of IL-6 expression at 66% lower than the control. The cell cultures 

exposed to the mixture of As only, Cu only, and the mixture of Cu and Zn showed comparable 

expressions to the control sample. The raw and calculated data for the IL-6 ELISA analysis of 

the meconium samples can be seen in Appendix G (Table XXVIII). 
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6. Discussion  

6.1. Preliminary Bioavailability Study 

Bioavailability is a measure of the amount of a substance that reaches the bloodstream 

after escaping first elimination, making it possible for the metal to have an active effect in the 

human body (Klassen, 2019). Many aspects could impact metal bioavailability, such as soil 

organic matter content, presence of organic microbes, pH, speciation, redox state, particle size, 

and clay content (Brandham et al., 2004). These factors are not only relevant for metal 

bioavailability from soil samples, but also for dust samples, as approximately 60-80% of 

household dust is tracked in soil (Brandham et al., 2004). It has been determined that the 

bioaccessibility/bioavailability of metals can majorly be accounted for by metals that are of the 

finest particle size (Madrid et al., 2008). Additionally, soluble metal species tend to be more 

mobile and bioavailable, leading to these species being the most toxic metal fraction (de Paiva 

Magalhães et al., 2015).  

Of the many different physiochemical characteristics that can affect metal bioavailability, 

pH is thought to be one of the more influential characteristics (Olaniran et al., 2013a). At an 

acidic pH, when more protons are available, metal-binding sites become saturated. Therefore, 

metals are less likely to form insoluble precipitates, since the compounds with which the metals 

would form precipitates are majorly protonated, so they exist mainly as free ionic species and are 

more bioavailable (Hughes and Poole, 1991). On the other hand, under basic conditions, where 

the proton concentration is low, metal ions can replace protons to form insoluble compounds, 

making them less bioavailable (Olaniran et al., 2013a). It should be noted that a small change in 

pH can reduce the solubility and bioavailability of metals by several orders of magnitude 

(Olaniran et al., 2013a).  
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The differences observed in the bioavailability of samples in this study are thought to be 

largely due to the pH of the environment from which the samples were collected as well as the 

pH adjustments performed throughout the physiological-based extraction test. Additionally, it 

was observed that a type of biofilm formed on the surface, and in some cases, throughout the 

digest tubes containing the stomach and intestinal digest fractions for analysis. Since the 

presence of organic microbes is known to have an effect on the bioavailability of metals, these 

biofilms could have affected the overall bioavailability of the metals as well.  

6.2. Meconium Protein Expression  

It was determined that none of the metal proteins of interest were able to be detected in 

the meconium samples analyzed in this study. The proteins of interest may be present during 

phases of fetal development, but since meconium is a product of maternal and fecal excretion, 

the proteins could have been easily degraded through metabolic processes. Proteins were found 

to be present in the meconium samples analyzed, but the identities of these proteins are 

unknown. 

There were some bands detected at approximately the correct weight for the protein(s) of 

interest, but these bands also appeared on the western blots for completely unrelated proteins. 

Additionally, the molecular weights of the bands that appeared on all the membranes correlate 

closely with the molecular weights of the major bands that appeared on the stained membrane 

(Figure 22). Because of this, it is likely that the same proteins were detected in all the samples 

and were the same proteins that appeared on the stained membranes. These proteins were 

suggested to be present in high concentrations, which lead to the non-specific binding that was 

observed. Non-specific antibody binding is mostly controlled for by multiple blocking steps 
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throughout the western blotting process. However, many factors can result in non-specific 

binding of antibodies.  

Tumor Necrosis Factor alpha was detected in all but two of the meconium samples. 

However, comparative expression values were not able to be calculated, as a meconium control 

sample was not able to be obtained for the study. Interleukin-6 was not found to be present in 

any of the meconium samples analyzed but could have been present in fetal meconium at some 

point during development. Expression of TNF-α in the meconium samples cannot be linked 

directly to metal exposure, as there are a variety of factors that could have induced the 

expression of the cytokine throughout fetal development. However, oxidative stress induced by 

metal exposures during gestation may have contributed to the levels of the cytokine detected in 

the samples.  

It is suggested that the concentration of certain metals that play a role in inflammatory 

responses in the body could affect cytokine concentration. For example, Sample 1 was calculated 

to have the highest concentration of TNF-α, but the lowest concentration of Zn from the raw data 

of the previous meconium study (McDermott et al., 2020). Since Zn is known to play a major 

role in inflammation repression, this indicates that there may be a possible link between the 

expression of the cytokine and the presence of Zn as well as other metals in the samples. No 

other obvious trends were observed between metal and TNF-α concentrations in the meconium 

samples. However, repeating a meconium study with more samples and a control versus mining 

exposed populations could help to determine the possible relationship between metal 

concentration ratios and TNF-α concentrations in these samples.  
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6.3. Arsenic Exposure Protein Expression 

It was hypothesized that the expression of the human arsenic biomethylation protein, 

AS3MT, would be increased in the presence of excess As to deal with the additional As load that 

the to which the cell cultures were exposed. Also, that mixtures of As and other metals would 

affect protein expression differently than the single metal exposure due to varying metal 

interactions within the cells. Exposure to As by itself did not result in increased expression of 

AS3MT in either cell line. This is likely because the concentration of As to which the cell 

cultures were exposed was not a high enough to lead to accumulation of excess As levels in the 

cells. The exposure concentrations were not chosen to be toxic to the cells, but to potentially 

represent chronic, low-level exposure in Butte, MT. Exposures to metal mixtures were shown to 

affect the expression of AS3MT differently than exposure to As only, supporting the data that 

metal mixtures affect mammalian systems differently than single metal exposures. Both an 

increase and decrease were seen in AS3MT protein expression in cultures exposed to the metal 

mixtures, suggesting that different metal mixtures impact the activity of AS3MT differently.  

Although the calculated expression values for each metal and metal mixture were 

different between the two cell lines utilized. The exposure scenarios followed the same trend 

between the cell lines. It was observed that exposure to As by itself decreased the expression of 

AS3MT comparatively in the lung and kidney cells. Exposure to the mixture of all four metals 

showed the greatest decrease in protein expression in both cell lines, which is suggested to be 

due to metal interactions disrupting the function of the protein. The HEK293 cells did show a 

greater decrease in AS3MT expression when compared to the BEAS-2B cells and no increase in 

AS3MT expression. This could be due to differences in membrane permeability between the cell 

types, which could lead to alterations in metal uptake between the cells and subsequent 

variations in protein expression. 
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There are many ways in which AS3MT function can be impacted by metal mixtures, 

including depletion of the major AS3MT cofactor, SAM, due to the cofactor being utilized in 

other proteins working to detoxify the metal mixtures. The presence of other metals also has 

potential to change As speciation, which could have affect the protein, as AS3MT methylates 

trivalent As species preferentially. Lastly, it is possible that the presence of other metals that 

induce the expression of metallothioneins or glutathione, such as Cu and Zn, may increase the 

presence of these antioxidant molecules, which sequester the As present, reducing the need for 

AS3MT protein. The possible routes as to how metal mixtures can affect the expression of 

proteins are nearly endless, and additional mechanistic studies would be necessary which are 

beyond the scope of this project.  

6.4. Copper Exposure Protein Expression 

It was hypothesized that the expression of the Copper Transport protein, CTR1, would be 

decreased in the presence of high Cu levels to avoid transport of excess Cu into the cells. This 

possible decrease in protein expression is suggested to be caused by the degradation of CTR1 in 

the presence of excess Cu levels, making it inactive and unable to transport Cu into the cells. 

Additionally, CTR1 is suggested to be required for Cu bioavailability, so in Cu high 

environments, it is suggested that expression of this protein will be decreased so that excess Cu 

does not become bioavailable to the cells. The primary antibody selected for the study can bind 

to an inactive precursor protein of CTR1, so it was expected that this precursor would be present 

in samples exposed to excess Cu levels or in samples where Cu transport into the cells was 

decreased. Mixtures of Cu and other metals were predicted to impact protein expression 

differently than the single metal Cu exposure due to varying metal interactions within the cells. 
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Unlike analysis of AS3MT, the comparative expression values obtained for CTR1 

showed few trends between the HEK293 and BEAS-2B cell lines. However, exposure to Cu only 

did result in increased expression of CTR1 in both cell lines. This is not what was expected to 

happen but likely occurred because the concentration of Cu to which the cell cultures were 

exposed was not high enough to trigger a decrease in CTR1 expression. In both cell lines, there 

was expression of both the CTR1 precursor protein and mature protein in some samples. This 

precursor protein is inactive, indicating that there was a certain level of CTR1 inactivity in some 

of the exposure scenarios. Comparative values were not able to be obtained for the precursor 

protein, as the protein was not expressed in all samples and background noise was too high in 

some lanes for the image lab software to report a reading.  

As noted above, changes in protein expression in the two cell lines could be due to 

different cell membrane permeabilities which could lead to alterations in metal uptake between 

the cells and subsequent variations in protein expression. Another common trend seen in both 

cell lines was that metal mixtures containing Cu, Zn, and Mn were shown to decrease the 

expression of CTR1. These three metals are all trace micronutrients and may compete for 

transport proteins, as they are all transported by solute carrier proteins. Not only could 

interactions between these metals result in a change in CTR1 expression, but there may have 

been competition between these solute carrier proteins that resulted in changes to the activity of 

the CTR1 protein. Additionally, Cu and Zn are next to each other in the Irving-Williams series 

describing affinities of metals in protein binding sites, indicating that there may be increased 

competition between these two metals. Again, the possible routes as to how metal mixtures can 

affect protein expression are nearly endless, however, the mechanisms discussed above have 

been proposed for this study. 
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6.5. Manganese Exposure Protein Expression 

It was hypothesized that the expression Zinc Transporter 10 protein, ZNT10, which has 

highest the affinity for Mn, would be increased in the presence of Mn to export excess Mn out of 

cells. Also, that cultures exposed to metal mixtures were hypothesized to have expressions 

different than the single metal exposure due to metal mixture interactions occurring within the 

cells. This protein did not appear in any of the samples, so expression comparisons could not be 

performed. This does not mean that that protein was not present in the samples, as many factors 

could have caused the lack of results obtained for analysis of this protein. However, since the 

Vinculin samples appeared on the western blots, it is suggested that the primary antibody 

selected for the investigation did not work. Some non-specific antibody binding was suspected in 

the western blot analyses for these proteins, which could be because the ZNT10 protein is part of 

the SLC30 family of proteins. This is a large protein family, so it is possible that the non-specific 

binding was of different proteins in this family. Other proteins should be investigated for Mn 

transport in future studies. 

6.6.  Zinc Exposure Protein Expression 

It was hypothesized that the expression Zinc Transporter 1 protein, ZNT1, would be 

increased in the presence of Zn to avoid Zn toxicity within the cells and that metal mixtures 

would affect expression different than the single metal exposure. This protein did not appear in 

any of the samples, so expression comparisons could not be performed. This does not mean that 

the protein was not present in the samples, as many factors could have caused the lack of results 

obtained for analysis of this protein. However, since the Vinculin samples appeared on the 

western blots, it is suggested that the primary antibody selected for the investigation did not 

work. Other proteins should be investigated for Zn transport in future studies. 
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6.7. Cytokine Expression 

Analysis of cytokine expression in the cell cultures was performed to assess oxidative 

stress induced by the varying metal exposure scenarios. It was expected that expression changes 

would be consistent between the two cell lines and that there would be increased expression of 

both cytokines in all exposure scenarios. A decrease in TNF-α expression was seen in only two 

exposure scenarios in the HEK293 cell lines, while the rest of the exposures resulted in a 

considerable increase in the expression of the cytokine. Analysis of TNF-α expression in BEAS-

2B cells indicated that only four exposure scenarios resulted in an increase in cytokine 

expression and the rest a decrease. In HEK293 cells, an increase in IL-6 expression was seen in 

all but two of the exposure scenarios. Expression of IL-6 in BEAS-2B cells was highly variable, 

as some samples showed comparable expression levels to the control sample, while others 

showed a considerable increase or decrease in expression of the cytokine. Overall, many factors 

can be attributed to the varying changes in cytokine expression, but exposure to the metals and 

metal mixtures is suggested to be the major factor.  

The lack of agreement between cytokine expression values in the two cell lines could 

have been caused by varying metal uptake due to membrane permeability differences and the 

subsequent stress caused by that metal uptake. Additionally, the two cell lines could have 

different mechanisms to deal with oxidative stress or other factors that can lead to the expression 

of these cytokines. 
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7. Conclusions 

It has been suggested that exposure to single metals and metals mixture found in Butte 

Montana’s mining contaminated environment can have negative health consequences for those 

living in the Butte area. A preliminary study was performed to determine the average 

concentrations of As, Cd, Cu, Pb, Mn, and Zn from residential soil and household dust samples 

from houses near current and historic mining operations. The bioavailability of each metal was 

then assessed to determine what percent of the metals found to be present may be able to have an 

active effect in the human body. Results of this preliminary study showed that As, Mn, and Pb 

levels were highest in the soil samples, whereas levels of the Cd, Cu, and Zn were highest in the 

dust samples. The bioavailability of the metals was determined to be highest in the stomach 

phase for the dust samples and highest in the intestinal phase for the soil samples. 

To determine the possible health effects of the metal concentrations found to be present 

within the Butte community, the expression of four proteins and two inflammatory markers was 

analyzed in meconium samples of babies born in Butte and HEK293 and BEAS-2B cultures. 

These cell cultures were exposed to single metal and metal mixtures calculated to be 

representative of low-level exposure scenarios in Butte. Expression of the proteins of interest 

was investigated through western blot analyses, while enzyme-linked immunoassays were used 

to analyze the expression of the select cytokines. 

 The protein AS3MT was selected to examine the effects of As and As metal mixture 

exposures in meconium and cell culture samples. This protein was found to be present in all 

exposure scenarios in both cell lines, but not in the meconium samples. The expression of the 

protein was found to be impacted differently between exposure to As only and exposure to the 

metal mixtures.  
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The protein CTR1 was selected to investigate the effects of Cu and Cu metal mixture 

exposures in all sample types. This protein was also found to be present in all cell cultures 

analyzed and was not able to be detected in the meconium samples. Like that of AS3MT, the 

expression of CTR1 was found to be affected differently by exposure to Cu only and to Cu metal 

mixtures.  

The proteins selected to investigate the effects of Mn and Zn, ZNT10 and ZNT1 

respectively, were not detected in any of the cell culture or meconium samples, so comparison 

analyses were not performed for these proteins. Other transport proteins should be investigated 

for these two metals in future studies. 

The cytokines TNF-α and IL-6 were selected to investigate oxidative stress caused by 

exposure to metal and metal mixtures. The proinflammatory cytokine TNF-α was detected in a 

majority of the cell culture and meconium samples. There was no obvious trend observed in the 

expression of this cytokine in different exposure scenarios between the two cell lines, but 

increased expression was seen in some of the exposure scenarios possibly suggesting that the 

exposures caused an increase in oxidative stress. A varying range of concentrations was seen for 

TNF-α in the meconium samples, but was not strongly correlated with any one given metal 

concentration.  

Expression of IL-6 in the cell cultures was similar to that of TNF-α, as there was a high 

amount of variability between the samples and cell types. Some samples showed comparable 

expression levels to the control sample, while others showed a considerable increase and 

decrease in expression of the cytokine. Analysis of IL-6 in the meconium samples was not 

performed, as detectable levels of the cytokine were not found to be present in this sample matrix 

or possibly had degraded. These samples were collected some time ago and stored at -80˚C. It is 
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possible that some or many proteins are not stable under these storage conditions. Results should 

be re-confirmed with fresh samples in the future.  

  



98 

8. Recommendations and Future Directions 

If the bioavailability study were to be repeated, obtaining information on the 

characteristics of the soil and dust samples before analysis could provide insight into the 

predicted bioavailability of each sample. Working to limit the biofilm formation in the digest 

tubes could help to limit biological interactions within the samples, which may have affected the 

bioavailability data collected. Also, a larger number of samples and samples collected from 

various neighborhoods within Butte would provide more information about metal distribution 

and bioavailability within the entire Butte community. 

The results of the meconium sample analyses warrant further investigation to gain a 

deeper understanding of how meconium can provide insight into the intrauterine gestational 

environment. If this study were to be repeated, obtaining a control sample would allow for a 

comparative analysis of proteins found to be present. This would provide information as to how 

the environment in which the fetus was gestated affects the expression of proteins of interest, if 

detected. The RIPA extraction protocol used was a pretty simple and robust extraction procedure 

and meconium samples are fairly dirty, so using a more in-depth extraction protocol could 

provide cleaner samples for western blot analysis and possibly clearer results. Analyzing the 

protein content of the meconium samples sooner after collection may also provide different 

results, as few proteins are stable when stored long-term.  

Additionally, the investigations of protein and cytokine expression should be repeated in 

an attempt to gain more consistent results between the cell lines. Consistency of results will 

allow researchers to gain a better understanding of how metal mixtures interact within biological 

systems. Being able to investigate protein expression through the use of more than one primary 

antibody specific for that protein would also provide better insight into the behavior of the 
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proteins under the different exposure conditions. Investigating multiple proteins related to each 

metal in an increased number of cell lines would also provide a more holistic prediction of the 

effects of metals and metal mixtures in a mammalian system, as living systems are emergent and 

involve complex interactions of multiple subsystems. 
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10. Appendix A: BCA Assay Dilution Tables and Calculations  

Table IX: Standard Mixture Volumes Needed 

Final 

Concentration 

of BSA 

(μg/mL) 

Volume of 

Water 

(μL) 

Volume of 

500μg/mL 

BSA 

(μL) 

Volume of 

K2HPO4 

Buffer 

(μL) 

Total Standard 

Solution Volume 

 (μL) 

0 90 0 10 100 

10 88 2 10 100 

25 85 5 10 100 

50 80 10 10 100 

75 75 15 10 100 

100 70 20 10 100 

150 60 30 10 100 

200 50 40 10 100 

250 40 50 10 100 

300 30 60 10 100 

 

𝑀1𝑉1 = 𝑀2𝑉2 (7) 

𝑉1 =
𝑀2𝑉2

𝑀1
=

10 
𝜇𝑔
𝑚𝐿 ∗ 100𝜇𝐿

500 
𝜇𝑔
𝑚𝐿

= 2 𝜇𝐿 𝑜𝑓 𝐵𝑆𝐴   

where BSA is bovine serum albumin stock, M1 is concentration of diluted BSA stock, M2 is 

desired final concentration of BSA, and V2 is the total volume desired of the standard dilution. 

Table X: Dilution Factors to Determine Unknown Protein Concentration 

Unknown  

Dilution 

 Factors 

Volume of 

Water 

(μL) 

Volume of  

Unknown Solution 

(μL) 

Volume of 

K2HPO4 

Buffer 

(μL) 

Total Standard 

Solution Volume 

 (μL) 

1:50 88 2 10 100 

1:100 89 1 10 100 

 

1

50
= 0.02 ∗ 100 µ𝐿 = 2 µ𝐿 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 (8) 

100 µ𝐿 𝑡𝑜𝑡𝑎𝑙 − 10 µ𝐿 𝐾2𝐻𝑃𝑂4 − 2 µ𝐿 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 = 80 µ𝐿𝑤𝑎𝑡𝑒𝑟 (9) 

where unknown is the sample of interest. 
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11. Appendix B: Sample Protein Concentrations and SDS-PAGE Gel 
Loading Volumes 

Table XI: BCA Assay Values for SDS-PAGE Sample Loading 

Sample 

Protein 

Concentration 

(µg/mL) 

Volume needed for 40 µg 

(mL) 

HEK293 Control 8.88E+03 4.50 

HEK293 As 1.03E+04 3.87 

HEK293 Cu 1.08E+04 3.70 

HEK293 Mn 9.69E+03 4.13 

HEK293 Zn 7.05E+03 5.67 

HEK293 AsCu 3.29E+03 12.14 

HEK293 AsMn 5.72E+03 7.00 

HEK293 AsZn 1.12E+04 3.56 

HEK293 CuMn 6.83E+03 5.86 

HEK293 CuZn 8.14E+03 4.92 

HEK293 MnZn 4.85E+03 8.25 

HEK293 AsCuMnZn 1.28E+04 3.12 

BEAS-2B Control 5.46E+03 7.33 

BEAS-2B As 5.77E+03 5.98 

BEAS-2B Cu 6.01E+03 7.37 

BEAS-2B Mn 5.04E+03 9.02 

BEAS-2B Zn 4.76E+03 7.62 

BEAS-2B AsCu 1.01E+04 3.95 

BEAS-2B AsMn 1.00E+04 4.00 

BEAS-2B AsZn 9.09E+03 4.40 

BEAS-2B CuMn 1.01E+04 3.95 

BEAS-2B CuZn 9.23E+03 4.33 

BEAS-2B MnZn 1.10E+04 3.63 

BEAS-2B AsCuMnZn 6.63E+03 6.03 

Meconium Sample 1 4.31E+03 9.29 

Meconium Sample 2 6.05E+03 6.61 

Meconium Sample 3 6.10E+03 6.56 

Meconium Sample 7 7.15E+03 5.59 

Meconium Sample 8 6.75E+03 5.93 

Meconium Sample 9 1.62E+04 2.47 

Meconium Sample 10 1.51E+04 2.66 

Meconium Sample 11 1.26E+04 3.19 

Meconium Sample 12 6.47E+03 6.19 

Meconium Sample 13 6.16E+03 6.49 

Meconium Sample 14 5.43E+03 7.36 

Meconium Sample 15 1.27E+04 3.16 

Meconium Sample 16 1.34E+04 2.98 
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12. Appendix C: Raw Data Used to Generate Metal Box Plots 

Table XII: Raw Arsenic Data Used to Generate Box Plot 

Total  

Dust 

(mg/kg) 

±0.01 

Stomach 

Dust 

(mg/kg) 

±0.01 

Intestinal  

Dust 

(mg/kg)  

±0.01 

Total  

Soil  

(mg/kg)  

±0.01 

Stomach 

Soil 

(mg/kg)  

±0.01 

Intestinal  

Soil 

(mg/kg) 

±0.01 

20.00 2.83 8.42 42.00 4.54 28.67 

16.97 2.03 3.52 26.92 0.96 19.79 

11.49 1.77 2.75 50.45 2.08 41.18 

66.30 6.91 23.80 33.86 5.53 18.28 

11.49 1.64 4.85 24.45 2.79 14.06 

17.45 2.74 8.23 41.33 5.81 32.59 

8.98 1.61 4.21 41.96 3.57 30.98 

17.48 2.10 5.01 52.40 6.48 41.04 

 

Table XIII: Raw Cadmium Data Used to Generate Box Plot 

Total  

Dust 

(mg/kg) 

±0.01 

Stomach 

Dust 

(mg/kg) 

±0.01 

Intestinal  

Dust 

(mg/kg) 

±0.01 

Total  

Soil  

(mg/kg)  

±0.01 

Stomach 

Soil 

(mg/kg) 

 ±0.01 

Intestinal  

Soil 

(mg/kg) 

±0.01 

2.99 1.21 0.16 2.49 1.46 0.23 

BDL 0.59 0.12 3.50 0.81 0.32 

BDL 0.77 BDL 2.50 1.16 0.50 

BDL 0.33 BDL 2.99 0.86 0.12 

BDL 0.58 BDL 3.49 1.88 0.51 

BDL 0.80 BDL 2.49 1.72 0.59 

BDL 0.02 BDL BDL 0.83 0.38 

BDL 1.00 BDL BDL 1.61 0.47 

 

Table XIV: Raw Copper Data Used to Generate Box Plot 

Total  

Dust 

(mg/kg) 

±0.01 

Stomach 

Dust 

(mg/kg) 

±0.01 

Intestinal  

Dust 

(mg/kg) 

±0.01 

Total  

Soil  

(mg/kg) 

±0.01 

Stomach 

Soil 

(mg/kg) 

±0.01 

Intestinal  

Soil 

(mg/kg) 

±0.01 

736.00 24.81 11.77 793.00 100.33 180.63 

1247.01 29.27 2.42 618.15 22.01 83.44 

382.12 26.71 2.39 642.36 35.40 139.54 

1172.48 46.23 9.57 868.53 53.63 24.59 

686.81 29.29 1.19 681.14 24.49 118.08 

561.81 42.99 6.83 589.14 17.26 135.09 

408.18 5.22 3.38 470.03 20.72 102.50 

690.81 29.64 5.37 655.19 66.73 137.11 
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Table XV: Raw Manganese Data Used to Generate Box Plot 

Total  

Dust 

(mg/kg) 

±0.01 

Stomach 

Dust 

(mg/kg) 

±0.01 

Intestinal  

Dust 

(mg/kg) 

±0.01 

Total  

Soil  

(mg/kg) 

±0.01 

Stomach 

Soil 

(mg/kg) 

±0.01 

Intestinal  

Soil 

(mg/kg) 

±0.01 

410.00 48.52 5.83 688.50 98.88 155.23 

451.60 31.20 11.04 739.78 72.46 129.51 

236.26 35.08 18.49 687.81 89.24 176.32 

293.62 19.38 6.72 412.35 51.46 5.42 

441.56 22.23 3.90 733.03 213.39 228.39 

366.40 40.04 13.71 1025.90 212.24 194.92 

169.16 0.92 43.35 562.44 92.24 125.38 

318.68 28.99 5.13 661.68 65.19 289.50 

 

Table XVI: Raw Lead Data Used to Generate Box Plot 

Total  

Dust 

(mg/kg) 

±0.01 

Stomach 

Dust 

(mg/kg) 

±0.01 

Intestinal  

Dust 

(mg/kg) 

±0.01 

Total  

Soil  

(mg/kg) 

±0.01 

Stomach 

Soil 

(mg/kg) 

±0.01 

Intestinal  

Soil 

(mg/kg) 

±0.01 

99.50 8.20 3.24 158.00 8.18 4.81 

105.29 0.03 0.41 156.53 2.89 5.68 

60.44 5.10 0.80 252.25 4.58 24.23 

259.22 19.18 6.25 121.02 2.42 3.50 

74.93 6.97 0.93 170.66 6.30 11.55 

85.74 9.74 2.86 320.22 8.62 15.07 

31.44 0.40 1.49 106.89 2.19 20.58 

108.89 6.27 1.96 823.35 51.69 ADL 

 

Table XVII: Raw Zinc Data Used to Generate Box Plot 

Total  

Dust 

(mg/kg) 

±0.01 

Stomach 

Dust 

(mg/kg) 

±0.01 

Intestinal  

Dust 

(mg/kg) 

±0.01 

Total  

Soil  

(mg/kg) 

±0.01 

Stomach 

Soil 

(mg/kg) 

±0.01 

Intestinal  

Soil 

(mg/kg) 

±0.01 

582.00 240.80 20.46 609.00 187.71 35.95 

1064.37 334.69 9.85 477.57 52.58 23.03 

678.82 337.83 9.91 971.03 222.88 91.74 

894.82 263.06 16.51 379.48 42.30 5.36 

746.25 217.42 16.97 700.60 227.34 51.93 

644.57 282.83 18.96 560.76 215.03 26.39 

466.07 10.22 24.21 375.12 116.66 30.91 

1029.47 444.02 12.12 780.94 214.65 201.85 
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13. Appendix D: Average Stomach and Intestinal Digest Metal 
Concentrations 

Table XVIII: Average Stomach Digest Concentrations 

Metal 

Average Dust 

Concentration 

(mg/kg) 

±0.01 

Average  

Dust 

Bioavailability 

Average Soil 

Concentration 

(mg/kg) 

±0.01 

Average 

Soil 

Bioavailability 

Arsenic 2.30 12.14% 3.70 9.63% 

Cadmium 0.58 19.85% 1.10 42.54% 

Copper 26.00 3.73% 41.00 5.62% 

Molybdenum 0.96 --- 0.24 --- 

Manganese 89.00 25.09% 97.00 13.74% 

Lead 6.20 5.64% 9.10 2.84% 

Zinc  229.00 29.60% 142.00 23.09% 

 

Table XIX: Average Intestinal Digest Concentrations 

Metal 

Average Dust 

Concentration 

(mg/kg) 

±0.01 

Average  

Dust 

Bioavailability 

Average Soil 

Concentration 

(mg/kg) 

±0.01 

Average 

Soil 

Bioavailability 

Arsenic 7.42 38.35% 27.79 71.23% 

Cadmium 0.14 BDL 0.41 16.61% 

Copper 4.95 0.72% 116.23 17.24% 

Molybdenum 2.94 --- 8.08 --- 

Manganese 34.10 12.35% 166.87 24.03% 

Lead 2.33 2.26% 11.17 6.82% 

Zinc  18.86 2.89% 55.76 8.38% 
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14. Appendix E: Normalized Western Blot Protein Data 

Table XX: As Exposure Normalized Densitometric AS3MT Values in HEK293 Cells 

Adj. Volume 

(Int) 
Norm. Factor Norm. Vol. (Int) Sample Identification Percent Expression 

2299760 0.339357 780440 Vinculin Control ---- 

491160 0.339357 166678 AsCuMnZn 37% 

700920 1.113451 780440 Vinculin Control ---- 

150280 1.113451 167329 AsZn 37% 

2867000 0.272215 780440 Vinculin Control ---- 

1027960 0.272215 279825 AsMn 62% 

5102200 0.152961 780439 Vinculin Control ---- 

2937360 0.152961 449302 AsCu 100% 

1302320 0.599269 780440 Vinculin Control ---- 

606960 0.599269 363732 As 81% 

780440 1 780440 Vinculin Control ---- 

449600 1 449600 Control 100% 

 

Table XXI: As Exposure Normalized Densitometric AS3MT Values in BEAS-2B Cells 

Adj. Volume 

(Int) 
Norm. Factor Norm. Vol. (Int) Sample Identification Percent Expression 

3609872 1.601362 5780712 Vinculin Control ---- 

421792 1.601362 675441 AsCuMnZn 53% 

900060 6.422585 5780712 Vinculin Control ---- 

152880 6.422585 981884 AsZn 77% 

3524724 1.640047 5780712 Vinculin Control ---- 

896644 1.640047 1470538 AsMn 116% 

1278144 4.522739 5780712 Vinculin Control ---- 

465080 4.522739 2103435 AsCu 166% 

7812224 0.739957 5780712 Vinculin Control ---- 

1504496 0.739957 1113262 As 88% 

5780712 1 5780712 Vinculin Control ---- 

1268232 1 1268232 Control 100% 
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Table XXII: Cu Exposure Normalized Densitometric CTR1 Values in HEK293 Cells 

Adj. Volume 

(Int) 
Norm. Factor Norm. Vol. (Int) Sample Identification Percent Expression 

3127460 0.419457 1311835 Vinculin Control ---- 

1064560 0.419457 446537 AsCuMnZn 41% 

5745915 0.228307 1311835 Vinculin Control ---- 

1496950 0.228307 341764 CuZn 65% 

2747780 0.259251 712365 Vinculin Control ---- 

566195 0.259251 146786 CuMn 31% 

3284855 0.179498 589625 Vinculin Control ---- 

1146950 0.179498 205875 AsCu 54% 

1232875 1.064045 1311834 Vinculin Control ---- 

1763580 1.064045 1876529 Cu 172% 

1311835 1 1311835 Vinculin Control ---- 

1091160 1 1091160 Control 100% 

 

Table XXIII: Cu Exposure Normalized Densitometric CTR1 Values in BEAS-2B Cells 

Adj. Volume 

(Int) 
Norm. Factor Norm. Vol. (Int) Sample Identification Percent Expression 

386645 1 386645 Vinculin Control ---- 

1573005 1 1573005 Control 100% 

850395 0.454665 386645 Vinculin Control ---- 

3841810 0.454665 1746737 Cu 111% 

322070 1.2005 386644 Vinculin Control ---- 

1547245 1.2005 1857467 CuAs 118% 

929145 0.41613 386645 Vinculin Control ---- 

2790620 0.41613 1161260 CuMn 74% 

368165 1.050195 386645 Vinculin Control ---- 

1203125 1.050195 1263515 CuZn 80% 

478205 0.808534 386645 Vinculin Control ---- 

1643950 0.808534 1329189 AsCuMnZn 84% 
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15. Appendix F: Tumor Necrosis Factor ELISA Data 

Table XXIV: HEK293 TNF-α ELISA Concentration Data 

Sample ID 
Avg. 

Absorbance 
pg/mL Sample ng/mL Sample normalized 

Control 0.0885 343.75 0.34 100% 

As 0.0923 640.63 0.64 186% 

Cu 0.0945 808.59 0.81 235% 

Mn 0.0947 828.13 0.83 241% 

Zn 0.1704 6742.19 6.74 1961% 

AsCu 0.1121 2187.50 2.19 636% 

AsMn 0.0820 --- --- --- 

AsZn 0.0845 31.25 0.03 9% 

CuMn 0.0855 109.38 0.11 32% 

CuZn 0.0942 789.06 0.79 230% 

MnZn 0.0978 1070.31 1.07 311% 

AsCuMnZn 0.1009 1312.50 1.31 382% 

 

Table XXV: BEAS-2B TNF-α ELISA Concentration Data 

Sample ID 
Avg. 

Absorbance 
pg/mL Sample ng/mL Sample normalized 

Control 0.1210 2882.81 2.88 100% 

As 0.1721 6875.00 6.88 238% 

Cu 0.1375 4167.97 4.17 145% 

Mn 0.0889 375.00 0.38 13% 

Zn 0.0966 976.56 0.98 34% 

AsCu 0.0998 1226.56 1.23 43% 

AsMn 0.0951 859.38 0.86 30% 

AsZn 0.1099 2011.72 2.01 70% 

CuMn 0.2489 12871.09 12.87 446% 

CuZn 0.1506 5195.31 5.20 180% 

MnZn 0.0888 367.19 0.37 13% 

AsCuMnZn 0.0821 --- --- --- 

 

 

 

 

 

 

 



130 

Table XXVI: Meconium TNF-α ELISA Concentration Data 

Sample ID 
Avg. 

Absorbance 
Protein Content pg/mL Sample 

1 0.1434 9.2578 92.58 

2 0.0885 0.6875 6.88 

3 0.0771 --- --- 

7 0.0791 --- --- 

8 0.0851 0.1563 1.56 

9 0.0846 0.0781 0.78 

10 0.0875 0.5313 5.31 

11 0.1060 3.4219 34.22 

12 0.0940 1.5469 15.47 

13 0.0850 0.1406 1.41 

14 0.1040 3.1094 31.09 

15 0.1108 4.1719 41.72 

16 0.1145 4.7500 47.5 
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16. Appendix G: Interleukin 6 ELISA Data 

Table XXVII: HEK293 IL6 ELISA Concentration Data 

Sample ID 
Avg. 

Absorbance 
pg/mL Sample ng/mL Sample normalized 

Control 0.1210 2882.81 2.88 100% 

As 0.1721 6875.00 6.88 238% 

Cu 0.1375 4167.97 4.17 145% 

Mn 0.0889 375.00 0.38 13% 

Zn 0.0966 976.56 0.98 34% 

AsCu 0.0998 1226.56 1.23 43% 

AsMn 0.0951 859.38 0.86 30% 

AsZn 0.1099 2011.72 2.01 70% 

CuMn 0.2489 12871.09 12.87 446% 

CuZn 0.1506 5195.31 5.20 180% 

MnZn 0.0888 367.19 0.37 13% 

AsCuMnZn 0.0821 --- --- --- 

 

Table XXVIII: BEAS-2B IL6 ELISA Concentration Data 

Sample ID 
Avg. 

Absorbance 
pg/mL Sample ng/mL Sample normalized 

Control 0.1473 5635.084 5.64 100% 

As 0.1483 5756.530 5.76 102% 

Cu 0.1424 5040.000 5.04 89% 

Mn 0.1409 4851.759 4.85 86% 

Zn 0.1581 6940.627 6.94 123% 

AsCu 0.1717 8602.410 8.60 153% 

AsMn 0.1731 8768.386 8.77 156% 

AsZn 0.1671 8033.639 8.03 143% 

CuMn 0.1717 8598.361 8.60 153% 

CuZn 0.1568 6782.747 6.78 120% 

MnZn 0.1651 7790.747 7.79 138% 

AsCuMnZn 0.1578 6910.265 6.91 123% 
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