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Abstract 

Many challenges arise when attempting to use unmanned aerial vehicles (UAVs) in indoor 

environments, such as the lack of a GPS signal for use in navigation and the smaller margin of 

error in movements. Typically, those challenges are addressed by using a collision avoidance 

system. However, most commercially available collision avoidance systems are expensive, 

limited in suppliers, and are restricted to use on a specific platform. Additionally, some of the 

collision avoidance systems choose to forego obstacle detection in one or more directions, 

usually the upward direction. This work proposes that it is possible to develop a custom,  

low-cost collision avoidance system with modular capabilities, allowing it to be adapted to any 

UAV platform. The feasibility of the proposed system was determined by creating a  

single-direction prototype that was implemented on a small quadcopter and tested by flying the 

quadcopter towards a wall at slow speeds. To develop the system’s control algorithm a model of 

a quadcopter was built. Two different control algorithms were developed and tested via 

simulation with the model, and the better performing algorithm was implemented in the 

prototype. The feasibility of the proposed collision avoidance system is promising with the 

prototype able to prevent the quadcopter from colliding with a wall. However, further refinement 

in the methodology and techniques used to develop the system is needed to improve performance 

and reliability of the system, especially as obstacle detection is added in other directions of 

motion.   
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1. Introduction 

1.1. Background 

Over the course of the last decade, interest in unmanned aerial vehicles (UAVs) has 

grown beyond the hobbyist level. Large-scale factories and warehouses have begun to use UAVs 

to monitor and track inventories [1]; while mining operations have seen the potential of using 

UAVs for surveying areas that are hazardous to employees [2] [3]. All of these operations share 

a common application: flying UAVs in indoor environments. 

There are many challenges associated with flying UAVs in an indoor environment, such 

as the lack of access to the Global Positioning System (GPS) for aid in navigation and the strict 

boundaries of the environment itself. The obvious method to overcome these challenges is to 

have an experienced pilot, who has hours of practice flying in restrictive conditions and a steady 

hand on the controls. However, even the most skilled pilot would be limited by his or her field of 

vision and reaction time, when navigating indoor environments. This is where collision 

avoidance systems come in. Collision avoidance systems look to aid, or even supplant, the pilot 

in control of the UAV. Using an array of range finding sensors, the system can identify obstacles 

and modify the control algorithm of the UAV to avoid said obstacles.  

There are commercial collision avoidance systems available, but the systems are 

expensive and limited in suppliers. Another downside to a commercial system is that typically 

the system is designed to work only on a specific platform, and cannot be easily transferred to 

another. Finally, most commercial collision avoidance systems lack full collision avoidance, 

choosing to forego obstacle detection in one or multiple directions. The most notable direction 

foregone is the upward direction since most UAVs are not intended to fly in upward restrictive 

environments. 
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1.2. Problem Statement  

This work proposes that it is possible to design a custom, low-cost collision avoidance 

system (LCAS) with the modularity needed to be transferred between UAV platforms without 

significant modification to the new platform.  

To lower the cost, while ensuring obstacle detection in every direction, the LCAS made 

use of hobbyist-grade range finding sensors alongside lower power microcontrollers and 

processors. The modularity of the LCAS is defined by two separate major components: a 

centralized processor and sensor modules. The centralized processor, referred to as the  

Monkey-in-the-Middle (MITM), captures and decodes the control signal coming into the UAV 

from a radio control (RC) receiver and modifies it before re-encoding and passing the signal onto 

the UAV’s flight controller. The modifications are made by a custom feedback controller using 

distance measurements provided by sensor modules. The LCAS’s sensor modules, referred to as 

the Sensor Boards, utilize embedded microcontrollers to control an array of range finding sensors 

and determine the smallest distance measurement from the array. One Sensor Board operates 

independently from another, allowing each direction of motion to have its own board. 

In addition to the prototyping of the LCAS hardware, a one-dimensional model of a UAV 

was developed to aide in the design of the MITM’s custom feedback controller for the forward 

direction. The model was derived by curve-fitting the response of the Canary quadcopter to a 

series of increasing step inputs. The Canary is a 260-mm quadrotor platform used for developing 

and testing the prototype LCAS. Using the computational software MATLAB, simulations were 

conducted that tested the model’s response to the same step inputs used previously. The model 

was then validated by comparing the model’s responses to those of the Canary quadcopter.  

The overall goal of this work was to provide a proof of concept for and determine the 

feasibility of the LCAS for use on UAVs in indoor environments. To complete this work in a 
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reasonable amount of time, the proof of concept was done for only a single direction of motion: 

the forward direction. As a result, the methodology created can be used for developing future 

models and controllers for the remaining directions of motion. 

1.3. Overview of Obstacle Detection  

Within the context of use in the LCAS, obstacle detection is defined as the process of 

measuring the linear distance from the UAV platform to an obstacle. When maneuvering in a 

three-dimensional environment obstacle detection is needed for each direction about the center of 

a UAV. This means that a total of six directions must have obstacle detection. The following 

sections describe the obstacle detection methods considered for use in the LCAS. 

1.3.1. Stereovision 

Stereovision is an increasingly popular method used on commercial UAVs, such as on 

the DJI Mavic 2 Pro and Skydio 2. This method uses one or more cameras to capture images of 

the environment around a UAV. Through image processing, certain information about obstacles 

can be extracted, notably the relative angle of the UAV to the obstacle. However, it can be 

computationally difficult to estimate the location, size, and distance to an obstacle; that is not 

even taking into consideration the quality of the image, such as lighting and any restriction on 

the cameras’ field-of-view [4].  

Figure 1 shows the usage of stereovision by the DJI Mavic 2 Pro for backward direction 

obstacle detection. 
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Figure 1: DJI Mavic 2 Pro rear stereovision cameras [5] 

 

While recent advancements in the field of image processing have made stereovision more 

consistent and reliable, the implementation is complex and can be difficult in low-cost systems 

like the LCAS.  

1.3.2. Ultrasonic Sensing  

A classic method for obstacle detection is sonar via ultrasonic range finding sensors 

(ultrasonic for short). The use of ultrasonic sound waves in navigation has been around for 

decades and can be found in many transportation systems [4]. Ultrasonics emit bursts of high 

frequencies that are bounced back as an echo when encountering an obstacle. The time between 

the burst emission and detection of an echo can be used to calculate a distance to the obstacle, 

since the speed of sound is known [6] [7]. Figure 2 depicts the ultrasonic sensing method used by 

the HC-SR04 ultrasonic. 
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Figure 2: How the HC-SR04 ultrasonic range finding sensor measures distances [6] 

 

Ultrasonics are considered very reliable, not being affected by dust or atmospheric 

conditions. Also, ultrasonics have rather large sensing ranges and areas, such as the 4-m range 

offered by the HC-SR04 ultrasonic [4] [8]. However, ultrasonics are not without faults. Porous 

materials tend to absorb sound waves thus reducing the effectiveness and measurement accuracy 

of the sensor when encountering such obstacles [9]. Finally, compared to other methods of 

obstacle detection, ultrasonic sensing is slow due to the operating speed being limited to the 

speed of sound. For example, consider there to be an object at 2 m from an ultrasonic. The 

operating time required to measure that distance can be found using the following equation, 

adapted from [8]: 

 𝑡 =
𝑑

𝑣𝑠𝑜𝑢𝑛𝑑
 (1) 

Substituting 2 m for 𝑑 and 343 m/s for 𝑣𝑠𝑜𝑢𝑛𝑑, the operating time is 

 𝑡 =  
(2 𝑚)

343 𝑚/𝑠
= 5.83 𝑚𝑠 (2) 

An operating time of 5.83 ms seems reasonable, but that is only for one sensor. A collision 

avoidance system like the LCAS will need an ultrasonic for each of a UAV’s six directions of 
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motion. Additionally, each of the six ultrasonics would have to be operated sequentially to 

prevent the sensors from interfering with each other, as low-cost ultrasonics like the HC-SR04 

do not have the means to differentiate between its own echo or that of another ultrasonic. 

Extrapolating the operating time from Equation (2) to account for an additional five ultrasonics, 

the total operating time would be approximately 35 ms. Considering the speeds at which a UAV 

can fly, a 35-ms operating time is too slow for providing distance measurements to the LCAS. 

Either a different obstacle detection method is needed or a different type of ranging sensor is 

needed to provide distance measurements in the interim between ultrasonic distance 

measurements. 

1.3.3. TOF LiDAR Systems 

Another common method for obstacle detection is the use of light detection and ranging, 

or LiDAR. A LiDAR operates on the concept of light reflection. When triggered, a LiDAR emits 

an infrared laser light pulse and measures the amount of time it takes for the reflected pulse to be 

detected [7] [10]. Different types of LiDAR are defined by how the time measurements are 

handled. In regards to the LCAS, the type of LiDAR under consideration is time-of-flight (TOF), 

which derives a distance value from the time measurement using the same methodology as 

ultrasonic sensing.  

Unlike ultrasonics, a LiDAR is quick to make distance measurements since it operates at 

the speed of light. However, a LiDAR is susceptible to interference from dust and atmospheric 

conditions. Also, the infrared pulses used by a LiDAR can be adversely affected by objects with 

a sheen or a property that alters how the infrared pulse is reflected [9] [11] [12]. 

It might be assumed that a LiDAR system is an expensive option for use in the LCAS, 

given most professional applications use a rotating platform and high-end optics. For example, 
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the Velodyne Puck comes in at around $9000 and features 16 measurement channels on a 

rotating platform that provide up to 300,000 points per second [13] [14]. However, there are 

lower-cost versions of LiDAR systems available. Instead of using a single multi-point, rotating 

LiDAR like the Puck, multiple single-point, static TOF LiDAR sensors can be used to measure 

distances to obstacles. Single-point TOF LiDAR sensors are significantly cheaper than the more 

popular multi-point LiDAR sensors but the lower monetary cost comes at the cost of ranging 

distance and measurement accuracy [15]. The tinyLiDAR is a single-point TOF LiDAR that 

comes in at a price around $25 [16], significantly more cost effective than the $9000 Puck [14]. 

Furthermore, the tinyLiDAR features a built-in microcontroller that handles the complex 

interface of the infrared TOF flight sensor. The tinyLiDAR and Velodyne Puck are shown in 

Figures 3 and 4. 

 

Figure 3: tinyLiDAR single-point TOF LiDAR [15] 

 

 

Figure 4: Velodyne Puck multi-point rotating LiDAR [13] 
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For use in the LCAS, the decrease in ranging distance and measurement accuracy 

associated with single-point TOF LiDARs is negligible due to the tight operating conditions of 

the LCAS and the availability of additional distance-measuring sensors. 

1.3.4. Complementary Sensors 

Ultimately, the obstacle detection method chosen for the LCAS was to combine 

ultrasonic sensing with a TOF LiDAR system. This multi-sensor system allowed for the faults of 

each individual method to be addressed by the other, thus the complementary nature. Ultrasonics 

suffer from inaccuracies when bouncing signals off of porous materials but are not affected by 

the sheen of materials’ surfaces. Also, in general, ultrasonics are slow in operation being limited 

to the speed of sound for operation. LiDARs do not struggle to measure distances to porous 

materials but are prone to inaccuracies introduced by unpredictable light reflections off of 

materials with a sheen. Furthermore, LiDARs operate significantly faster than ultrasonics 

because by using infrared light LiDARs operate at or near the speed of light.  

There were two main reasons behind the choice to combine ultrasonic sensing with a 

TOF LiDAR. The first reason was the availability of low-cost sensors for each method. The  

HC-SR04 ultrasonic and tinyLiDAR used in the LCAS came in at around $4 [17] and $25 [16], 

respectively. The second reason was the precedented use of the two methods in complementary 

sensor systems, such as in [9] and [18]. 

1.4. Thesis Organization 

Section 2, Related Works, takes a look at three, commercially-available collision 

avoidance systems. Next, a pair of published papers are reviewed for how the collision avoidance 

systems proposed in each performed. Section 3, Technical Review, provides an overview of 

technologies and methods used when developing the LCAS that are mentioned throughout this 
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document. Section 4, Modeling, is an in-depth discussion into the development and validation of 

the Canary quadcopter model. This section also provides the reasoning behind the decision to 

focus on a single direction of motion. Section 5, Controller Design, covers the development of 

the LCAS’s forward direction feedback controller. Section 6, Hardware, takes a highly-detailed 

look at the hardware used in the LCAS. Furthermore, the section details the operational concepts 

behind the system’s programming algorithm. Section 7, Prototype Testing, covers the testing 

procedure and results for the prototype LCAS. Section 8, Conclusions, discusses the results from 

all aspects of this work and draws conclusions on the feasibility of the LCAS. Finally, Section 9, 

Future Work, provides suggestions on how to improve the LCAS. 

Multiple appendices are included with this thesis. Appendix A provides an overview of 

the UART and I2C serial communication protocols. Appendix B contains the printed circuit 

board layouts for the LCAS’s Sensor Board and MITM Docking Board. Technical drawings for 

the 3D printed components of the Canary are found in Appendix C. The MATLAB scripts used 

throughout this work are presented in Appendix D. The code behind the LCAS Sensor Boards is 

given in Appendix E. Appendices F, G, and H contain the code for the three different versions 

of the MITM.  
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2. Related Works 

As the use of UAVs has expanded outside of the hobbyist space and into the commercial 

space, there has been a significant increase in the research and development of collision 

avoidance systems. Most of the research has focused on the development of systems for 

autonomous flight, such as on the DJI Mavic 2 Pro and the Skydio 2. These systems tend to be 

platform specific and expensive.  

This section reviews three examples of commercially-available collision avoidance 

systems. After the commercial systems review, a look is taken at recent published literature on 

custom collision avoidance systems like the LCAS. 

2.1. Commercially Available Systems 

2.1.1. DJI Mavic Air 2 

Intended for hobbyists and entry-level professionals looking for a smooth and reliable 

platform for aerial cinematics and video steaming, the DJI Mavic Air 2’s collision avoidance 

system is utilized to stabilize the UAV while in flight [19]. The Mavic Air 2, released in April 

2020, is capable of sensing objects in three directions: forward, backward, and downward. The 

forward and backward directions feature dual vision sensors capable of measuring distances 

between 0.35 m and 47.2 m. The forward dual vision sensors have a field of view of 71° and 56° 

horizontally and vertically, respectively. The backward sensor is more restricted in its field of 

view with 44° and 57° horizontally and vertically, respectively. For the downward direction the 

Mavic Air 2 combines infrared TOF sensors with another pair of vision sensors. Using the dual 

vision sensors alone, the UAV has a hovering range of 0.5 m to 60 m; however, by adding data 

from the infrared TOF sensors the UAV can increase the precision of its hovering position at the 

cost of lowering the range to between 0.5 m and 30 m [19] [20].  
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The Mavic Air 2 is only capable of full autonomy when using DJI’s ActiveTrack 3.0. 

When in this mode the UAV is set to follow a predetermined target, such as a runner or a 

vehicle, and the collision avoidance system is used to detect and avoid obstacles in the tracking 

path. If an obstacle is detected, the Mavic Air 2 will attempt to fly around it and will hover in 

place if a suitable path cannot be detected [19].  

The collision avoidance system is further utilized by the Mavic Air 2’s Advanced Pilot 

Assistance System (APAS). This system complements a user piloting the UAV manually by 

using data from the sensors to generate a real-time map of its surroundings and determine an 

appropriate path to avoid any obstacles detected while in flight [19] [20]. 

A major drawback of the Mavic Air 2’s collision avoidance lies in the type of sensors and 

the absence of collision avoidance in the left, right, and upward directions. By only using vision 

and infrared sensors, the UAV is susceptible to measurement errors when an obstacle’s surface 

has a sheen or is reflective. Under low light conditions the vision sensors are not able to work, 

leaving only the downward infrared TOF sensor to provide distance measurements. Also, the 

Mavic Air 2’s collision avoidance system is not capable of sensing small objects, such as 

electrical wires, and tracking moving objects, such as people [19].  

At the time of writing the UAV is available, from DJI, for $799 [20]. The Mavic Air 2 is 

shown in Figure 5 and an operational visualization of the UAV’s backward sensors is given in 

Figure 6. 
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Figure 5: DJI Mavic Air 2 

 

 

Figure 6: Visualization of the Mavic Air 2’s backward obstacle detection [20] 

 

2.1.2. DJI Mavic 2 Pro 

DJI’s Mavic 2 Pro was released in August 2018. [21]. The Mavic 2 Pro is DJI’s first 

UAV capable of obstacle detection in all six directions. Dual vision sensors are used in the 

forward, backward, and downward directions, while single vision sensors are used in the lateral 

(left-right) directions. Dual, three-dimensional infrared sensors are used on both the upward and 
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downward directions. The measurement ranges and field of view angles for all directions are 

summarized in the Table I, adapted from [22].  

Table I: Mavic 2 Pro sensor specifications 

 

Direction Sensor type(s) Range [m] Horizontal FOV 

[°] 

Vertical FOV  

[°] 

Forward Dual vision 0.5 – 40 40 70 

Backward Dual vision 0.5 – 32 60 77 

Downward Dual vision 

Dual infrared 

0.5 – 22 n/a n/a 

Upward Dual infrared 0.1 – 8 n/a n/a 

Lateral Single vision 0.5 – 10 80 65 

 

 The Mavic 2 Pro expands upon the Mavic Air 2’s autonomous flight capabilities by 

introducing additional flight modes that utilize the increased number of sensors and sensing 

directions. The first mode is Waypoint Navigation. In this mode the user draws a path for the 

UAV to follow by marking GPS waypoints in DJI’s mission planning software. During the 

flight, the UAV will attempt to navigate to the waypoints and utilize the collision avoidance 

system to detect any obstacles in the path. If obstacles are detected the UAV will scan for the 

most appropriate path that will avoid the obstacle [21] [22]. The second mode is an autonomous 

Return to Home (RTH). When switched into RTH, the Mavic 2 Pro automatically creates a flight 

path to return to the last known home position using GPS data. Once following the flight path, 

the UAV uses its collision avoidance system to scan for obstacles and adjust the path as 

necessary [21]. 

 Furthermore, the Mavic 2 Pro offers stability and tracking accuracy in ActiveTrack 2.0. 

By utilizing its obstacle detection sensors, the UAV can track targets at high speeds and maintain 

a constant distance. When tracking, the UAV can detect and actively avoid obstacles in the 

forward and backward direction, provided the collision avoidance system can determine an 
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appropriate path. This methodology is the same one used in the newer Mavic Air 2’s 

ActiveTrack 3.0.   

 Finally, the Mavic 2 Pro’s APAS operates the same as on the Mavic Air 2. When under 

manual control, the APAS scans the environment looking for obstacles in the forward and 

backward directions. Upon detection of obstacles, the system determines the most appropriate 

path to avoid those obstacles and overrides manual control in order to follow the path [21] [22]. 

Also, the Mavic 2 Pro shares the same faults of the Mavic Air 2, being susceptible to sensor 

failure in low-light conditions.  

 At time of this writing, the UAV is available directly from DJI for $1599 [22]. The Mavic 

2 Pro is shown in Figure 7 with the UAV’s collision avoidance system sensors labeled. 

 

Figure 7: DJI Mavic 2 Pro’s collision avoidance system [21] 

 

2.1.3. Skydio 2 

One of the main competitors to DJI’s Mavic 2 Pro is the Skydio 2. The intended use of 

the Skydio 2, released in October 2019, is for capturing smooth, cinematic footage of actively 

moving targets. The UAV is known for superior camera stability and excellent autonomous 

navigation [23]. The Skydio 2’s collision avoidance system makes use of six professional-grade, 
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4K cameras for building a three-dimensional map of the UAV’s environment. The cameras are 

arranged in trinocular configurations on the top and bottom sides of the Skydio 2. Each camera 

has a 200° field of view and via the Skydio Autonomy Engine the UAV’s navigation system can 

build a 360° model of its environment. The collision avoidance system uses the model to predict 

the changes in the environment and makes decisions on any changes to the UAV’s flight path. 

All of this is done 500 times per second, with the cameras providing 30 frames per second. The 

measurement range of the Skydio 2’s cameras is not specified, though, the UAV is reported to be 

capable of tracking and following targets at a maximum height of 8 m, which can be increased to 

16 m for larger targets, such as vehicles [23] [24].  

The Skydio 2’s collision avoidance system is, by default, always enabled. Therefore, 

when the UAV is under manual control the system overrides the pilot’s input when the UAV 

needs to avoid an obstacle. While both the DJI Mavic Air 2 and Mavic 2 Pro were limited to 

forward and backward obstacle detection during manual flight, the Skydio 2 is not so limited, 

allowing the pilot to have obstacle avoidance assistance in all six directions [24] [25]. 

The only drawbacks of the Skydio 2 are that the UAV’s navigation cameras are not able 

to function properly in low-light conditions or darkness and cannot detect objects smaller than 

12 mm in diameter, much like both DJI UAVs [23]. 

At the time of this writing the Skydio 2 is available from Skydio for $999, with an 

additional $149 for an RC controller to enable manual control [24]. The Skydio 2 is shown in 

Figure 8. 
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Figure 8: Skydio 2 [24] 

 

2.2. Published Literature 

Significant amounts of research have gone into the development of collision avoidance 

systems for UAVs. As mentioned previously most of the research has been for systems that work 

in conjunction with, or are a component of, autonomy systems, such as [26], [27], and [28]. 

However, there has been literature published on the concept of low-cost, collision avoidance 

systems providing aid to a pilot when a UAV is under manual control. 

Described in [29] is a low-cost system that utilized a rotating TOF LiDAR on top of the 

UAV to detect obstacles. When in operation, the LiDAR scanned the environment around the 

UAV to produce a constantly updating 360° scan. The scan data were split into eight zones that 

the system’s obstacle detection algorithm classified on a threat scale. If the same threat was 

detected three times in a row in the same zone, then the system defined the threat as an obstacle 

to avoid. The system then chose a zone with the lowest threat level to move into. The reactionary 

force used to move to the safest zone was determined based on the threat level of the obstacle 

and the distance of the UAV to the obstacle. While the system was able to avoid collisions, it 

limited the UAV to low operating speeds and small roll and pitch angles [29]. Furthermore, by 
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using a rotating LiDAR the system was only able to detect obstacles in the forward, backward, 

and lateral directions. Finally, a single sensor offered no redundancy and in-flight error checking 

that multiple sensors would. Figure 9 shows the system. 

 

Figure 9: Rotating LiDAR-based collision avoidance system used in [29] 

 

A system similar to the LCAS is described in [9]. The system attempted to improve upon 

simple collision avoidance systems that drive the UAV in the opposite direction of detected 

obstacles by applying techniques used in SLAM-based systems. A SLAM, or simultaneous 

localization and mapping, algorithm is a process that uses measurements from range finding 

sensors to construct a virtual map of an environment and determine the location of the device 

running the SLAM algorithm. Significant research, as detailed in [30] and [31], has gone into 

developing SLAM algorithms. However, SLAM algorithms can require considerable 

computational power sometimes using processors on the level of desktop computers, such as in 

[31]. 

By utilizing the complementary nature of ultrasonic and infrared sensors, the system in 

[9] had great reliability and could operate in a variety of conditions. An inertial measurement 

unit (IMU) and optical flow sensors were used in conjunction with the ultrasonic and infrared 
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sensors to improve distance estimations via sensor fusion. Sensor fusion is the process of 

combining data from a variety of sensors to produce a single estimate that has less uncertainty 

than estimates created from the individual sensors would [32]. The system then used the distance 

estimations and the locations of the sensors to build a model of its environment, divided into  

12 sectors. The sectors were then ranked by threat level and the system chose the safest sector to 

move into. A PID (proportional, integral, and derivative) controller was used to control the 

strength of the reaction, with the proportional and derivative parts adjusted according to the 

distance in order to prevent overshooting and improve stability. The main goal of the system was 

to allow autonomous operation of a UAV, but the system could be used to create a pilot 

assistance system [9]. The drawbacks of the system were the requirement of replacing a flight 

controller with the system’s main processing unit and the complexity of the collision avoidance, 

limiting the modularity of the system. The system is shown in Figure 10. 

 

Figure 10: Low-cost, multi-sensor system used in [9] 
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3. Technical Review 

This section provides explanations and background information on the technologies and 

methods used in the development of the LCAS and mentioned throughout this document. Key 

concepts include quadcopter basics, the decoding and encoding of SBUS signals, sensor fusion 

via a Kalman filter, and control system design via root locus. 

3.1. Quadcopter Basics 

The main platform of development for the custom collision avoidance system was on a 

UAV with a quadrotor arrangement. More commonly known as a quadcopter, this UAV platform 

has the advantage of combining high reliability and stability with simplistic design and agile 

maneuverability [33].  

A quadcopter utilizes an X-configuration for the placement of four propellers on four 

motors. Two propellers spin clockwise, and the other two propellers spin counterclockwise. The 

propeller pairs are placed diametrically about the quadcopter’s center, allowing the torque from 

each motor to balance out the torque of the corresponding motor. By balancing the motor torques 

the X-configuration yields greater stability and control when the quadcopter is in flight [33] [34]. 

Figure 11 shows the quadcopter X-configuration and motor arrangement. 

 

Figure 11: Quadcopter motor “X” configuration, showing reaction torques [34] 
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 The direction of movement for a quadcopter is controlled by adjusting the speed of the 

motors independently. Movement of a quadcopter is defined as follows: pitch for the forward 

and backward directions, roll for the left and right directions, yaw for rotation about the center, 

and altitude for the upward and downward directions. For pitch and roll a quadcopter will 

increase the speed of one or two motors and decrease the speed of one or two diametrically 

opposing motors. For yaw a quadcopter will increase the speed of same-spinning direction 

propellers. Finally, for altitude a quadcopter increases or decreases the speed of all motors, 

equally. Figure 12 provides a pictorial depiction of the changing motor speeds needed for 

quadcopter movement. 

 

Figure 12: Quadcopter motion [35] 

 

 Control of a quadcopter is mainly handled by a flight controller. A flight controller 

receives user input from an RC receiver and translates the input into individual motor 

commands. Individual motor commands are sent to the corresponding motor’s electronic speed 

controller (ESC), which translate the commands into voltage levels that dictate the rotation speed 
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of the connected motor. For a depiction of the layout of a quadcopter control system refer to 

Figure 63 in Section 6.5. 

3.2. SBUS Communication Protocol 

The SBUS protocol is a specialized serial communication protocol developed by Futaba 

Corporation for use in RC devices. The protocol is designed to condense 16 individual channels 

into a single data frame that can then be transferred over a single line.  

SBUS is based on the UART communication protocol (see Appendix A) but uses 

inverted voltage levels and a specialized 100,000 baud rate. Additionally, SBUS bytes are 

structured with the most significant bit first, differing from UART’s byte structure of least 

significant bit first. A standard SBUS transmission is comprised of 25 bytes, which all together 

form the SBUS frame. The first byte is the header, or start byte, which identifies the beginning of 

the SBUS frame. The following 22 bytes contain the data for the 16 channels in the format of 

one start bit, eight data bits, one even parity bit, and two stop bits. The 23rd byte contains 

information for two digital channels and the “frame lost” and “failsafe” flags. The final byte is 

the footer, or end byte, which identifies the end of the SBUS frame [36]. The SBUS frame 

structure is summarized in Figure 13, adapted from [37] and [38]. 
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Figure 13: SBUS frame structure 

 

3.2.1. Decoding 

Since SBUS is a non-standard communication protocol, the ability to read and write in 

the protocol is not a feature on the processor used for the MITM. That means in order to interpret 

an SBUS signal a processor must be able to read and decode the frame before it can modify any 

of the channel values. 

Before the MITM can even receive an SBUS signal the signal has to be inverted. The 

reason for the inversion is that SBUS is based on an inverted UART signal (see Appendix A). To 

invert the SBUS signal, a 2N7002 metal-oxide-semiconductor field-effect transistor (MOSFET) 
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was used. A hardware solution was chosen over a software solution for the SBUS inversion 

because of the availability of a UART bus on the processors used for the MITM. A schematic of 

the SBUS inverter is shown in Figure 14. 

 

Figure 14: SBUS signal inverter 

 

As shown in the figure the original SBUS signal is passed into the gate of the 2N7002 

MOSFET and the inverted SBUS signal is output at the drain. The inversion works by the 

MOSFET adjusting current flow based on the original signal’s voltage levels. When the input 

voltage is high the MOSFET will allow the current to flow to ground, resulting in the output 

signal being pulled low. When the input voltage is low the MOSFET will be disabled, allowing 

the current to flow to the output where the signal will be pulled high by the 10-kΩ pullup 

resistor. 

With the SBUS signal inverted, the MITM can now read the signal like it would any 

standard UART signal using the MITM processor’s built-in UART bus; however, the UART bus 

must be initialized to read the SBUS signal at the specialized 100,000 baud rate. With the baud 

rate accounted for the MITM captures 50 bytes, or two SBUS frames worth of data. Since the 

SBUS start and end bytes are predetermined, the MITM searches the 50 bytes for an end byte 
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and then searches for a start byte 24 bytes before the found end byte, thus mapping a single 

SBUS frame. Additionally, by capturing two frames worth of bytes the MITM is guaranteed to 

capture at least one frame, thus eliminating concerns over clock synchronization and clock drift.  

Once an SBUS frame is mapped the MITM checks if the new frame is different from the 

previous frame and if so the MITM can begin parsing the 22 data bytes for the 16 individual 

channels. If the frame is the same as the previous frame then the MITM uses the channel values 

from the previous frame, skipping the decoding process for the new frame. The first step is to 

perform a bit endian swap on each byte because the UART bus reads the bytes as having the 

least significant bit first but SBUS bytes are structured with the most significant bit first. Next 

since the data for individual channels is comprised of 11 bits and spaced across multiple bytes, 

the parsing must operate at the bit level, using bitshifting and bitmasking. For example, to parse 

the data for Channel 1 the entire first data byte (8 bits) and 3 bits from the second data byte are 

needed. For simplicity the bitshifting and bitmasking values for each channel are detailed in 

Table II. Note that the “Byte Index” column does not apply to the channels explicitly. Rather the 

values refer to the bytes that contain information for the channels. 
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Table II: SBUS decoding values 

 

Channel Low 

bitshift 

Low 

bitmask 

Mid 

bitshift 

Mid 

bitmask 

High 

bitshift 

High 

bitmask 

Byte 

Index 

1 5 0xE0 3 0xFF 0 0x00 0 

2 2 0xFC 6 0x1F 0 0x00 1 

3 7 0x80 1 0xFF 9 0x03 3 

4 4 0xF0 4 0x7F 0 0x00 4 

5 1 0xFE 7 0x0F 0 0x00 5 

6 6 0xC0 2 0xFF 10 0x01 7 

7 3 0xF8 5 0x3F 0 0x00 8 

8 0 0xFF 8 0x07 0 0x00 9 

9 5 0xE0 3 0xFF 0 0x00 11 

10 2 0xFC 6 0x1F 0 0x00 12 

11 7 0x80 1 0xFF 9 0x03 14 

12 4 0xF0 4 0x7F 0 0x00 15 

13 1 0xFE 7 0x0F 0 0x00 16 

14 6 0xC0 2 0xFF 10 0x01 18 

15 3 0xF8 5 0x3F 0 0x00 19 

16 0 0xFF 8 0x07 0 0x00 20 

 

Using the information from the table, the following equation, in the Python coding 

language syntax, was used to determine the channel values: 

 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙[𝑘] = (𝑏𝑦𝑡𝑒[𝑛𝑑𝑥[𝑘]]&ℎ𝑖𝑔ℎ𝑏𝑖𝑡𝑚𝑎𝑠𝑘[𝑘]) ≪ ℎ𝑖𝑔ℎ𝑏𝑖𝑡𝑠ℎ𝑖𝑓𝑡[𝑘] + 

+ (𝑏𝑦𝑡𝑒[𝑛𝑑𝑥[𝑘 + 1]]&𝑚𝑖𝑑𝑏𝑖𝑡𝑚𝑎𝑠𝑘[𝑘]) ≪ 𝑚𝑖𝑑𝑏𝑖𝑡𝑠ℎ𝑖𝑓𝑡[𝑘] 

+(𝑏𝑦𝑡𝑒[𝑛𝑑𝑥[𝑘 + 2]]&𝑙𝑜𝑤𝑏𝑖𝑡𝑚𝑎𝑠𝑘[𝑘]) ≫ 𝑙𝑜𝑤𝑏𝑖𝑡𝑠ℎ𝑖𝑓𝑡[𝑘] 

(3) 

where 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is a unitless integer value ranging from 172 to 1811, 𝑏𝑦𝑡𝑒 is a data byte from the 

SBUS frame, and 𝑛𝑑𝑥 is the byte index from Table II. 

 The final step is to perform a bit endian swap on the individual channel values to change 

from little to big endian. This was done because the SBUS protocol encodes the channel values 

as little endian across the data bytes.   

 As a result of the decoding process, the channel values take on an integer range of 172 to 

1811. Thus, the SBUS minimum, SBUS neutral, and SBUS maximum values are 172, 992, and 

1811, respectively. 
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3.2.2. Encoding 

 Any data being transmitted to the flight controller must be in the SBUS format. 

Therefore, the MITM must encode the individual channel values back into bytes that when 

output over the UART bus take the form of an SBUS frame. 

The first step is to perform a bit endian swap on the individual channels, changing the bit 

order from big to little endian. This is the reverse of the final step of the decoding procedure. 

Secondly, the start byte is added as the first byte. Next the channel values are split across the data 

bytes using bitshifting and bitmasking. The values used for the bit operations are summarized in 

Table III. 

Table III: SBUS encoding values 

 

Data byte First 

channel 

First 

channel 

bitmask 

First 

channel 

bitshift 

Second 

channel 

Second 

channel 

bitmask 

Second 

channel 

bitshift 

1 0 0x00 0 0 0xFF 3 

2 0 0xE0 5 1 0x1F 6 

3 1 0xFC 2 2 0x03 9 

4 2 0x00 0 2 0xFF 1 

5 2 0x80 7 3 0x7F 4 

6 3 0xF0 4 4 0x0F 7 

7 4 0xFE 1 5 0x0F 10 

8 5 0x00 0 5 0xFF 2 

9 5 0xC0 6 6 0x3F 5 

10 6 0xF8 3 7 0x07 8 

11 7 0xFF 0 8 0x00 0 

12 8 0x00 0 8 0xFF 3 

13 8 0xE0 5 9 0x1F 6 

14 9 0xFC 2 10 0x03 9 

15 10 0x00 0 10 0xFF 1 

16 10 0x80 7 11 0x7F 4 

17 11 0xF0 4 12 0x0F 7 

18 12 0xFE 1 13 0x01 10 

19 13 0x00 0 13 0xFF 2 

20 13 0xC0 6 14 0x3F 5 

21 14 0xF8 3 15 0x07 8 

22 15 0xFF 0 16 0x00 0 

 

Using the information from Table III, the data byte values can be found using the 

following equation, written in the Python coding language syntax: 
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𝑏𝑦𝑡𝑒[𝑘] = ((𝑐ℎ𝑎𝑛𝑛𝑒𝑙[𝑐ℎ𝑎𝑛1[𝑘]] ≪ 𝑐ℎ𝑎𝑛1𝐵𝑆[𝑘]) & 𝑐ℎ𝑎𝑛1𝐵𝑀[𝑘])  

| ((𝑐ℎ𝑎𝑛𝑛𝑒𝑙[𝑐ℎ𝑎𝑛2[𝑘]] ≫ 𝑐ℎ𝑎𝑛2𝐵𝑆[𝑘]) & 𝑐ℎ𝑎𝑛2𝐵𝑀[𝑘])  

(4) 

where 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is a channel value, 𝑐ℎ𝑎𝑛1 is the first channel index, 𝑐ℎ𝑎𝑛2 is the second channel 

index, 𝑐ℎ𝑎𝑛1𝐵𝑆 is the first channel bitshift, 𝑐ℎ𝑎𝑛1𝐵𝑀 is the first channel bitmask, 𝑐ℎ𝑎𝑛2𝐵𝑆 is 

the second channel bitshift, and 𝑐ℎ𝑎𝑛2𝐵𝑀 is the second channel bitmask.  

 The second to last byte is set to zero and the final byte is set as the end byte. Finally, with 

all the data in the SBUS frame the frame’s 25 bytes are endian swapped. The reason for doing 

this was because the UART module on the MITM’s processor transmits the lowest bit first but 

the SBUS bytes are read with the highest bit first by the Canary’s flight controller. 

 With encoding finished, the MITM outputs the SBUS frame through another signal 

inverter like the one in Figure 14. However, 5 V is used on the MOSFET’s drain rather than  

3.3 V. It would later be discovered that the shift in voltage was not needed since SBUS voltage 

levels are at 3.3 V rather than 5 V. 

3.2.3. Channel Naming Scheme 

Throughout this work the two different SBUS signals, received and transmitted, will be 

referred to as RX and TX, respectively. Furthermore, the individual SBUS channels were given 

specific names that will be referenced throughout this work. The channel names were derived 

from standard channel names for UAV control, such as Thr for throttle and Ele for elevator, as 

well as custom names used in this work, such as LOG for enabling data logging. For clarity and 

simplicity, the full naming scheming is detailed in the Table IV, with standard SBUS channel 

names denoted by an asterisk. 
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Table IV: SBUS channel naming scheme 

 

Channel Name Description 

1 Thr Throttle; altitude (upward/downward) control* 

2 Ail Aileron; roll (left/right) control* 

3 Ele Elevator; pitch (forward/backward) control* 

4 Rud Rudder; yaw (rotation) control* 

5 ARM System arm/disarm* 

6 Hld Altitude hold enable 

7 LOG Data logging enable 

8 sbEN Enables communications with the Sensor Boards & feedback system 

 vEN Overrides Ele with the step magnitude from VEL; used only during 

modeling data collection 

9 ctrlEN Enables LCAS feedback controllers; sbEN has to be enabled first 

10 VEL Controls magnitude of Ele step; used only during modelling data 

collection 

11 n/a Unused  

12 n/a Unused 

13 n/a Unused 

14 n/a Unused 

15 n/a Unused 

16 n/a Unused  

 

3.3. Kalman Filter 

To aid in the development of the Canary model data fusion was used to combine GPS and 

accelerometer data into a position estimate that was more accurate and consistent than an 

estimate based on the individual sensors. A common method of data fusion, the Kalman filter is a 

recursive algorithm that estimates unknown states, or variables, based on an estimation of a joint 

probability distribution over the known states for each sampling period [39] [40]. There are two 

stages to the Kalman filter: prediction/extrapolation and update. 

3.3.1. State-space Model 

To begin with, a state-space model has to be derived for the system. The system model 

used is given by the following equations adapted from [41, pp. 123-124]: 

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 (5) 

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 (6) 
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where 𝑥 is the state vector, 𝑦 is the output vector, 𝑢 is the input vector, 𝐴 is the system matrix, 𝐵 

is the input matrix, 𝐶 is the output matrix, and both 𝑤𝑘 and 𝑣𝑘 are jointly Gaussian noise vectors. 

Since there were no deterministic inputs used in the modeling of the Canary the 𝐵𝑢𝑘 term was 

ignored. 

3.3.1.1. Prediction Stage 

The prediction stage of the Kalman filter is focused entirely on the state estimation. The 

state estimate from the previous sampling period is used to produce a state estimate for the 

current sampling period. The predicted state estimate and the predicted estimate covariance were 

produced using the following equations, adapted from [39] and [40], 

 𝑥̂𝑘+1
− = 𝐴𝑥̂𝑘 (7) 

 𝑃𝑘+1
− = 𝐴𝑃𝑘𝐴

𝑇 + 𝑄  (8) 

where 𝑥̂𝑘+1
−  is the predicted state estimate, 𝑥̂𝑘 is the previous state estimate, 𝑃𝑘+1

−  is the predicted 

estimate covariance, 𝑃𝑘 is the previous estimate covariance, and 𝑄 is the process noise 

covariance matrix. The process noise covariance matrix is associated with the level of 

uncertainty, 𝑞, towards the system measurements. 

3.3.1.1. Update Stage 

The update stage of the Kalman filter uses the measurements of the current sampling 

period to refine the state estimate and estimate covariance matrix produced by the prediction 

stage. During this stage the optimal Kalman gain is calculated to aid in the refinements. The 

update stage equations are as follows, adapted from [39] and [40]: 

 𝐾𝑘+1 = 𝑃𝑘+1
− 𝐶𝑇[𝐶𝑃𝑘+1

− 𝐶𝑇 + 𝑅]−1 (9) 

 𝑥̂𝑘+1 = 𝑥̂𝑘+1
− + 𝐾𝑘+1[𝑦𝑘+1  −  𝐶𝑥̂𝑘+1

− ] (10) 
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 𝑃𝑘+1 = [𝐼 − 𝐾𝑘+1𝐶] 𝑃𝑘+1
−  (11) 

where 𝐾𝑘+1 is the optimal Kalman gain, 𝑥̂𝑘+1 is the updated state estimate, and 𝑅 is the 

measurement noise covariance matrix. 

3.4. Root Locus Technique 

Root locus is a control system design technique that uses a graphical representation of a 

closed-loop system’s poles and zeros to assess system stability and observe the effect of varying 

certain system parameters [41, pp. 388, 456-459]. Before delving into the specifics of the 

technique, consider the example traditional closed-loop, or feedback control, system depicted in 

Figure 15. 

 

Figure 15: Traditional feedback control loop 

 

Plotting the locations (locus) of the plant’s poles and zeros in the s-plane as a function of 

the loop gain, the stability of the closed-loop system can be observed via the system’s transient 

response. The system is stable when the poles and zeros are located in the left-half plane. The 

root locus and transient response of the plant (controller set to unity) from Figure 15 are shown 

in Figure 16. 
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Figure 16: Root locus and transient response of the open-loop system 

 

To improve the transient response and system stability, additional poles and zeros can be 

added to the controller. For example, to decrease the system’s settling time to under 1.9 seconds 

a single pole and zero can be added, on top of increasing the gain. The controller now takes the 

form: 

 𝐶(𝑠)  =  
1.25 (𝑠 + 4)

(𝑠 + 10)
 (12) 

Implementing the controller, the root locus and transient response shown in Figure 17 is 

produced for the closed-loop system. 
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Figure 17: Root locus and transient response of the closed-loop system 

 

By implementing the designed controller, the closed-loop system can achieve a settling 

time of less than 1.9 seconds. Further design requirements, such as rise time and percent 

overshoot, can be addressed by adjusting the controller’s gain and/or by adding or removing 

poles and zeros to the controller.   
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4. Modeling 

There are numerous variables to consider when attempting to model a UAV in flight. 

Even when just hovering in place, a UAV is experiencing and generating forces in a variety of 

directions. From motor torques to air resistance, building a mathematical model for a UAV is a 

complicated task. Entire research projects and papers are dedicated to the task, such as [42] and 

[43]. Therefore, the building of a full mathematical model for tuning the LCAS was out of the 

scope of this thesis. However, by limiting the variables and experimental parameters it was 

possible to derive a reasonable model of a UAV for tuning the LCAS.  

Instead of considering all six directions, the derived model was only for a single 

direction, specifically the forward direction. By focusing only on one direction, the model 

became one-dimensional and thus the forces were simplified. The free-body diagram in Figure 

18 provides a depiction of this concept. 

 

Figure 18: One-dimensional free-body diagram of a UAV flying towards a wall 

 

Working in the frequency domain, the forces from Figure 18 can be depicted using the 

following equations adapted from [41, pp. 35, 64]: 

 𝑠 = 𝜎 + 𝑗𝜔 (13) 

 𝐹𝑀(𝑠) = 𝑀𝑠
2𝑋(𝑠) (14) 

F 
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 𝐹𝐷(𝑠) = 𝐷𝑠𝑋(𝑠) (15) 

where 𝑠 is the complex frequency parameter; 𝐹𝑀 is the force exerted by the UAV; 𝐹𝐷 is the 

damping force from air resistance; 𝐷 is the damping coefficient; and 𝑋 is displacement. 

Applying Newton’s second law, the sum of the forces is  

 𝐹(𝑠) − 𝐷𝑠𝑋(𝑠) = 𝑀𝑠2𝑋(𝑠) (16) 

Solving for 𝑋(𝑠), 

 𝑋(𝑠) =
𝐹(𝑠)

𝑀𝑠2 + 𝐷𝑠
 (17) 

where 𝑋(𝑠) is the displacement of the UAV, in meters, and 𝐹(𝑠) is the normalized input. 

 Looking at Equation (17), the parameters 𝑀 and 𝐷 need to be derived to finish the model 

equation. 𝐷, the damping coefficient, is derived from the effect of air resistance of UAV while it 

is in flight. A UAV, like the Canary, is unlikely to reach high enough speeds, especially in 

indoor environments, for the air resistance to start causing a damping effect on the UAV. 

Therefore, 𝐷 can be considered negligible. 𝑀, on the other hand, is a bit more complex. 

Typically, 𝑀 is the mass but when it comes to a UAV the parameter is a function of the flight 

controller. Essentially, the flight controller handles numerous parameters of the UAV while in 

flight, such as motor speed and motor torque, which causes 𝑀 to be dynamic. Instead of 

attempting to mathematically model the dynamics of 𝑀, it was decided that it would be simpler 

to use data-driven modeling and curve-fit the response of the Canary to a known input to derive 

an equation for 𝑀. 

4.1. Methodology 

4.1.1. Step Input  

A step input was chosen to test the response of the Canary quadcopter. Over the course of 

two flights a series of six steps were tested, with each step a constant SBUS value applied in the 
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Canary’s forward direction. The magnitude of each step was controlled by a dial on the RC 

transmitter (see Section 6.5.4.1). Table V shows the step magnitudes used for measuring the step 

responses of the Canary.  

Table V: Canary step input magnitudes 

 

Flight Step number Magnitude [SBUS value] 

1 1 1044 

1 2 1182 

1 3 1407 

2 4 1683 

2 5 1811 

2 6 1810 

 

4.1.2. Testing Area 

The area used for testing the step responses of the Canary was Leonard Field on the east 

side Montana Tech’s campus. The field and the UAV’s area of operation (red box) are shown 

below in Figure 19. 

 

Figure 19: Canary testing area, Leonard Field [44] 
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4.1.3. Procedure 

Before triggering each step, the Canary was set to hover at an arbitrary altitude. Once the 

Canary was hovering the step’s magnitude was set and then the step was triggered. The response 

to the step was captured as position and acceleration values (see Section 6.5.4 for details on the 

hardware and methodology). Upon approach of the end of the testing area, the step input was 

ended, and the UAV was returned to its starting position. The same procedure was then repeated 

for each step magnitude. 

4.1.4. Data Collection 

The parameters measured when recording the step response of the Canary were the 

position and acceleration. Position of the UAV was captured as latitude, longitude, and altitude 

values by a GPS module approximately every 100 ms. Acceleration on the x, y, and z axes were 

measured by an accelerometer approximately every 20 ms and filtered using a 10-point moving 

average. Both parameters were stored in logs.  

In addition to the position and acceleration values, the RX and TX SBUS frames were 

logged in order to provide time alignment of the position and acceleration data to the triggering 

of the steps. 

4.2. Data Processing 

After copying the GPS, accelerometer, and SBUS logs off the MITM, the data were 

imported into MATLAB for processing. 

4.2.1. SBUS Data 

Before working with the GPS and accelerometer, the relevant SBUS channel values had 

to be parsed from the SBUS log. Since the step response testing was done in the forward 



37 

direction of the Canary, the channel value that was modified by the MITM was Ele. Triggering 

of the step was handled by vEN. For more details on Ele and vEN refer to Table IV. 

The first step was to separate the TX data from the RX data. This was done since the 

MITM used the RX channel values for Ele and vEN to determine the value of Ele to be 

transmitted to the flight controller. The TX data was parsed by using every even numbered row 

in the data log to obtain the relevant values for Ele, vEN, and sample time (Tsbus). 

The second step was to set the zero point of the sample time vector and check for time 

logging errors. The zero-point had to be set since the sample time was recorded by the MITM in 

Unix time, or the number of seconds since midnight on January 1, 1970. By subtracting the first 

value of the sample time vector from every value in the vector, the vector started at zero, 

corresponding with the start time of the Canary’s flight. With the zero-point set, the modified 

sample time was checked for errors. The error-checking was needed after it was observed that 

the MITM had arbitrarily added more than 1500 seconds to the sample times in the middle of 

one of the flights. When a significant change in error time was found during error checking, the 

difference between the last valid sample time and the first invalid sample time was subtracted 

from the first invalid sample time and the succeeding sample times. 

The final step in processing the SBUS data was to resample. Resampling was done since 

the sampling rate of the SBUS data was not consistent, ranging from 19 to 23 ms thus making 

the data difficult to work with later. The inconsistent sampling rate was a result of the MITM 

checking if new RX SBUS frames were the same as previous frames. If a new frame was 

different from the previous frame then the MITM needed additional time to decode the frame. If 

the new frame was the same as the previous frame then the MITM skipped the decoding process 

and reused the SBUS data from the previous frame. Using MATLAB’s built-in resample() 
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function, Ele and vEN were resampled with a sampling period of 0.02 seconds. A new sample 

time vector was generated by the function to match the resampled values of Ele and vEN. 

4.2.2. GPS Data 

The first step in processing the GPS data was to set the zero point and error checking. 

The process was the same as the one used in the processing of the SBUS data. 

The second step was to convert latitude and longitude values to positional values. The 

conversion factors for latitude and longitude are dependent on the location of the coordinates in 

the world. This stems from the fact that as latitude increases the width of a second decreases, 

which in turn also affects longitude [45]. Taking that into consideration, the following equations 

were used to determine the latitude and longitude to meters conversion factors, courtesy of [45]: 

 𝑙𝑎𝑡𝑚 = 111,132.92 − 559.82 cos 2𝜑 − 0.0023 cos 6𝜑 (18) 

 𝑙𝑜𝑛𝑔𝑚 = 111,412.84 cos𝜑 − 93.5 cos 3𝜑 + 0.118 cos 5𝜑 (19) 

where 𝑙𝑎𝑡𝑚 is the conversion factor for latitudinal degrees to meters; 𝑙𝑜𝑛𝑔𝑚 is the conversion 

factor for longitudinal degrees to meters; and 𝜑 is the initial latitude coordinate. Both equations 

return the conversion factors in meters per degree. The conversion factors were calculated for 

each flight and the values are shown in Table VI.  

Table VI: Conversion factors per flight for latitude & longitude to meters 

 

Flight 𝒍𝒂𝒕𝒎 (m/degree) 𝒍𝒐𝒏𝒈𝒎 (m/degree) 

1 111,473.52 -49,356.33 

2 111,473.46 -49,362.63 

 

 Using the conversion factors, the GPS log’s latitude and longitude values were converted 

to positional values with the initial values set to zero via the following equations: 

 𝑦𝑔𝑝𝑠(𝑘) = 𝑙𝑎𝑡𝑚(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒(𝑘) − 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒(0)) (20) 
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 𝑥𝑔𝑝𝑠(𝑘) = 𝑙𝑜𝑛𝑔𝑚(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒(𝑘) − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒(0)) (21) 

 The final step was to resample the GPS data to align with the sampling rate of the SBUS 

data. The resample() function was used to resample  𝑥𝑔𝑝𝑠 and 𝑦𝑔𝑝𝑠. 

4.2.3. Accelerometer Data 

Processing of the accelerometer data began with the multiplying the acceleration values 

by gravitational acceleration (9.81 m/s2) in order to convert from g-force. Next the zero point 

was set in the sample time vector and the entire vector was error-checked using the same method 

as in the SBUS and GPS data processing. The final step in processing the acceleration values 

was to resample.  

4.3. Estimating the Canary’s Position 

By itself, the GPS position could have produced a relatively accurate estimation of the 

Canary’s position during the two valid step response testing fights. However, the original GPS 

data were limited to about 10 samples per second, while both the SBUS and accelerometer data 

were recorded at about 50 samples per second. Resampling of the GPS data was able to increase 

the number of samples, but minimally improved the accuracy of the position estimation.  

Using the accelerometer data to estimate the position of the Canary would have been an 

exercise in futility. Accelerometers are prone to degrading efficiency over time due to 

compounding errors and are susceptible to hysteresis [46]. Some of the error was addressed by 

using a moving average filter when the MITM recorded values, but the filter could not account 

for all errors. Without removing errors, such as offsets, integrating to get a position estimate 

would have only resulted in an estimation of the total error. 

In order to produce an accurate position estimate, while addressing the shortcomings of 

both sensors, data fusion was used. Data fusion is the process of combining relevant information 
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from multiple sources into a single more consistent and accurate estimate compared to using only 

one of the individual sources [47]. The data fusion algorithm chosen for combining the GPS and 

accelerometer data was the Kalman filter (Section 3.3). 

 The first step in using the Kalman filter was to develop a state-space model of the system. 

Given the known states are the positions and accelerations and the unknown states are the 

velocities, the following relationships were considered: 

 𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑥,𝑘∆𝑡 (22) 

  𝑦𝑘+1 = 𝑦𝑘 + 𝑣𝑦,𝑘∆𝑡 (23) 

 𝑣𝑥,𝑘+1 = 𝑣𝑥,𝑘 + 𝑎𝑥,𝑘∆𝑡 (24) 

 𝑣𝑦,𝑘+1 = 𝑣𝑦,𝑘 + 𝑎𝑦,𝑘∆𝑡 (25) 

 𝑎𝑥,𝑘+1 = 𝑎𝑥,𝑘 + 𝑤𝑥,𝑘 (26) 

 𝑎𝑦,𝑘+1 = 𝑎𝑦,𝑘 +𝑤𝑦,𝑘 (27) 

where 𝑥 and 𝑦 are the positions; 𝑣𝑥 and 𝑣𝑦 are the velocities; 𝑎𝑥 and 𝑎𝑦 are the accelerations; and 

𝑤𝑥 and 𝑤𝑦 are random variables representing the system’s process noise, such as disturbances. 

 The following sixth-order system model was derived by substituting the relationships, 

linearly, into Equations (5) and (6). 

 

[
 
 
 
 
 
𝑥𝑘+1
𝑦𝑘+1
𝑣𝑥,𝑘+1
𝑣𝑦,𝑘+1
𝑎𝑥,𝑘+1
𝑎𝑦,𝑘+1]

 
 
 
 
 

⏟    
𝑥𝑘+1

=

[
 
 
 
 
 
1 0 ∆𝑡 0 0 0
0 1 0 ∆𝑡 0 0
0 0 1 0 ∆𝑡 0
0 0 0 1 0 ∆𝑡
0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 

⏟                
𝐴

[
 
 
 
 
 
𝑥
𝑦
𝑣𝑥
𝑣𝑦
𝑎𝑥
𝑎𝑦]
 
 
 
 
 

⏟
𝑥𝑘

+ 𝑤𝑘 
(28) 
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[

𝑥𝑘
𝑦𝑘
𝑎𝑥,𝑘
𝑎𝑦,𝑘

]

⏟  
𝑦𝑘

= [

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

]

⏟              
𝐶 [

 
 
 
 
 
𝑥
𝑦
𝑣𝑥
𝑣𝑦
𝑎𝑥
𝑎𝑦]
 
 
 
 
 

⏟
𝑥𝑘

+ 𝑣𝑘 
(29) 

 With the state-space model built, the GPS and accelerometer data were passed into the 

Kalman filter algorithm. For the prediction stage the uncertainty, 𝑞, was optimized to be 1x10-5 

after a few iterations of the Kalman filter. Therefore, the process noise covariance was defined as  

 𝑄 =  

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 𝑞 0
0 0 0 0 0 𝑞]

 
 
 
 
 

 (30) 

For the update stage the measurement noise covariance matrix, 𝑅, was derived by calculating the 

magnitude of the autocorrelation of the measurement noise for each of the known states (𝑥, 𝑦, 𝑎𝑥, 

and 𝑎𝑦). Thus, the matrix was defined as  

 𝑅 =

[
 
 
 
 
𝑅𝑥𝑥 0 0 0
0 𝑅𝑦𝑦 0 0

0 0 𝑅𝑎𝑥𝑎𝑥 0

0 0 0 𝑅𝑎𝑦𝑎𝑦]
 
 
 
 

 (31) 

4.4. Step Response Results 

The GPS and Kalman filter position estimates for both flights are shown in Figures 20 

and 21. Note that the x- and y-positions refer to the Canary’s latitude and longitude, respectively, 

in meters.  
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Figure 20: Flight 1 position estimate 

 

 

Figure 21: Flight 2 position estimate 

 

From both figures it can be seen that the GPS position estimate was representative of the 

Canary’s position during either flight, but exhibited sharper turns and less of the flowing motion 

that the Canary exhibited during the flights. The Kalman filter estimate, on the other hand, 
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showed smoother turns and overall appeared to better portray the flowing motion of the Canary 

during the flights. 

To better show the individual step responses, the Kalman filter position estimate was 

separated into component x- and y- positions and plotted versus time. These plots are showing in 

Figures 22 and 23. Also, the SBUS channel vEN (step enable) was included to show the time 

duration of the steps. 

 

Figure 22: Flight 1 position versus time 
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Figure 23: Flight 2 position versus time 

 

As can be seen in the figures, both Canary flights contained three individual steps in the 

forward direction. The magnitudes of each step were set before the triggering of each step. To 

aid in the derivation of the Canary’s model, the individual steps and the respective responses 

were parsed from the data. To simply calculations to a single dimension, the magnitude between 

the two position components was calculated using the Pythagorean theorem. Finally, each step 

was set to start at time zero with the initial position at the origin. The parsed step responses are 

shown in Figure 24, for Flight 1, and Figure 25, for Flight 2. The magnitude (in SBUS values) of 

each step is noted above the respective plot. 



45 

 

Figure 24: Flight 1 step responses 

 

 

Figure 25: Flight 2 step responses 

 

4.5. Deriving the Model Equation 

4.5.1. Curve-fitting the Model Equation 

In order to curve-fit the model, an estimated equation had to be used to determine what 

parameters need to be derived from the data. Rearranging Equation (17), 
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 𝑋(𝑠)(𝑀𝑠2 +𝐷𝑠) = 𝐹(𝑠) (32) 

Taking the inverse Laplace transform to return to the time domain, 

 𝑀𝑥̈(𝑡) + 𝐷𝑥̇(𝑡) = 𝑓(𝑡) (33) 

As discussed previously the effect of 𝐷 is negligible. Also, 𝑓(𝑡) is constant at a given 𝑡. Ignoring 

𝐷 and substituting the constant 𝐴 for 𝑓(𝑡), 

 𝑀𝑥̈(𝑡) = 𝐴 (34) 

Rearranging and taking the integral, 

 ∫ 𝑥̈(𝑡) 𝑑𝑡 =
1

𝑀
∫𝐴𝑑𝑡 (35) 

 𝑥̇(𝑡) = 𝐴
1

𝑀
𝑡 + 𝑣0 (36) 

where 𝑣0 is the initial velocity. Integrating again to get position, 

 ∫ 𝑥̇(𝑡) 𝑑𝑡 = ∫𝐴
1

𝑀
𝑡 + 𝑣0 𝑑𝑡 (37) 

 𝑥(𝑡) =  𝐴
1

2𝑀
𝑡2 + 𝑣0𝑡 + 𝑥0 (38) 

where 𝑥0 is the initial position. 

 However, the methodology used for collecting the data had the Canary at a stationary 

hover before triggering the steps, thus there was no initial velocity. Furthermore, when 

processing the data, the initial position of the Canary for each step was normalized to zero. So, 

zeroing the initial velocity and position, 

 𝑥(𝑡) =  𝐴
1

2𝑀
𝑡2 (39) 

 The coefficient, 
1

2𝑀
, can be simplified into a single quantifiable value, 𝑅, as a function of 

𝑀 with units of m/s2. Substituting in 𝑅 for 
1

2𝑀
, the model equation is 



47 

 𝑥(𝑡) = 𝐴𝑅𝑡2 (40) 

Solving for 𝑅, 

 𝑅 =
𝑥(𝑡)

𝐴𝑡2
 (41) 

An estimate for 𝑅 was made by substituting the position estimates from the step response 

testing in for 𝑥(𝑡) and the step magnitudes in for 𝐴. The model was then simulated and 

compared to the Canary’s responses. Results from the simulation are shown in Figures 26 and 

27. The estimated value of 𝑅 for each step is given in Table VII. 

 

Figure 26: Results from the 𝑹 estimation using Flight 1 parameters 
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Figure 27: Results from the 𝑹 estimation using Flight 2 parameters 

 

Table VII: Estimates of 𝑹 

 

Flight Step Magnitude 𝑹 

1 1044 1.4152 

1 1182 0.5789 

1 1407 0.7622 

2 1683 1.6577 

2 1811 1.8080 

2 1810 1.2711 

 

 Taking the average of the estimates, the value of 𝑅 was found to be 1.2489. To test if the 

estimate of 𝑅 was reasonable, it was substituted into Equation (40), simulated again with the 

same step magnitudes, and compared to the Canary’s step responses. The simulation results are 

shown in Figures 28 and 29. 
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Figure 28: Model simulation with 𝑹 = 𝟏. 𝟐𝟖𝟒𝟗 using Flight 1 parameters 

 

 

Figure 29: Model simulation with 𝑹 = 𝟏. 𝟐𝟖𝟒𝟗 using Flight 2 parameters 

 

 

Looking at the figures, the 1.2489 estimate for 𝑅 did not provide an adequate 

approximation of the Canary, with the model’s step responses not quite replicating the Canary’s 

step responses. The reasons behind this conclusion can be seen in the 𝑅 estimates for the 

Canary’s 1182 and 1407 step responses. From Table VII, the 𝑅 estimates for the 1182 and 1407 
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step responses were 0.5789 and 0.7622, respectively. Both of the estimates were significantly 

lower than the next largest 𝑅 estimate, 1.2711 for the 1810 step. Looking at the model’s response 

versus the Canary’s response for either step it can be seen that the Canary was slower than the 

prediction made by the model. Furthermore, looking at the 1810 step response the Canary did not 

respond as quickly as it did to the 1811 step, as if the Canary experienced a disturbance when the 

step was trigger which caused the initial response to be slowed.  

Attempting to improve the model approximation, the values of 𝑅 for the 1182, 1407, and 

1810 steps were left out of the average 𝑅 estimate calculation. Thus, resulting in a new average 

𝑅 value of 1.6270. Running the validation simulation again, the results given in Figures 30 and 

31 were produced. The 1182, 1407, and 1810 step simulations are included to show how the 

model responded to those step values. 

 

Figure 30: Model simulation with 𝑹 = 𝟏. 𝟔𝟐𝟕𝟎 using Flight 1 parameters 
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Figure 31: Model simulation with 𝑹 = 𝟏. 𝟔𝟐𝟕𝟎 using Flight 2 parameters 

 

By leaving out the 𝑅 estimates from the 1182, 1407, and 1810 steps a better 

approximation of the Canary was produced. Under the 1044, 1683, and 1811 steps the model 

appeared to better match up with the Canary’s responses. 

The new value of 𝑅 proved to be more reasonable and provided a better approximation of 

the Canary. Substituting the value into Equation (40), 

 𝑥(𝑡)  = 𝐴(1.6270)𝑡2 (42) 

4.5.2.  Discretizing the Model 

So far most of the model derivation had been in the continuous time domain. However, in 

order to develop the LCAS’s controller the model must be in discrete time, since the controller 

will only be able to operate on a sample-by-sample basis.  

Moving Equation (42) to the Laplace domain via the Laplace transform, 

 𝑋(𝑠) = 𝐴
2(1.6270)

𝑠2
 (43) 
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Substituting the Laplace form of the input 𝐹(𝑠) in for 𝐴 and solving for the output, 𝑋(𝑠), over 

the input, the system transfer function is  

 
𝑋(𝑠)

𝐹(𝑠)
=
2(1.6270)

𝑠2
 (44) 

 Using MATLAB’s continuous-to-discrete time function, c2d(), Equation (43) was 

discretized with a 0.02-second sampling period, resulting in: 

 
𝑋(𝑧)

𝐹(𝑧)
=
0.0006508 + 0.0006508𝑧−1

1 − 2𝑧 −1 + 𝑧−2
 (45) 

Using the inverse Z-transform, the model’s difference equation is  

 𝑥[𝑘] = 0.0006508𝑓[𝑘] + 0.0005608𝑓[𝑘– 1] + 2𝑥[𝑘– 1]– 𝑥[𝑘– 2] (46) 
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5. Controller Design 

5.1. Overview 

In the process of developing the LCAS feedback controller, two separate controller 

designs, utilizing two different control system design techniques, were built. The Phase I 

controller was designed first and tuned using time domain techniques and trial-and-error until a 

reasonable response was attained for four simulated scenarios. While able to drive the model to a 

desired position, the controller was characterized by unfavorable, oscillatory behavior and slow 

response times (shown later on).  

Seeking to improve on the Phase I design, a second design phase was conducted to 

produce a new controller. The Phase II controller design was made using the root locus technique 

to observe the effect of the controller’s poles and zeros on the closed-loop system stability and 

transient response. Overall, the Phase II controller was able to improve upon Phase I 

substantially, exhibiting reduced oscillatory behavior and a faster response time across all four 

scenarios. 

5.2. Design Methodology 

5.2.1. Phase I  

The Phase I controller was based on the idea of modifying the input, 𝑓[𝑘], when the 

position is detected to be within an activation window. For example, when the position is greater 

than the activation threshold, 𝑥𝑎𝑐𝑡, the controller overrides the input with a new input that drives 

the model to 𝑥𝑑𝑒𝑠. The controller’s block diagram is shown in Figure 32. 
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Figure 32: Phase I controller block diagram 

 

Most of the design of the Phase I controller was done in the discrete time domain via 

simulation in MATLAB. Before simulating, the controller algorithm from the block diagram in 

Figure 32 was translated into the following difference equation: 

 

𝑓𝑐𝑜𝑛𝑡[𝑘]  =  𝐾𝑝(𝑥𝑑𝑖𝑓𝑓[𝑘]) + 𝐾𝑖(𝑥𝑑𝑖𝑓𝑓[𝑘] + 𝑥𝑑𝑖𝑓𝑓[𝑘 − 1])

+ 𝐾𝑑(𝑥𝑑𝑖𝑓𝑓[𝑘]– 𝑥𝑑𝑖𝑓𝑓[𝑘 − 1]) 
(47) 

where 𝑥𝑑𝑖𝑓𝑓 is the difference between the desired position and the system’s actual position. The 

gains, 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑, were found by iterating the controller until it produced a reasonable 

response. The final values of the gains were 1.2 for 𝐾𝑝, 0.1 for 𝐾𝑖, and 5 for 𝐾𝑑. 

5.2.2. Phase II  

Unlike the design method for the Phase I controller, the Phase II controller’s design took 

a more traditional approach in the root locus technique (detailed in Section 3.4). Most of the 

design was done via MATLAB’s Control System Designer App. 
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Importing the frequency-domain model transfer function, Equation (44), into rltool() the 

following root locus for the open-loop system was produced: 

 

Figure 33: Open-loop system root locus 

 

 Based on the response of the Phase I controller, it was determined that the Phase II 

controller would need to drive the model with less overshoot and a faster settling time. 

Therefore, to determine the pole, zero, and gain of the controller an overshoot of 40 percent and 

a settling time of 10 seconds were arbitrarily chosen as the design requirements when the 

controller is subjected to a 1.0-magnitude step (1811-magnitude in SBUS).  

 By adding the controller to the root locus, the values of the pole and zero were adjusted 

graphically in the Control Designer App until the step response of the closed-loop system met 

the design requirements. The resulting closed-loop root locus and step response are shown in 

Figures 34 and 35, respectively. 
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Figure 34: Phase II closed-loop system root locus 

 

 

Figure 35: Phase II closed-loop system step response  

 

With the design requirements met, the frequency domain transfer function for the Phase 

II controller was 

 𝐶(𝑠) =
𝐹𝑐(𝑠)

𝐸(𝑠)
=
2.2435 (𝑠 + 0.2685)

(𝑠 + 2.292)
 (48) 
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where 𝐹𝑐 is the output of the controller and 𝐸 is the error between the actual position and desired 

position. The equation was discretized using MATLAB’s c2d() function at a sampling period of 

0.02 seconds, resulting in 

 𝐶(𝑧) =
𝐹𝑐(𝑧)

𝐸(𝑧)
=
2.2435(𝑧 − 0.9948)

(𝑧 − 0.9552)
 (49) 

Using the inverse Z-transform to find the controller’s difference equation, 

 𝑓𝑐[𝑘] = 0.9552𝑓𝑐[𝑘 − 1] + 2.2435𝑒[𝑘]) − 2.2318𝑒[𝑘 − 1] (50) 

5.3. Simulation Results 

Both phases of the LCAS controller design were subjected to four simulation scenarios 

that were intended to simulate the behavior of the Canary under control of a pilot. All 

simulations were conducted under ideal conditions, meaning no measurement noise was added.  

For visualization purposes, consider there to be a wall at 1 m and each controller is 

attempting to drive the model to maintain a desired position, 𝑥𝑑𝑒𝑠, of 0.5 m. The controller 

activates when the model’s position is within 0.25 m (𝑥𝑎𝑐𝑡) of the desired position. 

5.3.1. Scenario 1 

The first scenario set the input as a constant 1200 SBUS value as if the pilot were 

continuing to fly towards the wall without attempting to avoid a collision. The results from 

Scenario 1 are shown in Figure 36. 
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Figure 36: Scenario 1 simulation results 

 

Under the first scenario, both controllers were able to drive the system away from the 

wall and towards the desired position. However, the Phase I controller exhibited oscillatory 

behavior causing the model to swing about the desired position and was unable to reach a steady 

state in the 30-second window. The Phase II controller, on the other hand, did not cause the 

system to oscillate and was able to achieve a steady state in just over five seconds. Also, the 

Phase II controller limited the system’s overshoot to 8.3% compared to Phase I’s 69%. 

5.3.2. Scenario 2 

The second scenario repeated the first; however, the pilot actively attempted to avoid a 

collision. Every time the system reached a position of 0.45 m the pilot momentarily dropped the 

input SBUS value to 785, attempting to slow the system’s approach to the desired position. 

Furthermore, after the first reaction the pilot reduced the regular input to 1050. Figure 37 shows 

the results for Scenario 2. 
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Figure 37: Scenario 2 simulation results 

 

For Scenario 2, the Phase I controller appeared to amplify the effect of the pilot’s 

intervention, driving the system below the zero position. This would be unacceptable behavior in 

real applications. Thus, the design advantage of the Phase II controller is quite evident. Instead of 

amplifying the pilot’s actions, the controller complemented the pilot, allowing the system to 

settle about the 0.45-m position. The controller was less intrusive in its influence on the pilot’s 

inputs, showcasing a significant improvement over the Phase I controller.  

5.3.3. Scenario 3 

Scenario 3 used the SBUS value 1000. By setting the input to a value close to neutral, the 

scenario simulated a slow drift towards the wall. And as akin to the first scenario, the pilot did 

not react to the approach of the desired position. The results are shown in Figure 38. 
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Figure 38: Scenario 3 simulation results 

 

Another unfavorable behavior was exhibited by the Phase I controller under the third 

scenario. Once the system’s position crossed into the activation window at 0.25 meters the Phase 

I controller activated and instead of attempting to slow the model the controller’s output caused 

the system to increase in speed. This then began the same oscillatory behavior exhibited by the 

controller under Scenario 1.  

Again, the design improvements of the Phase II controller over Phase I are clear. The 

Phase II controller not only drove the system to a steady state at the desired position, but also did 

not overshoot the desired position. Also, the system did not increase in speed at any point but 

rather slowed as it approached the desired position.  

5.3.4. Scenario 4 

Scenario 4 combined the slow drift of Scenario 3 with the pilot’s intervention actions 

from Scenario 2. Every time the system reached a position of 0.45 m the pilot lowered the input 

to 825; however, the pilot would let the system return to the original input after the initial 

reaction instead of a lower value. The results for the scenario are shown in Figure 39. 
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Figure 39: Scenario 4 simulation results 

 

For the final scenario, the Phase I controller displayed peculiar behavior that was deemed 

entirely unacceptable. The increasing of the system’s speed was exhibited once again as were the 

oscillations. It appears as if the controller has more control of the system than the pilot.  

The Phase II controller’s response is a stark difference. The controller complemented the 

pilot’s actions by driving the system to the pilot’s reaction position, and, if allowed, the 

controller would have approached the desired position in the same manner as the third scenario.  

5.4. Noise Resiliency  

The final testing stage of the LCAS feedback controller was to observe how each of the 

Phases handled error and/or noise in the position measurements. Each controller was subjected to 

two different cases. Both cases added normally distributed noise to the position values seen by 

the controller. The cases were differentiated by the scaling factor applied to the magnitude of the 

noise. The parameters of Scenario 1 were used to provide the simulation environment.  
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5.4.1. Case 1 

The first case scaled the added noise by a value of 0.0036821. This value was found by 

calculating the standard deviation of a tinyLiDAR’s distance measurements of an object at  

150 mm over the course of 15 minutes, with a sampling period of approximately 15 ms. The 

Case 1 results for each controller are shown in Figures 40 and 41. 

 

Figure 40: Case 1 simulation results for Phase I controller 

 

 

Figure 41: Case 1 simulation results for Phase II controller 
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Under the standard deviation of the tinyLiDAR’s error, both controllers were able to 

drive the system to the desired position. In comparison to the position results for Scenario 1 in 

Figure 36, both controllers maintained the same response to the model despite the noise.  

An important observation is the effect of the noise on the input to the model. The Phase I 

controller appeared to not suppress the measurement error, causing the model input to be noisy. 

The Phase II controller had a better response to the noise, but the fluctuation of the input about 

the SBUS neutral was a concern. 

5.4.2. Case 2 

The second case scaled the added noise by a factor of 0.1. This value was chosen to 

simulate an extreme error in position measurement. The response of each controller to Case 2 is 

shown in Figures 42 and 43. 

 

Figure 42: Case 2 simulation results for Phase I controller 
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Figure 43: Case 2 simulation results for Phase II controller 

 

 

Again, the controllers were able to drive the system to the desired position, but the 

fluctuations from Case 1 were exaggerated by the increase in noise magnitude. The Phase I 

controller oscillated the model input between the minimum and maximum SBUS values. The 

Phase II controller did not saturate the model input, but did cause the model input to fluctuate 

between 500 and 1500. 

5.5. Choosing a Controller 

Based on the results from the four scenarios, the decision between which controller to use 

was simple: the Phase II controller. The Phase II controller showed significant advantages over 

the Phase I controller. The Phase II controller did not exhibit oscillatory behavior about the 

desired position, and instead was able to drive the system to a steady state at the desired position. 

Overshooting of the desired position was dramatically reduced by the Phase II controller. 

Furthermore, the Phase II controller appeared to better complement the pilot. Under Scenarios 2 

and 4, the Phase I controller amplified the pilot’s reactions when the pilot intervened. The Phase 
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II controller, in comparison, did not amplify the reactions by incorporating previous model 

inputs to limit the amount of change that could be made to the new model input.  

The ability to account for previous inputs and outputs gave the Phase II controller an 

advantage over the Phase I controller in the noise resiliency testing. Both controllers were able to 

handle Case 1, but Case 2 exposed the Phase I controller’s inability to regulate its output, 

swinging it between the SBUS extremes. The Phase II controller handled Case 2 better by not 

letting its output swing so sporadically.  

It is quite apparent, though, that the Phase II controller did not reduce the effect of noise 

on the system, as the noise was passed from the position seen by the controller to the model 

input. However, the noise in the controller’s output had minimal effect on the model’s actual 

position because of the relatively slow response of the model to changes in its input. 

Since it is possible that a noisy input could cause the Canary’s flight controller to go into 

failsafe, a 10-point simple moving average (SMA) filter was applied to the input of the Phase II 

controller. The results are shown in Figures 44 and 45. 

 

Figure 44: Case 1 simulation results for Phase II controller with a SMA 
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Figure 45: Case 2 simulation results for Phase II controller with a SMA 

 

The addition of the SMA filter improved the noise resiliency of the Phase II controller 

noticeably. The noise of Case 1 had no effect on the system, with the response matching the ideal 

response of Scenario 1 (Figure 36). The improvement was more notable in Case 2. The sporadic 

fluctuations of the controller output never exceeded the original input of 1200 or fell too far 

below the SBUS neutral when at steady state. 

As a note, the implementation of the Phase II equation in the LCAS prototype had an 

extra pole and zero at the origin. However, the additional pole and zero cancel each other out, 

resulting in the implemented equation matching equations in the Phase II design (Section 5.2.2). 

This simplification was discovered when documenting this work, which was after the LCAS 

prototype testing, thus why the extra pole and zero do not show up in the Phase II controller 

design but do show up in the LCAS prototype. The implemented equation is as follows: 

 𝐶(𝑠) =
𝐹𝑐(𝑠)

𝐸(𝑠)
=
2.2435 𝑠 (𝑠 + 0.2685)

𝑠 (𝑠 + 2.292)
 (51) 

Discretizing with a sampling period of 0.02 seconds and then taking the inverse Z-transform the 

difference equation used for the LCAS feedback control algorithm was 
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𝑓𝑐[𝑘] = (−0.9552𝑓𝑐[𝑘 − 2] + 1.9552𝑓𝑐[𝑘 − 1]) + (2.2317𝑒[𝑘 − 2]

− 4.4753𝑒[𝑘 − 1] + 2.2435𝑒[𝑘]) 
(52) 
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6. Hardware 

 An in-depth review of the hardware used in the LCAS is provided in this section. Section 

6.1, Overview, details the basic functions and operations of the LCAS hardware. Section 6.2, 

Testing Platforms, looks at the servo-based rover and Canary quadcopter used for the 

development and testing of the LCAS. Section 6.3, RC Receiver & Transmitter, covers the RC 

hardware used to control the Canary. Section 6.4, Sensor Board, discusses, in-depth, the design 

and functions of the LCAS Sensor Boards. The main controller of the LCAS is given a detailed 

look in Section 6.5, MITM. Section 6.6, Final Prototype Design/Layout, takes a look at the 

layout of the LCAS prototype when installed on the Canary. 

6.1. Overview 

The intended implementation of the LCAS is to be installed on a quadcopter with 

minimal modification to the platform and maintaining modularity of the LCAS. There are two 

main parts of the system: the Monkey-in-the-Middle (MITM) and the Sensor Boards. The MITM 

is placed in-between the RC receiver and the flight controller, where it can intercept SBUS 

signals and modify the signals. The Sensor Boards are branched off of the MITM and measure 

distances between obstacles and the quadcopter. Figure 46 is a general block diagram of the 

LCAS, while a more detailed block diagram of the MITM is shown in Figure 47. 
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Figure 46: LCAS block diagram 

 

 

Figure 47: MITM block diagram 

 

 In the block diagram of Figure 46 SBUS signals are output by the RC receiver and 

immediately intercepted by the MITM. Figure 47 shows the MITM then decodes a single SBUS 

frame into individual channels. From there the MITM requests distance values from the Sensor 

Boards and uses the values in a feedback control system to determine if it needs to modify the 
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channels to avoid obstacles. After channel modification, the MITM encodes the channels into a 

new SBUS frame that is then transmitted to the flight controller. With the SBUS frame 

transmitted, the MITM logs the RX and TX SBUS frames and the distance values reported by 

the Sensor Boards.  

6.2. Testing Platforms 

The LCAS system used two different platforms for the testing of the individual 

components. The first platform was a servo-based rover platform. The second platform was a 

260-mm quadcopter known as the Canary.  

6.2.1. Servo-based Rover 

The servo-based rover was a simple metal platform propelled by two servos at the front 

with a drag wheel at the rear. The rover was mostly used in the early development stages of the 

LCAS, serving as the testing platform for the first version of the MITM (Section 6.5.2). Since the 

rover did not have a dedicated flight controller, a MSP430G2553 microcontroller was used to 

decode SBUS signals and convert the values to PWM (pulse width modulation) signals. Figure 

48 shows the rover with the SBUS-to-PWM converter. 

 

Figure 48: Servo-based rover testing platform 
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6.2.1.1. SBUS-to-PWM Converter 

In order to provide the proper PWM signals to the servos, a microcontroller was needed 

to receive and decode SBUS signals. Since it was readily available, a Texas Instruments 

MSP430G2553 microcontroller was used. SBUS signals were passed through inverters  

(Figure 14) before being received by the microcontroller. Once the signals were received, the 

microcontroller converted the SBUS values for Ail and Ele (see Table IV) to PWM values using 

the following procedure and equations: 

1. Change the range of the channels to be within [-800, 800] 

 

𝑥 = 𝐸𝑙𝑒 − 800 

𝑦 = 𝐴𝑖𝑙 − 800 

(53) 

2. Find the angle, 𝜃, between x and y 

 

𝑎 = 570 tan−1 (
𝑥

𝑦
) + 225 

𝜃 = {
𝑎 − 3600, 𝑎 < 0

𝑎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(54) 

3. Find the resultant magnitude, R, between x and y 

 

𝑟 = √𝑥2 + 𝑦2 

𝑅 = {
25, 𝑟 < 25
𝑟, 25 ≤ 𝑟 ≤ 800

800, 𝑟 > 800
 

(55) 

4. Find the conversion gains  

 𝑘𝑙𝑒𝑓𝑡 = {
1, 𝜃 < 1350
0, 1350 ≤ 𝜃 < 1800

−1, 𝜃 ≥ 1800
 (56) 
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𝑘𝑟𝑖𝑔ℎ𝑡 =

{
 
 

 
 
−1, 𝜃 < 450
0, 450 ≤ 𝜃 < 900
1, 900 ≤ 𝜃 < 2250
0, 2250 ≤ 𝜃 < 2700

−1, 𝜃 ≥ 2700

 

5. Find servo PWM values 

 

𝑙𝑒𝑓𝑡𝑃𝑊𝑀 = (𝑅 ∗ 𝑘𝑙𝑒𝑓𝑡 + 992) + 1280 

𝑟𝑖𝑔ℎ𝑡𝑃𝑊𝑀 = −(𝑅 ∗ 𝑘𝑟𝑖𝑔ℎ𝑡 + 992) + 1280 

(57) 

6.2.2. Canary Quadcopter 

The Canary is a 260-millimeter quadcopter that features a carbon fiber frame and four 

motors with 5-in, 3-blade propellers. Control of the Canary is handled by a Matek flight 

controller with outputs to four ESCs. The quadcopter is powered by a 11.1-V 3-cell lithium 

polymer battery. Figure 49 shows the base configuration of the Canary. 

  
Figure 49: Canary quadcopter platform 

 

6.2.2.1. Flight Controller 

The Matek F722-SE flight controller used on the Canary features a 216-MHz 

STM32F722RET6 microcontroller, dual gyroscopes, a barometer, and an accelerometer. The 
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controller supports up to four ESCs and has built-in inverters for SBUS signals [48]. The flight 

controller was chosen for its easy programmability via the iNav Configurator software, blackbox 

logging, and automatic flight stabilization. Figure 50 shows a stock photo of the flight controller. 

 

Figure 50: Matek F722-SE flight controller [48] 

 

6.2.2.2. Motors & ESCs 

The motors on the Canary are Gartt ML2205S, 2300kV DC motors. Each motor is 

controlled by a Spedix ES30-HV ESC. The ESCs are capable of handling 30 A of continuous 

current with support of up to 40 A of burst current. The integrated microcontroller provides 

reliability and quick response times to flight controller commands [49]. Figure 51 shows a stock 

photo of the ES30-HV. 
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Figure 51: Spedix ES30-HV electronic speed controller 

 

6.3. RC Receiver & Transmitter 

 During the development of the LCAS, a FrSky X8R 2.4-GHz RC receiver was used. The 

X8R features 16-channel support for SBUS and telemetry feedback [50]. The X8R is shown in 

Figure 52. 

 

Figure 52: FrSky X8R receiver 

 

The transmitter used was the FrSky Taranis Q X7. The Taranis Q X7 supports up to  

32 channels and uses the OpenTX software for customizing control schemes [51]. The Taranis Q 

X7 is shown in Figure 53 with the controls used for testing labelled. For details about the channel 

naming scheme refer to Section 3.2.3. 
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1. Thr 2. Ele 

3. Ail 4. Rud 

5. ARM 6. Hld 

7. LOG 8. sbEN/vEN 

9. ctrlEN 10. VEL 

  

Figure 53: FrSky Taranis Q X7 transmitter 

 

6.4. Sensor Board 

As the main distance measurement device of the LCAS, the Sensor Board controls the 

operation of a single ultrasonic sensor alongside dual tinyLiDARs. The Sensor Board utilizes a 

dedicated MSP430G2553 microcontroller to control the sensors and process the distance 

measurements. By using a dedicated microcontroller, the Sensor Board is able to operate mostly 

independent of the MITM, only needing commands for triggering and distance reporting. 

Through this independency, multiple Sensor Boards are able to be operated at the same time. 

6.4.1. Operation Concept 

The Sensor Board conducts several operations in order to provide the smallest distance 

measurement to the MITM. To begin with the Sensor Board is connected as an I2C slave device 
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(see Appendix A) to the MITM and is assigned a unique address. The Sensor Board will only 

operate if its address is called by the MITM and the proper commands are received. When a 

triggering command is received, the Sensor Board triggers its sensors and records the measured 

distances. Then the Sensor Board processes the distance measurements, checking for invalid 

measurements and comparing the measurements to determine the smallest distance 

measurement. With the smallest measurement determined, the Sensor Board stores the value 

until the MITM calls its address again and requests the value.  

6.4.2. Sensors 

The Sensor Board uses two different types of sensors in order to make measurements: the 

HC-SR04 ultrasonic sensor and the tinyLiDAR TOF LiDAR. Each sensor complements the 

other. For example, the ultrasonic struggles with measuring distances to porous materials as the 

sound waves are absorbed but the infrared light pulses from the tinyLiDAR are not. Furthermore, 

since the ultrasonic is relatively slow to provide distance measurements, the tinyLiDARs are 

used to provide supplemental distance measurements in the interim, allowing the LCAS to keep 

operating while waiting for the ultrasonic. Once the ultrasonic provides a measurement the 

Sensor Board can then compare that to the measurements provide by the tinyLiDARs, choosing 

the smallest value. 

6.4.2.1. HC-SR04 Ultrasonic Sensor 

The HC-SR04 ultrasonic sensor is a low-cost, range-finding sensor that utilizes sonar to 

determine the distance to objects. The sensor has a measuring range of 2 to 400 cm, a 30° 

measuring angle, and a resolution of 3 mm. The HC-SR04 package contains modules for both 

transmitting and receiving ultrasonic signals [6]. An example of the HC-SR04 package is shown 

in Figure 54. 
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Figure 54: HC-SR04 ultrasonic range finding sensor [6] 

 

The Sensor Board microcontroller controls the ultrasonic by first sending a 10-µs pulse to 

the trigger pin. When the ultrasonic detects the trigger pulse, the transmitter module will output 

eight cycles of a 40-kHz signal [8]. If an echo of the signal is detected the ultrasonic pulls the 

ECHO pin high and keeps it high for the same amount of time there was between emitting the 

trigger signal and receiving an echo. The time between the raising and lowering of the echo pin 

is proportional to the distance traveled by the 40-kHz signal. Therefore, the distance from the 

ultrasonic to an object is proportional to half of the echo time.   

After capturing the echo time, the Sensor Board’s microcontroller can determine the 

distance by using the following equation, courtesy of [8]: 

 

 𝑑 =  
1

2
𝑡𝑣𝑠𝑜𝑢𝑛𝑑 (58) 

where 𝑑 is the measured distance in meters, 𝑡 is the length of the echo time in seconds, and 

𝑣𝑠𝑜𝑢𝑛𝑑 is the speed of sound (343 m/s). 

 However, Equation (58) does not take into consideration the clock speed of the 

microcontroller and that the microcontroller’s measurement is a count of clock cycles rather than 
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time. Taking the clock speed and clock cycle count into consideration, the echo time can instead 

be found using: 

 𝑡 =  
𝑛𝑐𝑦𝑐𝑙𝑒𝑠

𝑓𝑐𝑙𝑜𝑐𝑘
 (59) 

where 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 is the number clock cycles in the echo time and 𝑓𝑐𝑙𝑜𝑐𝑘 is the frequency of the 

microcontroller’s clock (16 megacycles per second). Now substituting Equation (59) into 

Equation (58):  

 𝑑 =  
1

2
(
𝑛𝑐𝑦𝑐𝑙𝑒𝑠

𝑓𝑐𝑙𝑜𝑐𝑘
) 𝑣𝑠𝑜𝑢𝑛𝑑 (60) 

 An issue arises when using this equation on the Sensor Board’s MSP430G2553 

microcontroller, however. The multiple multiplication and division operations result in floating 

point values and register overflow errors. 

 Instead of using Equation (60), a linear regression was used to simplify the conversion 

and remove the errors caused by register overflow. The independent variable was made the 

actual distance, in millimeters, and the dependent variable was the number of clock cycles 

counted by the microcontroller. For each 50-mm increase of the actual distance, the number of 

clock cycles was recorded. The recorded data are shown in Table VIII. 
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Table VIII: Ultrasonic linear regression values 

 

Distance [mm] Clock Cycles 

50 762 

100 1319 

150 1981 

200 2496 

250 3195 

300 3646 

350 4030 

400 4408 

450 4985 

500 5836 

550 6467 

600 6938 

650 7576 

700 8221 

750 8748 

800 9323 

850 9894 

900 10,437 

950 10,965 

1000 11,255 

 

 The values were then imported into MATLAB and using the regression() function the 

following equation was generated: 

 𝑑 = 0.0884𝑛𝑐𝑦𝑐𝑙𝑒𝑠 − 16 (61) 

where 𝑑 is the distance in millimeters.  

 Figure 55 is a graphical representation of Equation (61).  
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Figure 55: Ultrasonic linear regression 

 

6.4.2.2. tinyLiDAR 

The tinyLiDAR TOF Range Finder Sensor is a module that combines a single point TOF 

LiDAR with a dedicated microcontroller. Developed by MicroElectronicDesign, the module is 

designed around ST Microelectronics’ VL53LOX TOF laser-ranging sensor, which is intended 

for high performance devices, such as smartphones. A 32-bit, ARM-based STM32L051C8 

microcontroller was implemented to serve as a dedicated controller for the VL53LOX. The 

microcontroller handles communication and control of the VL53LOX and simplifies the 

operation to simple I2C commands received from an I2C master [15] [52]. Figure 56 shows the 

tinyLiDAR module and labels the module’s main components. 
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Figure 56: tinyLiDAR TOF Range Finder Sensor [15] 

 

The tinyLiDAR’s VL53LOX infrared range finder operates on the same principles as the 

HC-SR04 ultrasonic sensor. When triggered, the range finder emits a 940-nm infrared pulse via a 

Class 1 Vertical Cavity Surface-Emitting Laser [53]. Moving at the speed of light, the pulse 

moves through an environment until it is reflected off of an object. The reflection is then 

captured by the range finder. The tinyLiDAR’s microcontroller interprets the time between 

trigger and capture as proportional to the distance the infrared pulse traveled.  

The Sensor Board utilizes dual tinyLiDARs for distance measurements. In order to 

control the modules, the Sensor Board’s microcontroller hosts an I2C bus (see Appendix A), 

acting as the master with the tinyLiDARs acting as the slaves. When requesting a distance 

measurement, the Sensor Board’s microcontroller calls each tinyLiDARs’ I2C address and 

transmits the distance capture command. The tinyLiDARs then capture individual distance 

values using the method described above. Next, the Sensor Board’s microcontroller calls for 

each tinyLiDAR’s distance value and compares the two values to determine the smallest distance 

measurement. For a more detailed operation of the tinyLiDARs refer to Section 6.4.4.3. 
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The tinyLiDAR’s VL53LOX range finder has a range of up to 2 m [15]. Outside of this 

range, the tinyLiDAR will report nonsensical distance values. To account for such values the 

Sensor Board’s microcontroller compares the reported distance values to an error threshold 

equivalent to the distance from the Sensor Board to the tips of the propellers on the UAV 

platform. If one of the tinyLiDAR’s distance value is within the error threshold, that distance 

value is discarded and the other tinyLiDAR’s distance value is chosen. If both distance values 

are within the error threshold, then both values are discarded and the Sensor Board’s 

microcontroller defaults to the distance value reported by the ultrasonic. 

6.4.3. Main Controller 

The main controller of the LCAS Sensor Board is a Texas Instruments MSP430G2553 

mixed signal microcontroller. This ultra-low-power microcontroller uses a 16-bit RISC central 

processing unit (CPU) that operates at a frequency of up to 16-MHz. Alongside the CPU, the 

microcontroller has 512 bytes of random-access memory (RAM) and 16 kilobytes of flash 

storage. The MSP430G2553 features two 16-bit timers, up to 24 input/output pins, a 10-bit 

analog-to-digital converter, and a Universal Serial Communication Interface (USCI) [54]. Figure 

57 shows the MSP430G2553 package used on the LCAS Sensor Board. 

 

Figure 57: LCAS Sensor Board’s MSP430G2553 
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The Sensor Board’s microcontroller operates at the maximum 16-MHz frequency and 

uses a 20-pin thin-shrink small-outline package (TSSOP). The three sensors and communication 

to the MITM are controlled using a variety of combinations of the microcontroller’s features. 

The ultrasonic is handled by voltage level control on a pair of pins and the time between trigger 

and echo is measured via one of the 16-bit timers. The tinyLiDARs are handled by a bitbanged 

I2C bus setup on another pair of pins. And finally, communication to the MITM is handled by 

the built-in I2C bus under the USCI. 

6.4.4. Detailed Operation 

The LCAS Sensor Board is responsible for recording and reporting the minimum distance 

to obstacles and it does so in a specific order of operation. The order of operation is required 

because of the difference in operating times of the tinyLiDARs and the ultrasonic. To simplify 

the description the Sensor Board’s operations are separated into the following sections: 

initialization, ultrasonic control, tinyLiDAR control, distance value processing, and MITM 

distance reporting.  

6.4.4.1. Initialization 

Initialization of the Sensor Board begins the moment that the board receives power from 

the MITM. Most of the initialization is handled by the Sensor Board’s microcontroller with the 

tinyLiDARs initializing themselves to firmware defaults. The microcontroller starts by setting 

the CPU clock and timer reference clocks to 16 MHz and then disables the automatic watchdog 

timer so that the Sensor Board can run its code on a loop indefinitely. Next the microcontroller 

initializes communication to the MITM by opening the I2C bus on the USCI. With the USCI’s 

I2C enabled, the microcontroller sets up a separate I2C bitbanging bus for control of the 

tinyLiDARs. The microcontroller then proceeds onto the ultrasonic, where it sets up the needed 
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hardware interrupts for the trigger and echo pins and configures one of the timers for tracking the 

echo time. With all three sensors initialized, the microcontroller begins listening on the USCI 

I2C bus for commands sent by the MITM. The commands accepted by the Sensor Board are 

listed in Table IX. 

Table IX: Sensor Board I2C commands 

 

Command Description 

0x45 Set tinyLiDAR error threshold  

0x54  Trigger only tinyLiDARs and report minimum distance 

0x55 Trigger ultrasonic 

0x56 Trigger tinyLiDARs, capture ultrasonic distance value, and report minimum distance 

 

Before the Sensor Board can control the sensors, the MITM must provide an error 

threshold. The error threshold is a minimum distance value that the Sensor Board can see before 

the UAV crashes. For example, on a UAV the error threshold could be the distance from the 

Sensor Board to the tips of propeller blades. The main use of the error threshold is for checking 

tinyLiDAR values, since when the tinyLiDARs do not detect an obstacle it will report small, 

nonsensical distance values. If the value is smaller than the threshold, then the Sensor Board 

overrides the reading with a large value that the tinyLiDAR would not normally report. 

6.4.4.2. Ultrasonic Control 

 The ultrasonic trigger sequence begins when the Sensor Board’s microcontroller receives 

a 0x55 command. The microcontroller raises the voltage level on the TRIG pin (2.3) and holds 

the voltage high for approximately 10 µs. This triggers the ultrasonic to emit a 40-kHz pulse for 

eight cycles. The microcontroller also sets up a hardware interrupt to detect a low-to-high 

voltage on the ECHO pin (2.4). 

 When the ultrasonic receives an echo, it raises the voltage level of its ECHO pin and 

holds the pin high for the same amount of time measured between emission of the trigger signal 
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and the echo received. The microcontroller detects the voltage change and interrupts. A timer 

counter is then started and counts the clock cycles of the microcontroller until a high-to-low 

voltage shift is detected on the ECHO pin. Finally, the count is stored in memory until the 

microcontroller is ready to process the value alongside tinyLiDAR values. 

 If there is no high-to-low voltage shift after approximately 25 ms (amount of time needed 

for a sound wave to travel 8 m), then the timer interrupts and flags the ultrasonic as timed out 

and no distance value was captured. 

6.4.4.3. tinyLiDAR Control 

 Control of the tinyLiDARs is initiated by the Sensor Board’s microcontroller receiving a 

0x54 or 0x56 command. The only difference between the two commands is whether the 

microcontroller only processes the tinyLiDARs’ outputs (0x54) or includes the ultrasonic output 

in the processing (0x56).  

 Once either command is received, the microcontroller opens bitbanged I2C 

communication to the first tinyLiDAR (0x10 address). The microcontroller then transmits a 0x44 

command to the tinyLiDAR. Upon receiving the command, the tinyLiDAR emits an infrared 

light pulse and waits to detect a reflection of the light. The tinyLiDAR then converts the time 

between emission and reflection capture to a distance value. The tinyLiDAR transmits the 

distance value across two bytes, which the microcontroller combines to reproduce the value. 

With operation of the first tinyLiDAR complete, the microcontroller repeats the same operation 

with the second tinyLiDAR (0x50 address). 

6.4.4.4. Distance Value Processing 

The Sensor Board processes the distance values from the tinyLiDARs and the ultrasonic 

in two stages. The first stage (0x54 command) triggers, error-checks, and compares the 
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tinyLiDAR values, choosing the smallest. The second stage (0x56 command) compares the result 

from the first stage to the ultrasonic value and chooses the smallest. This final value is the 

minimum distance reported that the Sensor Board will report to the MITM.  

For the first stage, the Sensor Board triggers and then error-checks tinyLiDAR distance 

values by comparing each value to the error threshold indicated by the MITM during 

initialization. If either value is below the threshold, then the value is changed to the error value 

0xBBBB (a value larger than any distance value that can be captured by the tinyLiDARs). If the 

first tinyLiDAR’s distance value is smaller than or equal to the second tinyLiDAR’s distance 

value, then the first tinyLiDAR’s distance value is the chosen as the minimum distance reported 

from the tinyLiDARs. If the second tinyLiDAR’s distance value is smaller, then that value is 

reported as the minimum distance.  

The second stage takes the resultant distance value from the first stage and compares it to 

the ultrasonic distance value. If the tinyLiDAR distance value is smaller than or equal to the 

ultrasonic distance value, then the tinyLiDAR distance value is chosen as the minimum distance 

to be reported to the MITM. If the ultrasonic distance value is smaller than the tinyLiDAR 

distance, then the ultrasonic distance value is chosen as the minimum distance to be reported to 

the MITM. 

The Sensor Board distance value processing is summarized in Figure 58. 
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Figure 58: Flowchart of Sensor Board distance value processing 
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6.4.4.5. MITM Distance Reporting 

The final operation of the Sensor Board is the reporting of the minimum distance between 

the three sensors to the MITM. When the Sensor Board receives a read request from the MITM, 

it sends the MITM four bytes carrying three data values.  

The first byte is a status flag, that indicates whether the Sensor Board was able to capture 

a distance value or not. A successful capture is indicated by P; an unsuccessful capture is 

indicated by F. 

The second and third bytes contain a 16-bit representation of the minimum distance 

value. The distance value is split across the bytes using the following equations: 

 𝑏𝑦𝑡𝑒2 = (𝑑𝑖𝑠𝑡 & 0𝑥𝐹𝐹00) ≫ 8 (62) 

  𝑏𝑦𝑡𝑒3 = 𝑑𝑖𝑠𝑡 & 0𝑥00𝐹𝐹 (63) 

The second byte is created by Equation (62) which separates out the most significant byte of the 

distance value. Created by Equation (63), the third byte contains the least significant byte of the 

distance value. For example, if the distance value was 300 (0x012C in hexadecimal), then the 

second byte would be 0x01 via Equation (62) and the third byte would be 0x2C via Equation 

(63). 

The fourth and final byte contains the device identifier for which distance value was 

selected as the minimum distance. If the ultrasonic distance value was selected, then the fourth 

byte is U. If the first or second tinyLiDAR distance value was selected, then the fourth byte is 1 

or 2, respectively. If there was an error when capturing distance values, then the fourth byte is set 

to X. 
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6.4.5. PCB Design 

The LCAS Sensor Board is a custom printed circuit board (PCB) that condenses all of the 

board’s components into a small package. The board measures 60 mm by 26 mm and contains 

the following components listed in Table X. Figure 59 provides a photo of the Sensor Board and 

labels the components, according to Table X. 

Table X: LCAS Sensor Board components 

 

Label Component Amount 

U1 MSP430G2553 microcontroller 1 

U2 AP2210N-3.3TRG1 voltage regulator 1 

U3 BSS138 MOSFET 2 

U4 Grove 4-pin female connector 3 

U5 4-pin male pinheader 1 

U6 4-pin female pinheader 1 

U7 10-kΩ resistor 5 

U8 2.2-µF capacitor 1 

U9 1-µF capacitor 1 

 

 

Figure 59: LCAS Sensor Board 

 

There are three main circuits on the Sensor Board. The first is the power circuit, which 

uses the AP2210N-3.3TRG1 regulator. The second circuit is the bidirectional voltage shifter, 
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using the BSS138 MOSFET. The third circuit is the MSP430G2553 interface, including the 

tinyLiDAR and MITM I2C buses. 

The PCB layout of the Sensor Board can be found in Appendix B. 

6.4.5.1. Power Circuit 

The Sensor Board power circuit uses an AP2210N-3.3TRG1 regulator to reduce the 5 V 

input to the 3.3 V level used by the MSP430G2553 and tinyLiDARs. Figure 60 shows a 

schematic of the power circuit. 

 

Figure 60: Sensor Board power circuit schematic 

 

The AP2210N-3.3TRG1 regulator was chosen for its excellent output accuracy (±1%) 

and power supply ripple rejection (75 dB at 100 Hz) [55]. The regulator is capable of outputting 

a steady 3.3 V, a critical component of maintaining power to the Sensor Board’s microcontroller 

and tinyLiDARs.  

The 1-µF and 2.2-µF capacitors are used to suppress noise caused by the length of cable 

used to power the Sensor Board. 

6.4.5.2. Bidirectional Voltage Shifters 

 A pair of bidirectional voltage shifters (BDVS) are needed to shift the voltage levels 

between the Sensor Board microcontroller and the HC-SR04 ultrasonic sensor. The ultrasonic is 
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controlled by 5 V levels but, as mentioned in the previous section, the MSP430G2553 

microcontroller operates at 3.3 V. The BDVS serves to raise and lower the voltage levels of the 

TRIG and ECHO lines, respectively. A schematic of the BDVS, courtesy of [56], is shown 

below in Figure 61. 

 

Figure 61: Bidirectional voltage shifter schematic [56] 

 

The BSS138 is an N-channel MOSFET that isolates the two voltage levels, in this case 

LV is 3.3 V and HV is 5 V. The voltage shifting occurs in three different cases.  

The first case is when the LV1 is not being pulled low by a device, and is thus pulled to 

3.3 V via the pullup resistor. Since the BSS138’s gate and source are both at 3.3 V, the MOSFET 

is not conducting, allowing the pullup resistor on HV1 to pull the line to 5 V [57].  

The second case is when LV1 is pulled low by a device, causing the source to be low. 

The voltage differential between the gate and source allows the BSS138 to become conducting. 

Thus, HV1 is pulled low by LV1 [57]. 

The third case is when HV1 is pulled low by a device. The drain-substrate diode pulls 

LV1 low enough to cause the BSS138’s gate and source to have a voltage differential. This 

allows the MOSFET to become conducting and thus pulls LV1 low to match HV1 [57]. 
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6.4.5.3. MSP430G2553 Interface 

The MSP430G2553 microcontroller controls the entirety of the Sensor Board’s 

operations and thus has several connections. The microcontroller uses two separate I2C buses, 

one for the tinyLiDARs and another for the MITM. Control of the ultrasonic is passed through 

the BDVS. And finally, a programming interface is included. Figure 62 shows the full schematic 

of the LCAS Sensor Board, including the MSP430G2553 interface. Table XI provides a 

summary of the pin mapping for the microcontroller as shown in the figure. 

 

Figure 62: LCAS Sensor Board schematic 
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Table XI: Sensor Board MSP430G2553 pin mapping 

 

Pin Description 

Vcc 3.3V supply 

P1.0 – P1.5 unused 

P1.6 MITM SCL 

P1.7 MITM SDA 

P2.0 tinyLiDAR SDA 

P2.1 tinyLiDAR SCL 

P2.2 unused 

P2.3 Ultrasonic TRIG via BDVS 

P2.4 Ultrasonic ECHO via BDVS 

P2.5 – P2.7 unused 

RST Reset (programming) 

TEST Testing mode enable (programming) 

GND Ground 

 

6.5. MITM 

The Monkey-in-the-Middle (MITM) of the LCAS is the system’s main processing unit 

and controls all functions of the system. Implementation of the MITM places it between a 

UAV’s RC receiver and flight controller. In this location the MITM intercepts the SBUS signals 

being output by the receiver. The MITM decodes, modifies, and encodes the signals before 

passing the signals onto the flight controller. The advantage of this arrangement is that the flight 

controller is not aware of the MITM’s modifications to the receiver’s output. In other words, the 

flight controller sees the MITM’s output as the output of the RC receiver, essentially rendering 

the MITM as an invisible middle step, hence the name. Figure 63 shows the layout of a 

quadcopter control system and where the MITM would be placed.  

 

Figure 63: Location of the MITM in the layout of a quadcopter control system  

 

flight controller ESC motor 

RC receiver MITM placement 
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There have been two versions of the MITM. The first version (Section 6.5.2) made use of 

a MSP430G2553 microcontroller for SBUS decoding and encoding, alongside control of a single 

HC-SR04 ultrasonic range finder. Due to challenges associated with using a low power 

microcontroller, such as data logging and processing power, a second version of the MITM was 

developed. The second and current version (Section 6.5.3) of the MITM utilizes a Raspberry Pi, 

which is significantly more powerful than the previous version’s MSP430G2553.  

6.5.1. Operational Concepts 

Since the MITM is the center of processing in the LCAS, it is responsible for the 

following: capturing and decoding SBUS frames, control of the Sensor Boards, feedback control 

based on distance measurements, encoding and transmitting SBUS frames, and logging of all 

critical data. 

For SBUS communications, the MITM intercepts the SBUS frames being passed from 

the RC receiver to the flight controller. Once a full SBUS frame is captured, the MITM decodes 

the frame into individual channels using the method described in Section 3.2.1.  

Control of the Sensor Boards is accomplished by communication over an I2C bus (see 

Appendix A). The second version of the MITM is capable of identifying the number of Sensor 

Boards available and iteratively controlling each board. From each board, the MITM requests a 

value that corresponds to the distance from the board to a possible obstacle.  

The distance values are filtered using a 10-point SMA (simple moving average) and then 

compared to a desired position. The error between the two and the RX SBUS channels are input 

into the Phase II controller algorithm, Equation (50). Using the current and previous inputs, the 

controller calculates new channel values that over time will drive the Canary to the desired 

position. If the measured position is determined to be in the controller’s activation window and 
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the relevant SBUS channel is either greater than or lower than the SBUS neutral, depending on 

the direction, then the MITM will replace the relevant SBUS channel values with the new 

channel values. At the time of writing, the controller is only designed to operate in the forward 

direction, so the SBUS channel will be greater than the SBUS neutral. 

Having completed modification of the SBUS channels, the MITM encodes the channels 

into a new frame using the method described in Section 3.2.2. The frame is then transmitted to 

the flight controller. 

The final operation of the MITM is the logging of data used during the other operations. 

This includes the SBUS channel values from both the receive and transmit operations, as well as 

the distance values reported by the Sensor Boards. 

6.5.2. MSP430G2553 Version 

The first version of the MITM used a Texas Instruments MSP430G2553 microcontroller 

(specifications detailed in Section 6.4.3). The microcontroller was used since it was readily 

available and a familiar platform. Operating at approximately 16 MHz, the microcontroller was 

fully capable of receiving and transmitting SBUS signals. Before being replaced, control of a 

single ultrasonic was added to the MSP430G2553’s programming algorithm. 

Figure 64 shows the first version of the MITM using a MSP430G2553 for SBUS 

communications and control of an ultrasonic. 
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Figure 64: MSP430G2553 version of the MITM on the SBUS-to-PWM Rover 

 

6.5.2.1. SBUS Communications 

 The MSP430G2553 version of the MITM served as the main platform for developing the 

algorithm needed for decoding and encoding SBUS signals. Since the SBUS protocol is based on 

UART (see Appendix A), the MSP43G2553 was able to make use of its built-in serial 

communication interface. However, the SBUS signal out of the RC receiver uses inverted 

voltage levels that cannot be interpreted by the MSP430G2553. Therefore, the signal was 

inverted using the inverter circuit shown in Figure 14.  

 Since SBUS uses a non-standard baud rate of 100 kilobits per second, a time difference 

constant had to be calculated so that the microcontroller could synchronize with the SBUS 

timing. The constant was determined by using two of the built-in timers on the MSP430G2553. 

One timer counted the clock cycles of the microcontroller’s internal oscillator, while the other 

timer counted the clock cycles of an external 32-kHz crystal oscillator. A time difference 

between the two counts was calculated and then stored in the MSP430G2553’s flash storage. 

Every time the SBUS communications are initialized the time difference is loaded from the flash 

storage and used to offset the microcontroller’s clock, synchronizing with the SBUS timing. 
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 With the time difference constant and non-standard baud rate set, the MSP430G2553 

reads in a single SBUS frame. The frame is decoded into individual channels and then 

immediately encoded back into a new SBUS frame that is then transmitted to the servo 

controller. 

6.5.2.2. Ultrasonic Control 

Before development of the Sensor Board, another MSP430G2553 version of the MITM 

was developed to test how communications with the Sensor Board should be done in the second 

version of the MITM. An ultrasonic was used because it is the slower of the two sensors used in 

the final Sensor Board design. Since the ultrasonic operates in two stages, TRIG and ECHO (see 

Section 6.4.4.2 for detailed ultrasonic operation), it was decided that the MITM would trigger the 

ultrasonic on the first loop and then conduct SBUS communications. At some point during the 

SBUS signal processing the ultrasonic reports the time duration for the ECHO, which the 

microcontroller stores as a clock cycle count. On the second loop, the microcontroller converts 

the count to a distance value. After a new SBUS frame is received and decoded the distance 

value is compared to a pair of distance thresholds. If the distance value is between 250 mm and 

500 mm, then the channel value related to the forward motion of the rover is scaled down, using 

Equation (61). If the distance value is 250 mm or less, then the same channel value is set to the 

SBUS neutral value, preventing the rover from moving forward. 

6.5.2.3. Reasons for Replacement 

As the complexity of the MITM increased, the MSP430G2553 became limited in 

function and had to be replaced for the second version of the MITM. The MSP430G2553 is only 

capable of conducting one task at a time, thus multiple tasks have to be done in series. The 

second version of the MITM introduced new features that were best suited for a faster processor. 
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The most significant feature introduced in the second version was the ability of the 

MITM to log all of the data relevant to its operations, such as both RX and TX SBUS frames and 

distance values captured from the Sensor Boards. The MSP430G2553 does not natively support 

data logging and implementing it would have required using even more of the microcontroller’s 

clock cycles.  

Another complication introduced by the second version of the MITM, was the need for 

more processing power. The second version incorporated communication with multiple Sensor 

Boards and the processing of the boards’ data. With the Sensor Board data available, the MITM 

would then begin to use a feedback control algorithm for each direction that had a Sensor Board. 

By adding more tasks and need for processing power, it was obvious that the MSP430G2553 

would not suffice as the main processing unit of the MITM. 

6.5.3. Raspberry Pi Version 

A Raspberry Pi 3 Model B (Pi for short) was chosen as the MSP430G2553’s successor in 

the second version of the MITM due to the significant increase in processing power and 

available coding libraries. The Pi features a quad-core 1.2-GHz Broadcom BCM2837 64-bit 

ARM-based processor supplemented with 1 GB of RAM [58].  

There are a variety of connectivity methods on the Pi, such as a 40-pin general-purpose 

input/output (GPIO) and built-in Wi-Fi. Figure 65 shows an example of the Pi with major 

components labeled. Figure 66 shows the pinout for the Pi’s 40-pin GPIO. 
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Figure 65: Raspberry Pi 3 Model B [59] 

 

 

Figure 66: Raspberry Pi GPIO pinout [60] 

 

6.5.3.1. SBUS Communications & Logging 

The receiving and transmitting of SBUS signals on the Pi version of the MITM uses 

similar methodology as the MSP430G2553 version used (Section 6.5.2.1). Unlike the 
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MSP430G2553, the Pi is capable of using custom baud rates in serial communication without 

external calibration. Therefore, the UART bus (GPIO 14 and 15 in Figure 66) is initiated at  

100k baud and set to read a data packet with a length of eight bits, even parity, and two stop bits.  

Incoming SBUS signals are first passed through a voltage level inverter (Figure 14). With 

the SBUS signals modified to simulate UART, the MITM captures 50 packets of data (length of 

two SBUS frames). Since a SBUS frame’s start and end bytes are known, the MITM checks for 

an end byte, starting with the last received byte and working backwards. Once an end byte is 

found, the MITM checks for a start byte that is 24 bytes before the detected end byte. Now that 

the start and end bytes are found, the MITM separates out the 25 bytes from the captured SBUS 

signals. 

Decoding of the SBUS frame is done via the method described in Section 3.2.1. With the 

individual channels decoded, the MITM uses distance values reported by the Sensor Boards in a 

feedback control loop to determine if the channel values need to be altered. Once alterations, if 

any, are made to the channels the MITM encodes the channels back into a SBUS frame. 

Transmission of the SBUS frame generated by the MITM is done by re-encoding 

(Section 3.2.2) and then outputting the frame over the UART bus. The output on the UART bus 

is passed through another voltage level inverter (Figure 14), inverting the signal and raising the 

voltage level to 5 V from 3.3 V. 

After the generated frame is transmitted, the MITM logs the individual channel values 

used in control of the Canary from both the RX and TX SBUS frames in a CSV (Comma 

Separated Values) file.  
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6.5.3.2. Sensor Board Control & Logging 

Besides data logging, the other main feature added in the second version of the MITM 

was the control of up to six Sensor Boards. As discussed in Section 6.4.4, the LCAS Sensor 

Boards are communicated with over an I2C bus. The MITM features a built-in I2C bus that is 

connected to via the serial pins in the 40-pin GPIO (see Figure 66). 

Initialization of the Sensor Board communications begins with the MITM scanning the 

I2C bus for available devices. The Sensor Boards have predetermined I2C addresses that identify 

the board to the MITM when the board’s address is detected. Table XII lists the identifiers, I2C 

addresses, and locations of the Sensor Boards. 

Table XII: Sensor Board identifiers. I2C addresses, and locations 

 

Identifier I2C Address Location 

F 0x12 Front 

B 0x24 Back 

L 0x36 Left 

R 0x48 Right 

U 0x5A Up 

D 0x6C Down 

 

Since the MITM controls each Sensor Board iteratively, and for simplicity, the following 

explanation of how the MITM controls the Sensor Boards is limited to a single board. 

To initialize the Sensor Board, the MITM sends a 0x45 command and a distance value in 

millimeters. The 0x45 command sets the Sensor Board’s error threshold based on the distance 

value sent with the command.  

Once initialization of the Sensor Board is completed the MITM begins SBUS 

communications. After an RX SBUS frame is decoded, the MITM checks the sbEN channel (see 

Table IV) to determine if the communication with the Sensor Board is enabled.  

Communication with the Sensor Boards occurs in three stages that alternate on each loop 

of the MITM’s code. The reasons for the three alternating stages are the slow measuring speed of 
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the ultrasonic sensors, the requirement that the MITM must be transmitting a SBUS frame every 

15 to 20 ms, and the desire for the MITM to have a distance measurement for each loop of its 

code.  

The first stage begins with the MITM sending the ultrasonic trigger command, 0x55. 

Next the 0x54 command is issued, which has the Sensor Board request a minimum distance 

measurement from only the tinyLiDARs. After the first iteration of the Sensor Board stages, the 

first stage outputs the same distance measurement reported during stage three.  

The second stage of the Sensor Board communications occurs on the next loop of the 

MITM’s code. First, the MITM requests the distance value reported by the tinyLiDARs under 

the 0x54 command in the first stage. Second, the MITM sends a 0x56 command. This command 

has the Sensor Board trigger its tinyLiDARs, convert the ultrasonic echo time to a distance 

measurement, and determine the minimum distance between all three of its sensors.  

For the third stage the MITM, requests the minimum distance value found using the 0x56 

command in the second stage. 

The distance values reported during the second and third stages are error-checked and 

filtered by the MITM. If the distance values are 0xFFFF or 0xBBBB, then the MITM replaces 

the value with the last known distance value and changes the sensor identifier to X or E, 

respectively. A third identifier, R, is used when the Sensor Board communications are in the first 

stage after the first iteration of communications. After error-checking, the MITM passes the 

distance value through a 10-point SMA filter to reduce measurement noise. Also, for each loop 

of its code, the MITM logs the Sensor Board distance values in a CSV file.  
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6.5.3.3. Feedback Control 

The feedback control of the MITM uses the distance measurements reported by the 

Sensor Boards and the channel values from the RX SBUS frame to determine if the controller 

needs to adjust channel values to avoid possible collisions. When the LCAS is enabled the 

MITM uses the Sensor Board identifiers from the initialization of the Sensor Boards to determine 

which direction the feedback controller needs to be working in.  

To start off, the controller checks if the user is not actively avoiding the detected obstacle 

and if the distance measured is within the activation window for the controller. For example, the 

controller will only start modifying channel values if the distance measured is within 250 mm of 

the minimum distance. If it is in the activation window, the controller finds the difference 

between the measured distance and the desired minimum distance. The value is passed into the 

Phase II controller, Equation (52). Next the controller output, 𝑓𝑐, is converted into a SBUS value 

using the following equation: 

 𝑆𝐵𝑈𝑆𝑛𝑒𝑤 = 𝑓𝑐(1811 − 992) + 992 (64) 

The new SBUS value then replaces the channel value that is associated with the direction in 

which the LCAS is attempting to avoid an obstacle.  

 As of this writing the only feedback controller designed is for the forward direction. 

Therefore, the controller is modifying the Ele channel (see Table IV) when it is greater than 

SBUS neutral. 

6.5.4. Raspberry Pi with GPS & Accelerometer Version 

A GPS and Accelerometer (GPSA) version of the MITM was developed for use in 

modeling the Canary quadcopter. The Pi remained as the main processor of the MITM and still 

conducted SBUS communications in the same manner, albeit with a few modifications. The 
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Sensor Board communications and feedback controller were disabled, and replaced with the 

logging of position and acceleration data from a GPS module and an accelerometer, respectively.  

6.5.4.1. Modification to SBUS Communications & Logging 

The GPSA version of the MITM maintained the same procedure for receiving and 

transmitting SBUS signals that was used in other versions of the MITM. The only changes made 

were how the MITM labeled and handled certain channel values. The sbEN channel was 

renamed to vEN and used to trigger a step in the forward direction of motion. Another channel, 

VEL, was added that controlled the magnitude of the step. For more details on the channel names 

refer to Table IV. 

When the vEN was triggered, the MITM would use the value from VEL to replace the Ele 

channel and set the magnitude of the step. However, Ele can only range from SBUS neutral to 

SBUS maximum values when the Canary is in forward motion. Therefore, the value of VEL had 

to be scaled to be in the same range, using the following linear regression:  

 𝐸𝑙𝑒′ = 
1

2
𝑉𝐸𝐿 + 986 (65) 

where 𝐸𝑙𝑒′ is the new value of Ele.  

 The procedure for logging the RX and TX SBUS frames was only modified to change the 

name of sbEN to vEN and to add VEL. 

6.5.4.2. GPS Control & Logging 

To record the GPS position (latitude, longitude, and altitude) of the Canary, the GPSA 

made use of a 3D Robotics uBlox GPS with Compass module. Using the gps3 Python library, the 

MITM could communicate with the module over UART. Since the MITM’s built-in UART bus 

was being used for SBUS communications, a USB-to-TTL adapter was used to create the GPS 

module’s UART bus. Figure 67 shows the GPS module and its connection to the MITM. 
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Figure 67: 3DR GPS module & its connection to the MITM 

 

 The capturing of GPS data was done using the built-in functions of the gps3 library. Any 

time the GPS module had a new data packet available it would send the packet over the UART 

connection to the MITM, where it would be stored in a buffer. When logging was enabled, the 

MITM would check the buffer for a new packet each time after transmitting an SBUS frame. If 

there was a new packet available, the MITM parsed the packet for latitude, longitude, and 

altitude data. The data were then logged in a CSV file.  

6.5.4.3. Accelerometer Control & Logging 

The second sensor used in the GPSA version of the MITM was a BMA280 accelerometer 

from Bosch Sensortec. The BMA280 is a triaxial, low-g acceleration sensor controlled over I2C 

[61]. This accelerometer was chosen since it was readily available. The BMA280 and its 

interfacing board are shown in Figure 68. 

 

Figure 68: BMA280 accelerometer & interfacing board 
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 Initialization of the sensor involved setting the measurement sensitivity at 2g and the 

measurement bandwidth at 62.5 Hz—approximately a 125-Hz sample rate. Next compensation 

values are calculated using the BMA280’s built-in “fast compensation” method. The method 

captures 16 consecutive acceleration values and uses the average to find the offset from the 

target value [61]; this was done for the x-, y-, and z-axes, with target values of 0g, 0g, and +1g, 

respectively. The calculated offsets are then stored by the sensor in its registers, which are read 

and logged by the MITM. 

Much like the logging of GPS values, the MITM requested and logged acceleration 

values from the BMA280 in a CSV file after transmitting a SBUS frame. Since accelerometers 

are known to record noisy measurements [46], the MITM used a 10-point SMA filter on each 

axis to improve sample accuracy.  

6.5.5. PCB Design 

In order to keep the MITM modular, a PCB was designed. Known as the Docking Board, 

the MITM’s PCB allows multiple Sensor Boards to connect to the Pi’s I2C bus on the GPIO 

pins, along with containing RX and TX SBUS signal inverters. An additional, but unrealized, 

feature of the board is the inclusion of an inertial measurement unit (IMU). 

The Docking Board measures 65 mm by 30 mm and contains the following components 

listed in Table XII. Figure 69 shows the Docking Board with the major components labelled, in 

accordance with Table XII. 
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Table XIII: LCAS MITM Docking Board components 

 

Label Component Amount 

U1 40-pin female pinheader 1 

U2 BMX055 IMU 1 

U3 2N7002 MOSFET 2 

U4 10-kΩ resistor 2 

U5 0-Ω resistor  2 

U6 4.7-kΩ resistor 2 

U7 3-pin pinheader 2 

U8 4-pin Grove female connectors 1-10 

 

 

Figure 69: LCAS MITM Docking Board 

 

The PCB layout of the MITM Docking Board can be found in Appendix B. 

6.5.5.1. I2C Bus 

The Docking Board’s I2C bus uses a maximum of 10 Grove 4-pin female connectors to 

connect the Sensor Boards and other I2C devices, such as the BMA280 accelerometer, to the 

SDA (GPIO 2) and SCL (GPIO 3) pins shown in Figure 66. The Grove connectors were chosen 

for the compact size and reliable connection. To ensure that the voltage levels of the SDA and 

SCL signals were 3.3 V, a 4.7-kΩ pullup resistor was used on each line. Figure 70 shows the 

schematic for the Docking Board’s I2C bus. 
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Figure 70: MITM Docking Board I2C bus schematic 

 

6.5.5.2. SBUS Input, Output, & Inverters 

The Docking Board’s SBUS communication bus uses a pair of SBUS signal inverters 

(Figure 14) to process RX and TX SBUS signals. The respective inverters are connected to the 

UART pins of the Pi’s GPIO (Figure 66). Figure 71 shows a schematic of the Docking Board’s 

SBUS communication bus. 

 

Figure 71: MITM Docking Board SBUS communication bus schematic  
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6.5.5.3. IMU 

The MITM Docking Board’s IMU is a BMX055 module from Bosch Sensortec. The 

module is a compact sensor that features a gyroscope, accelerometer, and magnetometer. By 

combining the three sensors, the BMX055 detects motion on nine axes. The BMX055 was 

chosen for its small size and accurate measurements. However, as of the writing of this 

document, the IMU is not implemented on the MITM. 

6.5.5.4. Raspberry Pi Interface 

The MITM Docking Board connects to the Pi by the 40-pin GPIO pins. This connects the 

I2C and SBUS communication buses to the respective pins on the Pi, and provides the Pi power 

from the flight controller or an external power source. Figure 72 shows the full schematic of the 

MITM Docking Board, including the Pi interface. 

 

Figure 72: LCAS MITM Docking Board schematic 
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6.6. Final Prototype Design/Layout 

Due to the small size of the Canary quadcopter platform, the layout and mounting of the 

LCAS was a challenge. With the top of the Canary’s frame occupied by the flight controller, and 

the underside needed for mounting the battery, a custom mounting plate had to be designed to 

hold the components of the LCAS. Four 35-mm standoffs were used to raise the custom plate 

above the top of the Canary’s frame and out of the way of the Canary’s propellers. The custom 

plate was designed using the computer-aided design (CAD) software Autodesk Inventor. The 

CAD model of the LCAS-Canary mounting plate is shown below in Figure 73. For a technical 

drawing of the custom plate refer to Appendix C.  

 

Figure 73: LCAS-Canary mounting plate  

 

An additional mounting bracket was designed for the Sensor Boards. This bracket was 

designed to be removeable from the mounting plate and interchangeable between any of the 

Sensor Boards. Figure 74 shows the CAD model of the LCAS Sensor Board mounting bracket. 

For a technical drawing of the bracket refer to Appendix C. 



111 

 

Figure 74: LCAS Sensor Board mounting bracket 

 

The Sensor Board, with accompanying ultrasonic, was placed centrally with the 

tinyLiDARs flanking on either side. This arrangement ensured that all three sensors would be 

evenly spaced and centered on the axis that the Sensor Board would be operating on.  

The final prototype layout of the LCAS on the Canary resulted in an off-centered MITM, 

allowing for the mounting space for other non-Sensor Board sensors, such as the GPS module 

and accelerometer from the GPSA version. The Sensor Boards’ and respective mounting 

brackets were arranged in a plus shape with the front and back Sensor Boards further apart than 

the left and right boards. This was done to allow space for the MITM and other sensors. As of 

the writing of this document only four Sensor Board mounting brackets have been incorporated 

into the layout of the LCAS on the Canary. Figure 75 shows the final prototype layout of the 

LCAS on the Canary quadcopter platform. 
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1. Raspberry Pi 3 Model B 2. MITM Docking Board 

3. Back Sensor Board 4. Front Sensor Board 

 

Figure 75: LCAS prototype layout on the Canary 
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7. Prototype Testing 

7.1. Methodology 

Testing of the prototype LCAS proved to be a significant challenge. There were many 

variables that could not easily be held constant. For instance, any wind in the environment would 

cause disturbances in the Canary’s flight that would be up to a pilot to correct for. To limit the 

number of variables in the testing environment a testing methodology was developed. 

The first component of the methodology was to use a single Sensor Board in the LCAS. 

The Sensor Board was implemented to detect and measure distances to obstacles in the forward 

direction, matching the testing parameters used when deriving the Canary’s model (Section 4) 

and designing the forward feedback controller (Section 5). 

The second component of the methodology dealt with the forward direction SBUS input 

Ele (see Table IV). The maximum value of Ele was limited to only 1200 to match the input used 

in the Scenario 1 simulations from the feedback controller design. Furthermore, the 1200 limit 

was intended to simulate how a pilot would handle the UAV in an indoor environment. 

The third methodology component was the setting of the desired minimum distance from 

obstacles to 500 mm and the controller activation distance to 1000 mm from obstacles. The 

desired minimum distance was carried over from the feedback controller design. The 1000-mm 

activation distance was chosen to provide more time for the LCAS to react. 

The fourth and final component of the methodology focused on minimizing the impact of 

environmental variables on the Canary. Minimization of wind was accomplished by choosing a 

testing sight that was partially shielded from wind gusts. Since it was not possible to prevent all 

wind disturbances, the Canary was orientated with its forward direction orthogonal to the wind’s 
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direction. To ensure valid distance readings from the Sensor Board the testing perimeter was 

limited to 4 m from the wall.  

The environment used for testing the LCAS prototype was the grassy area between Main 

Hall and the Museum Building on Montana Tech’s campus. A picture of the testing area is 

shown in Figure 76.  

 

Figure 76: LCAS prototype testing area 

 

7.2. Results 

A total of five tests were conducted on the LCAS over the course of one flight using the 

methodology described in the previous section. The position of and the input to the Canary for 

the full flight are shown in Figures 77 and 78, respectively. 
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Figure 77: Canary position during LCAS testing flight 

 

 

Figure 78: Canary input during LCAS testing flight 

 

To better interpret the data the five individual test results were separated out. The first 

test results are shown in Figure 79. 
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Figure 79: Prototype LCAS Test 1 results 

 

Looking at Figure 79, the LCAS failed to respond to the activation distance and did not 

modify the Ele channel. Instead the pilot prevented the Canary from colliding with the wall. 

Test 2 results are shown in Figure 80. 

 

Figure 80: Prototype LCAS Test 2 results 
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The LCAS displayed a better response during the second test. Even though the pilot was 

sending the Canary the SBUS neutral value, akin to Scenario 3 from the controller design 

(Section 5.3.3), the LCAS was able to prevent the Canary from colliding with the wall. However, 

the LCAS could not get the Canary to maintain the desired minimum distance from the wall. 

The LCAS continued to show promise in Test 3. These results can be seen in Figure 81. 

 

Figure 81: Prototype LCAS Test 3 results 

 

During Test 3, the LCAS operated as intended but did have some delay. While the system 

did respond to the activation distance, it did not significantly alter the Canary’s input until the 

desired minimum distance was detected. However, despite the delayed response, the LCAS was 

able to maintain the desired minimum distance.  

The results for the fourth and final test are shown in Figure 82. 
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Figure 82: Prototype LCAS Test 4 results 

 

The LCAS’s response to Test 4 appeared to combine the responses of Tests 2 and 3. The 

system was able to prevent the Canary from colliding with the wall but struggled to maintain the 

desired minimum distance, akin to Test 2. The struggle to maintain the minimum desired 

distance can be attributed to a delay in the system’s operation, a behavior seen in Test 3. 
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8. Conclusions 

A methodology for modeling a UAV in a single direction of motion was developed and 

validated. The response of the Canary to a series of step inputs in the forward direction was 

comprised of position and acceleration measurements from a GPS module and an accelerometer, 

respectively. Using a position estimate aided by a Kalman filter, the Canary’s step responses 

were curve-fitted to produce a model of Canary. This model was then validated by subjecting it 

to the same step inputs used in the Canary step response testing.  

Once validated, the Canary model was used to design the LCAS’s feedback controller. 

The control design was done in two phases. Phase I focused on tuning a PID controller using 

time domain analysis and a trial-and-error approach. Phase II took a different approach by using 

the root locus technique to focus on system stability. In simulations the Phase I controller was 

able to drive the Canary model to the desired position but an oscillatory behavior led to a 

concern of system stability if the controller was used in the LCAS. Noise resiliency testing 

proved the validity of this concern. The Phase II controller improved significantly upon the 

Phase I design in simulations, by reducing oscillations and achieving a steady state at the desired 

position. Noise resiliency proved to be a challenge for the Phase II controller but the addition of 

a 10-point SMA filter lessened the effect of noise on the system. Results from the Phase II 

controller simulations showed promise for the feasibility of the LCAS. 

The overall goal of this work was to produce a proof of concept and test the feasibility of 

a custom, low-cost collision avoidance system that could be implemented on UAVs in indoor 

environments. A single-direction prototype of the LCAS was developed, tested, and showed 

promising results as a proof of concept. In addition, the prototype was designed with modularity 

in mind. The final version of the MITM used in this work was capable of communicating with up 
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to six Sensor Boards, with the potential for more. As for feasibility, there are two observations 

from the prototype testing to consider before a final assessment can be made.  

The first observation is the inconsistency of the prototyped LCAS. While the LCAS 

performed admirably during the four reported tests, what was not shown were previous failed 

tests and flights. These results were not included for a variety of reasons, most notably a failure 

in logging (more on that later). For example, two additional tests were conducted during the 

flight that produced results for the five tests. During the first additional test, which occurred after 

Test 1, the LCAS failed to operate when it did not properly detect the activation distance. The 

second additional test was made between Tests 3 and 4. The LCAS’s response to this test, simply 

known as Test 3.5, was the best representation of the system’s inconsistency. The results of this 

test are shown in Figure 83. 

 

Figure 83: Prototype LCAS Test 3.5 results 

 

Looking at the figure, it appears that the LCAS struggled to remain active once the 

activation distance was detected. As a result, the Canary failed to maintain the desired minimum 
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distance from the wall, getting as close as 200 mm. While not shown in the position 

measurements, the Canary collided with the wall around the 74-second mark. The Canary did not 

crash but rather ground its propellers against the wall. Looking at the plot of the Canary’s input it 

is seen that the LCAS failed to even alter the input when the Canary was against the wall. The 

LCAS was only able to operate properly again after the pilot landed the Canary and reset for the 

next test.  

The second observation is the glitchy-ness of the LCAS’s programming algorithm. The 

LCAS was subject to as many as 20 flights over the course of several weeks. The first half of 

flights served as a means to troubleshoot and tune the LCAS’s feedback controller algorithm. For 

the next three flights the tuned LCAS algorithm showed promise, with the system displaying the 

ability to prevent the Canary from colliding with the wall. However, when reviewing the logs 

from those flights it was observed that the Sensor Board was reporting large variations between 

distance measurements. The variations were attributed to the tinyLiDARs providing nonsense 

measurements that passed the Sensor Board’s error-checking when the distance to the wall was 

greater than 1000 mm. The nonsensical measurements were dealt with by limiting the testing 

perimeter to 4 m in the testing methodology. Only the seventh and last flight provided the viable 

results seen in Section 7.2. The other six flights experienced one type of failure or another. Two 

of the flights had logging failures, while four others experienced a complete failure of the LCAS 

controller algorithm. The failure of the controller algorithm is the most notable, because when 

the controller failed the Canary either collided with the wall or the pilot lost control in the 

forward and backward directions.  

Combining all aspects of this work, the single-direction UAV model, the Phase II 

controller design, and the prototype LCAS, the feasibility of developing a collision avoidance 
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system using low-cost range finding sensors looks promising. The Canary model proved to be 

adequate enough to design a viable feedback controller in the Phase II controller. When 

implemented in the prototype LCAS, the controller was able to prevent the Canary from 

colliding with a wall in the forward direction of motion during a couple of the prototype test 

flights. However, based on the observations from the prototype testing, further refinement is 

needed before the LCAS can be fully realized.   
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9. Future Work 

A significant limitation of this work was in the methodology used to derive the Canary 

model. While the methodology produced an adequate and valid model, there proved to be too 

many variables introduced by the testing environment that inversely impacted the performance of 

the Canary and the quality of the captured step responses. A suggestion is to use a different 

testing area that offers better protection from the impact of wind and air density, such as a large 

indoor space. Furthermore, the number of step inputs used should be increased to provide more 

data points. 

Another future consideration is the development of a Phase III controller. The Phase II 

controller performed admirably in the prototype testing but its slow response to the activation 

distance is a concern, especially if the Canary had been allowed to operate at higher speeds, as 

seen in Test 1. A suggestion for the Phase III controller is to incorporate an improved control law 

that accounts for the amount of change in distance from sample to sample. Alternatively, an 

obstacle threat zoning methodology, like that used in [29], could be used to determine the 

strength of the reaction needed to avoid an obstacle. 

Once the modeling methodology is improved, a Phase III controller has been designed, 

and both validated, the next suggested step would be to start developing models and controllers 

for the remaining five directions of motion. At that point all six controllers would need to be 

tested and tuned to work with each other. Since the LCAS is intended to be implemented on a 

UAV operating in restrictive environments it is important to consider how the controllers will 

react when coming into conflict with each other. For example, if the UAV is flying in a narrow 

tunnel and the LCAS is sensing obstacles in both the right and left directions, then the respective 
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controllers have to compromise on the modification to the relevant SBUS channel so that the 

UAV does not collide with either wall.   

Further software development is needed to improve the reliability of the LCAS 

programming algorithm. As discussed in the observations from the prototype testing, the LCAS 

suffered from inconsistencies when it came to measuring distances, determining when to activate 

the feedback controller, and logging data. The LCAS could greatly benefit from its algorithm 

being separated into multiple parallel operations. By utilizing parallel operations, the SBUS and 

Sensor Board communications could be separated, thus eliminating the need for different 

operating states when sending commands and receiving data from a Sensor Board.  

As discussed throughout the development and testing of the LCAS hardware and 

software, the Sensor Board proved to be the most difficult component to realize. By being 

constrained to using low-cost, hobbyist-grade range finding sensors, the Sensor Board suffered 

from measurement inaccuracy and needed multiple stages of error-checking. While the 

measurement inaccuracy from the ultrasonic was addressed by using a linear regression, the 

tinyLiDARs’ tendency to report nonsensical distance measurements when obstacles were not in 

range was not able to be properly addressed in software. A suggestion for improving 

measurement accuracy is to implement the IMU that was incorporated into the design of the 

MITM Docking Board. The data from the IMU could be used to improve upon the position 

estimates; a method used in [9].  
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Appendix A: Standard Communication Protocols 

UART 

Universal Asynchronous Receiver/Transmitter (UART) is a direct connection between 

two devices that implements a serial connection without the need for a clock signal. Instead 

UART uses two data lines: transmit (TX) and receive (RX).  

 A UART signal is generated by raising and lowering voltage levels on a device’s TX line. 

A receiving device will interpret the changing voltage levels in binary, with high voltage being a 

one and a low voltage being a zero. Figure 84 shows the general structure of a UART signal.  

 

Figure 84: General structure of a UART signal [62] 

 

I2C 

The Inter-integrated Circuit (I2C) is a serial communication protocol intended to allow 

multiple slave devices to connect to a single master device. All devices share the same serial 

clock (SCL) and serial data (SDA) lines. A basic I2C connection showing the SCL and SDA 

lines is shown in Figure 85.   
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Figure 85: I2C bus adapted from [63]  

 

In order to communicate with a specific slave, the master will call the slave’s unique 

address. Once the slave acknowledges that it’s address has been called, the master will begin 

either writing or reading data from the slave. The general structure of an I2C is shown in Figure 

86. 

 

Figure 86: Overview of I2C protocol structure [63] 
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Appendix B: PCB Layouts 

Sensor Board top layer 

 

 

Sensor Board bottom layer 
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MITM Docking Board top layer 

 

 

MITM Docking Board bottom layer 
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Appendix C: Technical Drawings 

LCAS Sensor Board mounting brackets 
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LCAS MITM mounting plate 
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Canary flight controller mount 
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Canary landing gear 
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Appendix D: MATLAB Scripts 

Ultrasonic linear regression 

close all; 
  

y = [50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000]; 

x = [762 1319 1981 2496 3195 3646 4030 4408 4985 5836 6467 6938 7576 8221 8748 9323 

9894 10437 10965 11255]; 
  

[r,m,b] = regression(x,y); 
  

dist = m*x + b; 
  

figure  

scatter(x,y,'+') 

hold on 

plot(x,dist) 

ylabel('Distance (mm)'); xlabel('Clock cycles'); 

grid 

legend('Raw data','Calculated linear regression','location','southeast') 

 

GPS & accelerometer data processing 

% data_manipulation_v2.m 
  

% Created:  Feb 28, 2020 

% Modified: Mar 9, 2020 

% Author:   THolliday 
  

% This script uses logged Sbus (tx), GPS, and Accel data to aid in  

% developing the CCAS model. 
  

% NOTE: import data and remove NaN values before running script 
  

close all; format long; 
  

%% Clear Variables 

clearvars -except Tsbus vEN Ail Ele ...     % imported sbus values 

    Tgps lat long alt ...                   % imported gps values 

    Taccel Xaccel Yaccel Zaccel             % imported accel values 
  

%% Parameters 

saveFlag = 0; 

filename = '2020_7_3_F3.mat'; 

rsFlag = 1;     % resampling and Kalman enable 

eThres = 1500;  % sec, sample error threshold 

Ts = 0.02;      % sec, sampling period 

Fs = 1/Ts;      % Hz, sampling period 
  

%% Sbus data 

% separate tx values      

vEN_tx = vEN(2:2:end);              % step enable 

Tsbus_tx = Tsbus(2:2:end);          % sbus tx time 

Ele_tx = Ele(2:2:end);              % elevator  

Ail_tx = Ail(2:2:end);              % aileron 

t_sbus_or = Tsbus_tx - Tsbus_tx(1); % set time zero 
  

% check for sample time errors 

ndx = find(t_sbus_or>=eThres);                      % find time values greater than 

error threshold 

if isempty(ndx) ~= 1                                 
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    err = t_sbus_or(ndx(1)) - t_sbus_or(ndx(1)-1);  % calculate time error 

    t_sbus_or(ndx) = t_sbus_or(ndx) - err;          % remove time error 

end 
  

% resampling? 

if rsFlag == 1 

    [Ele_tx,t_sbus] = resample(Ele_tx,t_sbus_or,Fs); 

    [Ail_tx,t_sbus] = resample(Ail_tx,t_sbus_or,Fs); 

    [vEN_tx,t_sbus] = resample(vEN_tx,t_sbus_or,Fs); 

else  

    t_sbus = t_sbus_or; 

end 
  
  

%% GPS data 

% adjust time data 

t_gps_or = Tgps-Tgps(1);  % set time zero 
  

% check for sample time errors 

ndx = find(t_gps_or>=eThres);                       % find time values greater than 

error threshold 

if isempty(ndx) ~= 1 

    err = t_gps_or(ndx(1)) - t_gps_or(ndx(1)-1);    % calculate time error 

    t_gps_or(ndx) = t_gps_or(ndx) - err;            % remove time error 

end 
  

% convert to meters 

lat_m = 111132.92 - 559.82*cos(2*lat(1)) + 1.175*cos(4*lat(1)) - 0.0023*cos(6*lat(1));  

% m/degree 

long_m = 111412.84*cos(lat(1)) - 93.5*cos(3*lat(1)) + 0.118*cos(5*lat(1));              

% m/degree 

y_gps = (lat-lat(1))*lat_m;          % meters, first value set to origin 

x_gps = (long-long(1))*long_m*-1;    % meters, first value set to origin, invert for 

proper direction 
  

% resampling? 

if rsFlag == 1 

    [x_gps,t_gps] = resample(x_gps,t_gps_or,Fs); 

    [y_gps,t_gps] = resample(y_gps,t_gps_or,Fs); 

else 

    t_gps = t_gps_or; 

end 
  
  

%% Accel data 

% convert from g's to m/s^2 

g = 9.80746;                    % m/s^2, gravity in Butte, MT 

x_accel = Xaccel*g;             % x-acceleration 

y_accel = Yaccel*g;             % y-acceleration 

z_accel = (Zaccel*g)-g;         % z-acceleration 

t_accel_or = Taccel-Taccel(1);  % set time zero 
  

% check for sample time errors 

ndx = find(t_accel_or>=eThres);                         % find time values greater 

than error threshold 

if isempty(ndx) ~= 1 

    err = t_accel_or(ndx(1)) - t_accel_or(ndx(1)-1);    % calculate time error 

    t_accel_or(ndx) = t_accel_or(ndx) - err;            % remove time error 

end 
  

% resampling? 

if rsFlag == 1 

    [x_accel,t_accel] = resample(x_accel,t_accel_or,Fs); 

    [y_accel,t_accel] = resample(y_accel,t_accel_or,Fs); 

    [z_accel,t_accel] = resample(z_accel,t_accel_or,Fs); 
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else 

    t_accel = t_accel_or; 

end 
  
  

%% Kalman Filter 

if rsFlag == 1 

    % shorten data 

    q = 1e-5;                           % uncertainty for process covariance 

    cutoff = length(t_gps);             % length of resampled gps data 

    x_accel_Kal = x_accel(1:cutoff);    % shorten x accel data 

    y_accel_Kal = y_accel(1:cutoff);    % shorten y accel data 
  

    % run Kalman filter 

    [x_Kal,y_Kal] = kalman(Ts,x_gps,y_gps,x_accel_Kal,y_accel_Kal,q); 
  

    % plotting 

    figure 

    plot(x_gps,y_gps,x_Kal,y_Kal) 

    xlabel('x-position (m)'); ylabel('y-position (m)'); 

    title('Position estimates') 

    legend('GPS only position','Kalman position','location','northwest') 

    grid; axis equal; 
  

    figure 

    plot(t_gps,x_Kal,t_gps,y_Kal,t_gps,x_gps,t_gps,y_gps) 

    xlabel('Time (sec)'); ylabel('Position (m)'); 

%     title('Position estimates vs. time'); 

    legend('Kalman x','Kalman y','GPS x','GPS y','location','northwest'); grid;  
     

    figure 

    yyaxis left 

    plot(t_gps,x_Kal,t_gps,y_Kal) 

    ylabel('Position (m)'); 
     

    yyaxis right 

%     plot(t_sbus,Ele_tx,t_sbus,vEN_tx); 

    plot(t_sbus,vEN_tx); 

    ylabel('SBUS');  
     

    xlabel('Time (sec)');  

%     title('Kalman position & SBUS vs. Time');  

    grid; 

%     legend('Kalman x','Kalman y','forward/back (Ele)','enable 

(vEN)','location','northwest'); 

    legend('x','y','step enable','location','northwest','orientation','horizontal');  

end 
  
  

%% Separate out step responses 

% find time position of steps 

step_ctrl = find(vEN_tx >= 400); 
  

% separate steps 

cc = 1; 

sct = 0; 

for rr = 2:length(step_ctrl) 

    t_step(rr-1-sct,cc) = t_gps(step_ctrl(rr-1));           % step time 

    x_Kal_step(rr-1-sct,cc) = x_Kal(step_ctrl(rr-1));       % x-position during step 

    y_Kal_step(rr-1-sct,cc) = y_Kal(step_ctrl(rr-1));       % y-position during step 

    ele_step(rr-1-sct,cc) = floor(Ele_tx(step_ctrl(rr-1))); % sbus forward during step 

    if step_ctrl(rr)-step_ctrl(rr-1) ~= 1                   % check for new step 

interval 

        cc = cc + 1;                                        % increase column count 

        sct = rr - 1;                                       % reset row count 

    end 
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end 
  

% normalize 

[numR,numC] = size(t_step); 

t_step_end = zeros(1,numC); 

for kk = 1:numC 

    t_step(:,kk) = t_step(:,kk) - t_step(1,kk);             % time zero point 

    x_Kal_step(:,kk) = x_Kal_step(:,kk) - x_Kal_step(1,kk); % x-position zero point 

    y_Kal_step(:,kk) = y_Kal_step(:,kk) - y_Kal_step(1,kk); % y-position zero point 

    r_Kal_step(:,kk) = sqrt(x_Kal_step(:,kk).^2 + y_Kal_step(:,kk).^2); 

    temp = find(t_step(:,kk)<0);                            % find end of step 

    if isempty(temp) ~= 1 

        t_step_end(kk) = temp(1)-1;                         % step end point 

    else 

        [t_step_end(kk),b] = size(t_step(:,kk));            % first step end point 

    end 

end 
  
  

% plotting 

pndx = 100+numC*10; % setup subplot index for 1 row, numC columns 

figure 

for kk = 1:numC 

    subplot (pndx+kk) 

%     plot(t_step((1:t_step_end(kk)),kk),x_Kal_step((1:t_step_end(kk)),kk),... 

%         t_step((1:t_step_end(kk)),kk),y_Kal_step((1:t_step_end(kk)),kk)) 

    plot(t_step((1:t_step_end(kk)),kk),r_Kal_step((1:t_step_end(kk)),kk)) 

    grid 

    xlabel('Time (sec)'); ylabel('Position (m)'); 

    title(['Sbus step: ',num2str(ele_step(42,kk))]) 

end 
  
  

%% Export Results 

if saveFlag 

    sbus_step_val = ele_step(42,:); 

    save(filename,'t_step','x_Kal_step','y_Kal_step','t_step_end','sbus_step_val',... 

        't_sbus','Ele_tx','vEN_tx','x_Kal','y_Kal'); 

End 

 

Kalman filter  

% kalman.m 
  

% Created:  Mar 3, 2020 

% Modified: Mar 11, 2020 

% Author:   THolliday 
  

% This script runs a Kalman filter to create position estimates given GPS & 

% accel data. 
  

function [x_Kal,y_Kal] = kalman(Ts,gpsx,gpsy,ax,ay,q) 
  

%% Parameters 

fs = 1/Ts;          % sampling frequency 

N = length(gpsx);   % number of data points 
  
  

%% Build Model 

% initialize matrices for Kalman 

xhat = zeros(6,N);          % estimated state vector 

yk = [gpsx,gpsy,ax,ay]';    % output vector 

Pk = zeros(6,6); 
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x_Kal = zeros(1,N);         % Kalman x-postion 

y_Kal = zeros(1,N);         % Kalman y-postion 
  

% build state matrix A 

Ak = eye(6); 

for ii = 1:4 

    Ak(ii,ii+2) = Ts; 

end 
  

% build output matrix 

Ck = [1,0,0,0,0,0;0,1,0,0,0,0;0,0,0,0,1,0;0,0,0,0,0,1]; 
  

% build process noise covariance matrix Q 

Q = zeros(6,6); 

% q = 1e-8;           % set uncertainty  

Q(5,5) = q;         % fill in acceleration uncertainty 

Q(6,6) = q; 
  

% build measurement noise covariance matrix R 

R = zeros(4,4); 

L = 8;                  % number of segments 

M = floor(N/L);         % length of window 

for ii = 1:length(R) 

    S = pwelch(yk(ii,:),M,[],[],fs,'twosided'); % find PSD of each data set 

    S_trim = S(50:end-50);                      % only use "noise" content 

    Rac = ifft(S_trim);                         % inv FFT to find autocorrelation 

    R(ii,ii) = abs(Rac(1));                     % store magnitude of R(0) 

end 
  
  

%% Run Kalman filter 

for k = 2:N 

    % Extrapolation 

    xhatm = Ak*xhat(:,k-1); 

    Pm = Ak*Pk*Ak' + Q; 
     

    % Update 

    K = (Pm*Ck')/(Ck*Pm*Ck'+R); 

    Pk = (eye(6)-K*Ck)*Pm; 

    xhat(:,k) = xhatm+K*(yk(:,k)-Ck*xhatm); 
     

    % separate position data 

    x_Kal(k) = xhat(1,k); 

    y_Kal(k) = xhat(2,k); 

end 
  

end 

 

Canary model derivation 

% lcas_model_derivation_v2.m 
  

% Created:  Mar 10, 2020 

% Modified: Mar 26, 2020 

% Author:   THolliday 
  

% This script uses step responses found via GPS, sbus, and accel data to 

% derive an equivalent model equation. 
  

clear; close all; format long; 

addpath('data'); 
  

%% Load Variables 

filename = '2020_7_3_F3'; 
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load(filename); 
  

%% Select Step 

time_end = 10;      % sec, response cutoff 

sbus_max = 1811;    % maximum value of sbus 

sbus_mid = 992;     % mid value of sbus 
  

%% Normalize Input 

F = (sbus_step_val-sbus_mid)./(sbus_max-sbus_mid);  % input scaled to 0-1 
  

%%  

pndx = 100+length(F)*10;    % setup subplot index 

for ii = 1:length(F) 

    %% Build Parameters 

    ndx = (t_step(:,ii)<=time_end)&(t_step(:,ii)>0); 

    t = t_step(ndx,ii); 

    x_step = x_Kal_step(1:length(t),ii);    % adjust x-pos vector 

    y_step = y_Kal_step(1:length(t),ii);    % adjust y-pos vector 

    x = sqrt(x_step.^2 +  y_step.^2);       % find resultant position for accuracy 
     
     

    %% Find Model 

    % no initial values are zero 

    A_pva = F(ii)*[ones(size(t)),t,t.^2]; 

    R_pva = A_pva\x; 

    xhat_pva = A_pva*R_pva; 
     

    % initial position is zero 

    A_va = F(ii)*[t,t.^2]; 

    R_va = A_va\x; 

    xhat_va = A_va*R_va; 
     

    % initial position & velocity are zero 

    A_a = F(ii)*((t.^2)); 

    R_a = A_a\x; 

    xhat_a = A_a*R_a; 
     

    % plotting 

    subplot(pndx+ii) 

    plot(t,x,t,xhat_a) 

    xlabel('Time (sec)'); ylabel('Position (m)'); 

    title([num2str(sbus_step_val(ii)),' Step',]); grid; 

    legend('actual','estimate','location','northwest') 
     

end 

 

Canary model testing & validation 

% lcas_model_testing_v4.m 

  

% Created:  Apr 20, 2020 

% Author:   THolliday 

  

% This script simulates the LCAS model using captured sbus data and 

% compares the results to the actual position found via GPS & accel data. 

  

clear; close all; format long; 

addpath('data'); 

  

%% Load Variables  

filename = '2020_7_3_F1'; 

% filename = '2020_7_3_F3'; 

load(filename); 
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%% Parameters 

R = 1.6270; 

% R = 1.2489; 

step_ndx = 1;       % step selector 

Ts = 0.02;          % sec, sampling period 

time_end = 15;      % sec, response cutoff 

sbus_max = 1811;    % maximum value of sbus 

sbus_mid = 992;     % mid value of sbus 

  

%% Normalize Input 

F = (sbus_step_val-sbus_mid)./(sbus_max-sbus_mid);  % input scaled to 0-1 

  

%% Simulate Model 

pndx = 100+length(F)*10;    % setup subplot index 

for ii = 1:length(F) 

    % build parameters 

    ndx = (t_step(:,ii)<=time_end)&(t_step(:,ii)>0); 

    t = t_step(ndx,ii); 

    x_step = x_Kal_step(1:length(t),ii);    % adjust x-pos vector 

    y_step = y_Kal_step(1:length(t),ii);    % adjust y-pos vector 

    x = sqrt(x_step.^2 +  y_step.^2);       % find resultant position for accuracy 

     

    % simulate model 

    xsim = F(ii)*(R*t.^2);  % estimate position via system model 

     

    % plotting 

    subplot(pndx+ii) 

    plot(t,x,t,xsim) 

    xlabel('Time (sec)'); ylabel('Position (m)'); 

    title([num2str(sbus_step_val(ii)),' Step',]); grid; 

    legend('actual','model','location','northwest') 

end 

 

tinyLiDAR standard deviation 

% sensor_noise_testing_v1.m 
  

% Created:  May 14, 2020 

% Author:   THolliday 
  

% This script takes a look at the type and distribution of the measurement 

% noise in the LCAS sensor board. This info will then be used to tune the 

% Phase II controller. 
  

clear; close all; 
  

%% Import Data 

load('sb_noise_data.mat'); 
  

%% Parameters 

Ts = 0.02;  % sec, sampling period 

Fs = 1/Ts;  % Hz, sampling frequency 
  

%% Adjust time vectors 

ttl = ttl - ttl(1); 

tus = tus - tus(1); 
  

%% Calculate raw std 

tl_std = std(tldist); 

us_std = std(usdist); 
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%% Histograms 

% separate noise 

% tln = tldist - mean(tldist); 

% usn = usdist - mean(usdist); 

tln = tldist - 150; 

usn = usdist - 150; 
  

figure 

histogram(tln) 

xlabel('mm off 150'); ylabel('Number of samples'); 

title('TL noise distribution'); grid; 

figure 

histogram(usn) 

title('US noise distribution'); grid; 

xlabel('mm off 150'); ylabel('Number of samples'); 
  

%% Resample 

[tldistr,ttlr] = resample(tldist,ttl,Fs); 

[usdistr,tusr] = resample(usdist,tus,Fs); 
  

%% TL PSD 

L = 8;                                          % number of segments 

M = floor(length(tldistr)/L);                   % length of window 

[Stl,ftl] = pwelch(tldistr,M,[],[],Fs,'twosided');  % find PSD 
  

figure 

plot(ftl,Stl) 

xlabel('Frequency (Hz)'); ylabel('Magnitude'); 

title('PSD of TL distance data'); grid; 
  

%% US PSD 

L = 8;                                          % number of segments 

M = floor(length(usdistr)/L);                   % length of window 

[Sus,fus] = pwelch(usdistr,M,[],[],Fs,'twosided');  % find PSD 
  

figure 

plot(fus,Sus) 

xlabel('Frequency (Hz)'); ylabel('Magnitude'); 

title('PSD of US distance data'); grid; 

 

Phase I controller design 

% lcas_controller_design_v5.m 
  

% Created:  Mar 26, 2020 

% Modified: July 30, 2020 

% Author:   THolliday 
  

% This script simulates, in discrete time, the LCAS model with the  

% controller designed in the time domain (Phase 1). 
  

% Note: 

%   The "desired position" is an arbitrary distance away from a theoretical 

%   wall at 1 meter. 
  

% Scenarios: 

%   1)  user/stick input is high constant, as if user keeps flying towards  

%       the desired position 

%   2)  same values as scenario 1, but the user intervenes to avoid desired 

%       position and uses a lower input after first reaction 

%   3)  user/stick input is low constant, as if the drone is drifting 

%       towards the desired position on its own accord 

%   4)  same as scenario 3, but the user intervenes to avoid desired 
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%       position 
  

clear; close all; format long; 
  

%% Parameters 

runs = 4;           % number of scenarios to run 

x_act = 0.25;       % m, distance from desired to activate controller 

x_des = 0.5;        % m, desired position away from obstacle 

R = 1.6270;         % model coefficient 

Ts = 0.02;          % sec, sampling period 

rng(256);           % set rng seed 

% nmag = 0;           % magnitude of added noise (ideal case) 

nmag = 0.0036821;   % magnitude of added noise (std of TL measurements) 

% nmag = 0.1;         % magnitude of added noise (extreme case) 
  

%% Initialize 

t = (0:Ts:30)';         % sec, time vector 

N = length(t);          % number of samples 

x = zeros(N,runs);      % linear position vector 

f = zeros(N,runs);      % linear input vector 

x_diff = zeros(N,runs); % linear difference vector 

cact = zeros(N,runs);   % controller enable vector 

x_ns = zeros(N,runs);   % measurement noise vector 
  

%% Gains 

Kp = 1.2;   % proportional gain 

Ki = 0.1;   % integral gain 

Kd = 5;     % derivative gain 
  

%% Build System TF 

s = tf('s');                % create TF variable 

sys_c = 2*R/s^2;              % build continuous time model 

sys_d = c2d(sys_c,Ts);      % discretize 
  

% extract coefficients of the TF 

[num,den] = tfdata(sys_d); 

num = num{1}';      % change to vector 

den = den{1}';      % change to vector 

n = length(num);    % number of coefficients 
  

%% Simulate Controller 

for cc = 1:runs     % run scenarios 

    reactflag = 0; 

    for kk = 3:N    % iterate through samples 
         

        % ----- user input ---- %  

        fusr = scenario_input(cc,x(kk-1,cc),reactflag); 
         

        % ---- control law ---- % 

        if (x(kk-1,cc)<(x_des-x_act)) || (fusr<=0)  

            % not in activation window or user is correcting 

            f(kk,cc) = fusr; 

            if fusr <= 0 

                reactflag = 1; 

            end 

        else 

            % in activation window and controller has control 

            cact(kk,cc) = 1; 

            f(kk,cc) = Kp*x_diff(kk-1,cc) + Ki*(x_diff(kk-1,cc)+x_diff(kk-2,cc))... 

                + Kd*(x_diff(kk-1,cc)-x_diff(kk-2,cc)); 

        end 
         

        % ---- saturation check ---- % 

        if f(kk,cc) > 1 

            f(kk,cc) = 1; 
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        elseif f(kk,cc) < -1 

            f(kk,cc) = -1; 

        end 
         

        % ---- estimate response ---- % 

        x(kk,cc) = sum(-flipud(den(2:end)).*x(kk-n+1:kk-1,cc))... 

            + sum(flipud(num).*f(kk-n+1:kk,cc)); 
         

        % ---- find distance error ---- % 

        x_ns(kk,cc) = x(kk,cc) + nmag*randn(1,1); 

        x_diff(kk,cc) = x_des - x_ns(kk,cc); 
         

    end 
     

    % Plotting  

    figure 

    subplot 311 

    plot(t,x(:,cc)); 

    ylabel('Position (m)'); grid; 

    title('Actual model position') 

    subplot 312 

    plot(t,x_ns(:,cc)); 

    ylabel('Position (m)'); grid; 

    title('Model position as seen by controller'); 

    subplot 313 

    plot(t,f(:,cc)) 

    ylabel('normalized SBUS'); xlabel('Time (sec)'); grid; 

    title('Input to the model') 

    sgtitle(['CCAS forward controller under scenario ',num2str(cc)]); 

end 

 

Root locus for Phase II controller design 

% root_locus_design.m 
  

% Created:  Apr 2, 2020 

% Modified: July 30, 2020 

% Author:   THolliday 
  

% This script builds the CCAS model equation and inputs it into the Root 

% Locus Design Tool, so that the PID controller can be tuned. 
  

clear; close all; format long; 
  

%% Build Plant TF 

R = 1.6270;             % plant coefficient 

s = tf('s');            % create TF variable 

sys_c = 2*R/s^2;          % build continuous time model 
  

%% Build Controller TF 

zc = [0,-0.2685];       % zeros 

pc = [0,-2.292];        % poles 

kc = 2.2435;            % gain 

Cs = zpk(zc,pc,kc);     % build continuous time TF 
  

%% Root Locus  

rltool(sys_c)           % plant-only (used for designing controller) 

% rltool(sys_c,Cs)        % plant + controller 
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Phase II controller design 

% lcas_pid_controller_sim_v1.m 
  

% Created:  Apr 2, 2020 

% Modified: July 31, 2020 

% Author:   THolliday 
  

% This script simulates, in discrete time, the LCAS model and PID 

% controller designed via Root Locus (root_locus_design.m). 
  

% Note: 

%   The "desired position" is an arbitrary distance away from a theoretical 

%   wall at 1 meter. 
  

% Scenarios: 

%   1)  user/stick input is a constant 1200, as if user keeps flying 

%       towards the desired position 

%   2)  same as scenario 1, but the user reacts to the approach of 

%       the desired position and uses a lower input after first reaction 

%   3)  user/stick input is a constant 1000, as if the drone is drifting 

%       towards the desired position on its own accord 

%   4)  same as scenario 3, but the user reacts to the approach of 

%       the desired position 
  

clear; close all; format long; 
  

%% Simulation Parameters 

runs =  4;          % number of scenarios to run 

SMAflag = 1; 

x_act = 0.25;       % m, activation threshold 

x_des = 0.5;        % m, desired position 

R = 1.6270;         % model coefficient 

numRead = 10;       % SMA window 

Ts = 0.02;          % sec, sampling period 

rng(256);           % set rng seed 

% nmag = 0;           % magnitude of added noise (ideal case) 

% nmag = 0.0036821; % magnitude of added noise (std of TL measurements) 

nmag = 0.1;         % magnitude of added noise (extreme case) 
  

%% Initialize 

t = (0:Ts:30)';         % sec, time vector 

N = length(t);          % number of samples 

x = zeros(N,runs);      % linear position vector 

f = zeros(N,runs);      % input vector 

fc = zeros(N,runs);     % controller output vector 

e = zeros(N,runs);      % error vector 

cact = zeros(N,runs);   % controller enable vector 

x_ns = zeros(N,runs);   % measurement noise vector 

runSum = zeros(1,runs);         % running sum of SMA 

readBuff = zeros(numRead,runs); % buffer for SMA 

fcrunSum = zeros(1,runs);       % running sum of SMA 

fcBuff = zeros(numRead,runs);   % buffer for SMA 

des = ones(length(t),1)*0.5;    % desired position vector 
  

%% Build System TF 

s = tf('s');        % create TF variable 

Gs = 2*R/s^2;         % build continuous time model 

Gz = c2d(Gs,Ts);    % discretize 
  

% extract coefficients of the TF 

[num,den] = tfdata(Gz); 

Gnum = num{1}';      % change to vector 

Gden = den{1}';      % change to vector 
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Gn = length(Gnum);   % number of coefficients 
  

%% Build Controller TF 

zc = -0.2685;       % zeros 

pc = -2.292;        % poles 

% zc = [0,-0.2685];       % zeros 

% pc = [0,-2.292];        % poles 

% kc = 1.1225;        % gain 

kc = 2.2435;        % gain 

Cs = zpk(zc,pc,kc); % build continuous time TF 

Cz = c2d(Cs,Ts);    % discretize 
  

% extract coefficients 

[num,den] = tfdata(Cz); 

Cnum = num{1}';      % change to vector 

Cden = den{1}';      % change to vector 

Cn = length(Cnum);   % number of coefficients 
  

%% Simulate 

for cc = 1:runs 

    reactflag = 0; 

    readNdx = 1; 

    fcreadNdx = 1; 

    for kk = 3:N    % iterate through samples 

        % ----- user input ---- % 

        fusr = scenario_input(cc,x(kk-1,cc),reactflag); 
         

        % ---- control law ---- % 

        if (x(kk-1,cc)<(x_des-x_act)) || (fusr<=0) 

            % not in activation window or user 

            f(kk,cc) = fusr; 

            if fusr <= 0    % first reaction? 

                reactflag = 1; 

            end 

        else 

            % in activation window and controller has control 

            f(kk,cc) = fc(kk-1,cc); 

            cact(kk,cc) = 1; 

        end 
         

        % ---- saturation check ---- % 

        if f(kk,cc) > 1 

            f(kk,cc) = 1; 

        elseif f(kk,cc) < -1 

            f(kk,cc) = -1; 

        end 
         

        % ---- estimate response ---- % 

        x(kk,cc) = sum(-flipud(Gden(2:end)).*x(kk-Gn+1:kk-1,cc))... 

            + sum(flipud(Gnum).*f(kk-Gn+1:kk,cc)); 
         

        % ---- add measurement noise ---- % 

        x_ns(kk,cc) = x(kk,cc) + nmag*randn(1,1); 
         

        % ---- moving average ---- % 

        if SMAflag==1 

            temp = x_ns(kk,cc); 

            temp = temp/numRead; 

            runSum(cc) = runSum(cc) + temp; 

            temp = readBuff(readNdx,cc); 

            temp = temp/numRead; 

            runSum(cc) = runSum(cc) - temp; 

            readBuff(readNdx,cc) = x_ns(kk,cc); 

            x_ns(kk,cc) = runSum(cc); 
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            if readNdx ~= numRead 

                readNdx = readNdx + 1; 

            else 

                readNdx = 1; 

            end 

        end 
         

        % ---- find distance error ---- % 

        e(kk,cc) = x_des - x_ns(kk,cc); 
         

        % ---- run controller ---- % 

        fc(kk,cc) = sum(-flipud(Cden(2:end)).*fc(kk-Cn+1:kk-1,cc))... 

            + sum(flipud(Cnum).*e(kk-Cn+1:kk,cc)); 
         

    end 
     

    % convert f back to SBUS 

    f(:,cc) = f(:,cc)*(1811-992)+992; 
     

    % Plotting 

    figure 

    subplot 311 

    plot(t,x(:,cc),t,des); 

    ylabel('Position (m)'); grid; 

    title('Actual model position') 

    subplot 312 

    plot(t,x_ns(:,cc),t,des); 

    ylabel('Position (m)'); grid; 

    title('Model position as seen by controller'); 

    subplot 313 

    plot(t,f(:,cc)) 

    ylabel('normalized SBUS'); xlabel('Time (sec)'); grid; 

    title('Input to the model') 

    sgtitle(['LCAS forward controller under scenario ',num2str(cc)]); 

end 
  

%% Save data 

if nmag == 0 

    x_p2_id = x; 

    cact_p2_id = cact; 

    f_p2_id = f; 

    x_ns_p2_id = x_ns; 

    if SMAflag==0 

        save('P2_results_ideal.mat','x_p2_id','cact_p2_id','f_p2_id','x_ns_p2_id'); 

    else 

        

save('P2_sma_results_ideal.mat','x_p2_id','cact_p2_id','f_p2_id','x_ns_p2_id'); 

    end 
     

elseif nmag==0.0036821 

    x_p2_tl = x; 

    cact_p2_tl = cact; 

    f_p2_tl = f; 

    x_ns_p2_tl = x_ns; 

    if SMAflag==0 

        save('P2_results_tlstd.mat','x_p2_tl','cact_p2_tl','f_p2_tl','x_ns_p2_tl'); 

    else 

        

save('P2_sma_results_tlstd.mat','x_p2_tl','cact_p2_tl','f_p2_tl','x_ns_p2_tl'); 

    end 
  

elseif nmag==0.1 

    x_p2_ext = x; 

    cact_p2_ext = cact; 

    f_p2_ext = f; 
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    x_ns_p2_ext = x_ns; 

    if SMAflag==0 

        

save('P2_results_extreme.mat','x_p2_ext','cact_p2_ext','f_p2_ext','x_ns_p2_ext'); 

    else 

        

save('P2_sma_results_extreme.mat','x_p2_ext','cact_p2_ext','f_p2_ext','x_ns_p2_ext'); 

    end 
     

end 

 

Scenario input generation function (used in both Phase I & II testing) 

function fnorm = scenario_input(scenario,x,reactflag) 

% scenario_input.m 
  

% Created:  Mar 26, 2020 

% Modified: May 14, 2020 

% Author:   THolliday 
  

% Function to generate the input for the LCAS controller simulation of 

% flying towards a wall at 1 meter, starting from 0 meter. 
  

% Inputs: 

%   scenario    scenario number 

%   x           distance measure from model 

%   reactflag   denotes if user has reacted once (only used for Phase 1) 
  

% Outputs: 

%   fnorm       normalized SBUS value used as input to model 
  

%% Parameters 

sbus_mid = 992; 

sbus_max = 1811; 
  

%% Scenarios 

if scenario==1 

    % user/stick input is a constant 1200, as if user keeps flying towards  

    % the desired position 

    fsbus = 1200; 

%     fsbus = sbus_max; 
     

elseif scenario==2 

    % same as scenario 1, but the user reacts to the approach of the  

    % desired position and uses a lower input after first reaction 

    if reactflag == 1 && x<0.45 

        fsbus = 1050; 

    elseif x >= 0.45 

        fsbus = 785; 

    else 

        fsbus = 1200; 

    end 
     
  

elseif scenario==3 

    % user/stick input is a constant 1000, as if the drone is drifting  

    % towards the desired position on its own accord 

    fsbus = 1000; 
        

elseif scenario==4 

    % same as scenario 3, but the user reacts to the approach of the  

    % desired position and then uses a neutral input after first reaction 

    if reactflag == 1 && x<0.45 
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        fsbus = 1000; 

    elseif x >= 0.45 

        fsbus = 825; 

    else 

        fsbus = 1000; 

    end 
     

end 
  

%% Normalize SBUS 

fnorm = (fsbus-sbus_mid)/(sbus_max-sbus_mid); % sets to within [-1,1] range 

end 

 

Comparing Phase I & Phase II  

% ctrl_result_plotting.m 
  

% Created:  May 28, 2020 

% Modified: July 31, 2020 

% Author:   THolliday 
  

% Script for plotting CCAS results 
  

clear; close all; 
  

%% Import Resutls 

load('ctrl_case_results_v4.mat') 
  

%% Variables 

[rr,cc] = size(x_p1_id); 

Ts = 0.02;                      % sec, sampling period 

t = (0:Ts:30)';                 % sec, time vector 

des = ones(length(t),1)*0.5;    % desired position vector 
  

%% Ideal case plotting 

for ii = 1:cc 

    figure 

    plot(t,x_p1_id(:,ii),t,x_p2_id(:,ii),t,des,'k--'); 

    xlabel('Time (sec)'); ylabel('Position (m)'); grid; 

    title(['Simulated LCAS under scenario ',num2str(ii)]); 

    legend('Phase I','Phase II','desired position','location','southeast') 

end 
  

%% Noise resiliency - TL std case 

% Phase I 

figure 

subplot 211 

yyaxis left 

hold on 

plot(t,x_ns_p1_tl(:,1)) 

plot(t,x_p1_tl(:,1),'m-') 

hold off 

ylabel('Position (m)') 

yyaxis right 

plot(t,cact_p1_tl(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('position seen by controller','model position','controller enable',... 

    'location','south','orientation','horizontal') 
  

subplot 212 

yyaxis left 

plot(t,f_p1_tl(:,1)) 

ylabel('SBUS value') 
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yyaxis right 

plot(t,cact_p1_tl(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('model input','controller 

enable','location','south','orientation','horizontal') 

sgtitle('Phase I noise resiliency (TL std case)') 
  

% Phase II 

figure 

subplot 211 

yyaxis left 

hold on 

plot(t,x_ns_p2_tl(:,1)) 

plot(t,x_p2_tl(:,1),'m-') 

hold off 

ylabel('Position (m)') 

yyaxis right 

plot(t,cact_p2_tl(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('position seen by controller','model position','controller enable',... 

    'location','south','orientation','horizontal') 
  

subplot 212 

yyaxis left 

plot(t,f_p2_tl(:,1)) 

ylabel('SBUS value') 

yyaxis right 

plot(t,cact_p2_tl(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('model input','controller 

enable','location','south','orientation','horizontal') 

sgtitle('Phase II noise resiliency (TL std case)') 
  

%% Noise resiliency - extreme case 

% Phase I 

figure   

subplot 211 

yyaxis left 

hold on 

plot(t,x_ns_p1_ext(:,1)) 

plot(t,x_p1_ext(:,1),'m-','linewidth',1) 

hold off 

ylabel('Position (m)') 

yyaxis right 

plot(t,cact_p1_ext(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('position seen by controller','model position','controller enable',... 

    'location','south','orientation','horizontal') 
  

subplot 212 

yyaxis left 

plot(t,f_p1_ext(:,1)) 

ylabel('SBUS value') 

yyaxis right 

plot(t,cact_p1_ext(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('model input','controller 

enable','location','south','orientation','horizontal') 

sgtitle('Phase I noise resiliency (extreme case)') 
  

% Phase II 

figure 

subplot 211 

yyaxis left 
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hold on 

plot(t,x_ns_p2_ext(:,1)) 

plot(t,x_p2_ext(:,1),'m-','linewidth',1) 

hold off 

ylabel('Position (m)') 

yyaxis right 

plot(t,cact_p2_ext(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('position seen by controller','model position','controller enable',... 

    'location','south','orientation','horizontal') 
  

subplot 212 

yyaxis left 

plot(t,f_p2_ext(:,1)) 

ylabel('SBUS value') 

yyaxis right 

plot(t,cact_p2_ext(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('model input','controller 

enable','location','south','orientation','horizontal') 

sgtitle('Phase II noise resiliency (extreme case)') 

 

Phase II SMA results plotting 

% P2_SMA_results_plotting.m 
  

% Created:  June 5, 2020 

% Modified: July 31, 2020 

% Author:   THolliday 
  

% Script for plotting LCAS results 
  

clear; close all; 
  

%% Import Resutls 

load('P2_SMA_results_v2.mat') 
  

%% Variables 

[rr,cc] = size(x_p2_id); 

Ts = 0.02;                      % sec, sampling period 

t = (0:Ts:30)';                 % sec, time vector 
  

%% Case 1 - TL std 

% Phase II 

figure 

subplot 211 

yyaxis left 

hold on 

plot(t,x_ns_p2_tl(:,1)) 

plot(t,x_p2_tl(:,1),'m-') 

hold off 

ylabel('Position (m)') 

yyaxis right 

plot(t,cact_p2_tl(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('position seen by controller','model position','controller enable',... 

    'location','south','orientation','horizontal') 
  

subplot 212 

yyaxis left 

plot(t,f_p2_tl(:,1)) 

ylabel('SBUS value') 



159 

yyaxis right 

plot(t,cact_p2_tl(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('model input','controller 

enable','location','south','orientation','horizontal') 

sgtitle('Phase II with SMA noise resiliency (TL std case)') 
  

%% Case 2 - extreme  

% Phase II 

figure 

subplot 211 

yyaxis left 

hold on 

plot(t,x_ns_p2_ext(:,1)) 

plot(t,x_p2_ext(:,1),'m-','linewidth',1) 

hold off 

ylabel('Position (m)') 

yyaxis right 

plot(t,cact_p2_ext(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('position seen by controller','model position','controller enable',... 

    'location','south','orientation','horizontal') 
  

subplot 212 

yyaxis left 

plot(t,f_p2_ext(:,1)) 

ylabel('SBUS value') 

yyaxis right 

plot(t,cact_p2_ext(:,1)); ylim([0 1.05]) 

xlabel('Time (sec)'); grid; 

legend('model input','controller 

enable','location','south','orientation','horizontal') 

sgtitle('Phase II with SMA noise resiliency (extreme case)') 

 

Prototype LCAS testing data processing 

% canary_lcas_testing_06152020.m 
  

% Created:  June 16, 2020 

% Author:   THolliday 
  

% This script plots the results of the Canary testing with the LCAS. 
  

clear; close all; format long; 
  

%% Import data 

% filename = 'canary_lcas_06152020_T2_F1.mat'; manflag = 'F1'; 

% filename = 'canary_lcas_06152020_T2_F2.mat'; manflag = 'F2';    % barely goes below 

1000 mm 

% filename = 'canary_lcas_06152020_T2_F3.mat'; manflag = 'F3';    % logging failure 

% filename = 'canary_lcas_06152020_T2_F4.mat'; manflag = 'F4';    % logging failure 

% filename = 'canary_lcas_06152020_T2_F5.mat'; manflag = 'F5';    % controller 

failure? 

% filename = 'canary_lcas_06152020_T2_F6.mat'; manflag = 'F6';    % ctrl failure 

filename = 'canary_lcas_06152020_T2_F7.mat'; manflag = 'F7'; 

load(filename); 
  

%% SBUS data 

Tsbus_tx = Tsbus(2:2:end);          % sbus tx time 

Tsbus_rx = Tsbus(1:2:end);          % sbus rx time 

Ele_tx = Ele(2:2:end);              % elevator tx 

Ele_rx = Ele(1:2:end);              % elevator rx 



160 

ctrl_tx = Ctrl(2:2:end);            % ctrl enable 

arm_tx = ARM(2:2:end);              % system arming 

tsbus_tx = Tsbus_tx-Tsbus_tx(1);       % set zero point for sbus time 

tsbus_rx = Tsbus_rx-Tsbus_rx(1);       % set zero point for sbus time 
  

%% SB data 

tsb = Tsb-Tsb(1);                   % set zero point for sensor board time 
  

%% Plot full flight 

figure 

yyaxis left 

plot(tsb,Dist) 

ylabel('Position (mm)');  

yyaxis right 

plot(tsb,ctrlEN) 

ylim([-0.01 1.01]) 

xlabel('Time (sec)'); grid; 

title('Canary position during full flight'); 

legend('Canary position','LCAS enable','location','southwest');  
  

figure 

yyaxis left 

plot(tsbus_tx,Ele_tx,tsbus_rx,Ele_rx,'k--') 

ylabel('SBUS') 

yyaxis right 

plot(tsb,ctrlEN) 

ylim([-0.01 1.01]) 

xlabel('Time (sec)'); grid 

title('Canary input during full flight') 

legend('TX forward (Ele) channel','RX forward (Ele) channel','LCAS 

enable','location','southwest') 
  

%% Plot sections where LCAS was active 

if strcmp(manflag,'F1')             % F1 

    tndx = [62,68]; 
     

elseif strcmp(manflag,'F5')         % F5 

    tndx = [12,15]; 
     

elseif strcmp(manflag,'F7')         % F7 

    tndx = [23.5,26.5;57.5,65;66,69;86.5,90;71,75]; 

end 
  

[rr,cc] = size(tndx); 

for ii = 1:rr 

    sbndx = tsb>=tndx(ii,1) & tsb<=tndx(ii,2); 

    tsb_lcas = tsb(sbndx); 

    ctrlEN_lcas = ctrlEN(sbndx); 

    Dist_lcas = Dist(sbndx); 

    sbusndx_tx = tsbus_tx>=tndx(ii,1) & tsbus_tx<=tndx(ii,2); 

    tsbus_tx_lcas = tsbus_tx(sbusndx_tx); 

    Ele_tx_lcas = Ele_tx(sbusndx_tx); 

    sbusndx_rx = tsbus_rx>=tndx(ii,1) & tsbus_rx<=tndx(ii,2); 

    tsbus_rx_lcas = tsbus_rx(sbusndx_rx); 

    Ele_rx_lcas = Ele_rx(sbusndx_rx); 
     

    figure 

    subplot 211 

    yyaxis left 

    plot(tsb_lcas,Dist_lcas) 

    ylabel('Position (mm)') 

    yyaxis right 

    plot(tsb_lcas,ctrlEN_lcas) 

    ylim([-0.01 1.01]);  

    xlabel('Time (sec)'); grid; 
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    title(['Canary position when LCAS active, Test 3.5'])%',num2str(ii)]); 

    legend('Canary position','LCAS enable','location','north');  
  

    subplot 212 

    yyaxis left 

    plot(tsbus_tx_lcas,Ele_tx_lcas,tsbus_rx_lcas,Ele_rx_lcas,'k--') 

    ylabel('SBUS');ylim([min(Ele_tx_lcas) 1225]) 

    yyaxis right 

    plot(tsb_lcas,ctrlEN_lcas) 

    ylim([-0.01 1.01]);  

    xlabel('Time (sec)'); grid 

    title(['Canary input when LCAS active, Test 3.5'])%',num2str(ii)]) 

    legend('TX forward (Ele) channel','RX forward (Ele) channel','LCAS 

enable','location','southwest') 
     

end 
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Appendix E: Sensor Board Code 

Main script 

/* UAV i2c sensor board control v5 
 * 
 * main() 
 * 
 * Created on:  Feb 14, 2020 
 * Modified:    May 13, 2020 
 * Author:      THolliday 
 * 
 * controls two tinyLiDARs and one ultrasonic based on 
 * commands received from an i2c master 
 * 
 * this board also communicates as an i2c master to the 
 * tinyLiDAR slaves 
 * 
 * Commands 
 * 
 * sensor board     tinyLiDAR           description 
 * ------------     ---------           ----------- 
 * 0x45, 'E'                            set error threshold 
 * 0x54, 'T'        0x##, 0x44, 'D'     trigger only tinyLiDARs 
 * 0x55, 'U'                            trigger ultrasonic 
 * 0x56, 'V'        0x##, 0x44, 'D'     capture ultrasonic distance, trigger tinyLiDARs, 
 *                                          find min distance between all three sensors 
 * 
 * Fault codes 
 * 
 * device           variable            code        description 
 * ------           --------            ----        ----------- 
 * ultrasonic       distUS              0xFFFF      global failure or timeout on echo 
 *                                      0xBBBB      distance value below error threshold 
 * tinyLiDAR        distIR[1]           0xFFFF      i2c communication failure 
 *                                      0xEEEE      invalid command or global failure 
 *                                      0xBBBB      distance value below error threshold 
 * sensor board     dist[1]             0xFFFF      all three sensors failed 
 *                                      0xEEEE      invalid command 
 * 
 */ 
 
// Inclusions 
#include <msp430.h> 
#include "i2c_slave_handler.h" 
#include "tinyLiDAR_handler.h" 
#include "ultrasonic_handler.h" 
 
// Defines 
#define slavAdd 0x12    // front, 7-bit i2c address (8-bit = 0x24) 
//#define slavAdd 0x24    // back, 7-bit i2c address (8-bit = 0x48) 
//#define slavAdd 0x36    // left, 7-bit i2c address (8-bit = 0x6C) 
//#define slavAdd 0x48    // right, 7-bit i2c address (8-bit = 0x90) 
//#define slavAdd 0x5A    // up, 7-bit i2c address (8-bit = 0xB4) 
//#define slavAdd 0x6C    // down, 7-bit i2c address (8-bit = 0xD8) 
 
 
// start main() 
int main(void) 
{ 
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    // MSP430 Initialization 
    WDTCTL = WDTPW | WDTHOLD;       // stop watchdog timer 
    BCSCTL1 = CALBC1_16MHZ;         // Set DCO 
    DCOCTL = CALDCO_16MHZ; 
 
    // i2c slave initialization 
    i2c_slave_init(slavAdd); 
 
    // tinyLiDAR initialization 
    tinyLiDAR_init(); 
 
    // ultrasonic initialization 
    ultrasonic_init(); 
 
    // Variables 
    unsigned int dist[2], distIR[2], distUS, distbyte1, distbyte2, devID; 
    const int tl_us_offset = 20;  // mm, forward distance between ultrasonic and tinyLiDARs 
    int error_threshold; // mm, threshold for checking for valid distance values 
 
    while (1){ 
        if(UCB0STAT&UCSTPIFG){      // check for i2c RX stop flag 
            if (i2cRXflag>0){ 
 
                /* run sensors based on mode command */ 
                switch (i2cRXData[0]){ 
                case 'E': 
                    /* set error threshold */ 
                    error_threshold = i2cRXData[1]; 
                    break; 
 
                case 'T': 
                    /* trigger only the tinyLiDARs */ 
                    trigger_tinyLiDAR(distIR,0,error_threshold);  // outputs minimum distance 
between tinyLiDARs 
                    dist[1] = distIR[1]; 
                    dist[0] = 1; 
                    devID = distIR[0]; 
                    break; 
 
                case 'U': 
                    /* trigger ultrasonic */ 
                    trigger_ultrasonic();           // trigger ultrasonic 
                    break; 
 
                case 'V': 
                    /* capture ultrasonic distance */ 
                    ultrasonic_dist_capture(&distUS);   // capture ultrasonic distance 
                    distUS += tl_us_offset; 
 
                    /* trigger tinyLiDARs */ 
//                    trigger_tinyLiDAR(distIR,0,error_threshold);      // trigger tinyLiDARs, 
output min distance 
 
                    /* select smallest distance */ 
                    if ((distIR[1]<=distUS)||(distUS<error_threshold)){ // IR distance 
smallest? 
                        dist[1] = distIR[1]; 
                        dist[0] = 1; 
                        devID = distIR[0]; 
                    }else{                              // US distance smallest? 
                        dist[1] = distUS; 
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                        dist[0] = 1; 
                        devID = 'U'; 
                    } 
                    break; 
 
                default: 
                    /* invalid operator/command */ 
                    dist[0] = 0; 
                    dist[1] = 0xEEEE; 
                    break; 
                } 
 
                /* prepare i2c TX */ 
                if ((i2cRXData[0]=='V')||(i2cRXData[0]=='T')){ 
                    if ((dist[0]==0)||(dist[1]==0xFFFF)){ 
                        i2cTXData[0] = 'F';                 // 'fail', failed to capture 
distance 
                        i2cTXData[1] = 0xFF;                // return dummy error values 
                        i2cTXData[2] = 0xFF; 
                        i2cTXData[3] = 'X'; 
                    }else{ 
                        distbyte1 = dist[1] & 0xFF00;       // separate bytes for i2c 8-bit 
transfer 
                        distbyte1 >>= 8; 
                        distbyte2 = dist[1] & 0x00FF; 
 
                        i2cTXData[0] = 'P';                 // 'pass', captured distance 
                        i2cTXData[1] = distbyte1;           // return first byte 
                        i2cTXData[2] = distbyte2;           // return second byte 
                        i2cTXData[3] = devID;               // min dist device 
                    } 
 
                    /* reset RX flag */ 
                    i2cRXflag = 0; 
 
                    /* clear values */ 
                    dist[0] = 0; 
                    dist[1] = 0; 
                    distbyte1 = 0; 
                    distbyte2 = 0; 
                    devID = 0; 
                } 
            } 
        } 
    }// end while 
 
}// end main() 
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tinyLiDAR handler 

/* 
 * tinyLiDAR_handler.c 
 * 
 *  Created on: Apr 15, 2019 
 *  Modified:   Oct 11, 2019 
 *      Author: tholliday 
 */ 
 
// Inclusions 
#include <msp430.h> 
#include <math.h> 
#include "i2c_handler.h" 
 
// Defines 
#define duinoAdd1   0x20    // 8-bit address (7-bit = 0x10) 
#define duinoAdd2   0xA0    // 8-bit address (7-bit = 0x50) 
 
// Global Variables 
char tinyLidar_1w[2], tinyLidar_2w[2], tinyLidar_1r[3], tinyLidar_2r[3]; 
 
 
 
void tinyLiDAR_init(void){ 
    // initializes bitbang communication with 2 tinyLiDARs on an i2c bus 
 
    /* i2c initialization */ 
    i2c_bb_init(); 
 
    /* initialize i2c vectors */ 
    // first slave 
    tinyLidar_1w[0] = duinoAdd1;        // tinyLiDAR slave address, write mode 
    tinyLidar_1w[1] = 0x44;             // tx data, distance capture command 
    tinyLidar_1r[0] = duinoAdd1+1;      // tinyLiDAR slave address, read mode 
    tinyLidar_1r[1] = 0x00;             // rx data, first distance byte 
    tinyLidar_1r[2] = 0x00;             // rx data, second distance byte 
 
    // second slave 
    tinyLidar_2w[0] = duinoAdd2;        // tinyLiDAR slave address, write mode 
    tinyLidar_2w[1] = 0x44;             // tx data, distance capture command 
    tinyLidar_2r[0] = duinoAdd2+1;      // tinyLiDAR slave address, read mode 
    tinyLidar_2r[1] = 0x00;             // rx data, first distance byte 
    tinyLidar_2r[2] = 0x00;             // rx data, second distance byte 
 
}// end tinyLiDAR_init() 
 
 
 
void trigger_tinyLiDAR(unsigned int *output, int lidarNdx, int threshold){ 
    /* triggers both tinyLiDARs over the i2c bus and outputs a distance value 
     * based on value in lidarNdx 
     * 
     * lidarNdx     command 
     * --------     ------- 
     * 0            compare distances from both tinyLiDARs and output smallest 
     * 1            output distance from tinyLiDAR 1 
     * 2            output distance from tinyLiDAR 2 
     */ 
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    // Variables 
    volatile unsigned int i; 
    unsigned int distOut1, distOut2; 
 
    /* reset i2c rx vectors */ 
    for (i=1;i<3;i++){ 
        tinyLidar_1r[i] = 0x00; 
        tinyLidar_2r[i] = 0x00; 
    } 
 
    /* trigger first LiDAR */ 
    i2c_bb_rxtx(tinyLidar_1w,2,0);              // write mode 
    __delay_cycles(1000);                       // delay to allow IR capture 
 
    if (i2c_bb_rxtx(tinyLidar_1r,1,2)==1){      // successful read, ACK; read mode 
        // distance capture 
        distOut1 = tinyLidar_1r[1]; 
        distOut1 = (distOut1<<8) | tinyLidar_1r[2];     // combine returned bytes to make dist 
value 
        if (distOut1<threshold) 
            distOut1 = 0xBBBB;                   // error/timeout check 
    }else{                                      // unsuccessful read, no ACK 
        distOut1 = 0xFFFF; 
    } 
 
    /* trigger second LiDAR */ 
    i2c_bb_rxtx(tinyLidar_2w,2,0);              // write mode 
    __delay_cycles(1000);                      // delay to allow IR capture 
 
    if (i2c_bb_rxtx(tinyLidar_2r,1,2)==1){      // successful read, ACK; read mode 
        // record distance 
        distOut2 = tinyLidar_2r[1]; 
        distOut2 = (distOut2<<8) | tinyLidar_2r[2];     // combine returned bytes to make dist 
value 
        if (distOut2<threshold) 
            distOut2 = 0xBBBB;                   // error/timeout check 
    }else{                                      // unsuccessful read, no ACK 
        distOut2 = 0xFFFF; 
    } 
 
    /* output distance based on lidarNdx */ 
    switch (lidarNdx){ 
    case 0:     // compare distances from both tinyLiDARs and output smallest 
        if (distOut1<=distOut2){ 
            output[0] = 1;              // LiDAR indicator 
            output[1] = distOut1;       // first LiDAR distance smallest 
        }else{ 
            output[0] = 2;              // LiDAR indicator 
            output[1] = distOut2;       // second LiDAR distance smallest 
        } 
        break; 
 
    case 1:     // output distance from tinyLiDAR 1 
        output[0] = 1;                  // LiDAR indicator 
        output[1] = distOut1;           // output tinyLiDAR 1 distance 
        break; 
 
    case 2:     // output distance from tinyLiDAR 2 
        output[0] = 2;                  // LiDAR indicator 
        output[1] = distOut2;           // output tinyLiDAR 2 distance 
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        break; 
 
    default:    // invalid Ndx or global failure 
        output[0] = 0;                  // LiDAR indicator 
        output[1] = 0xEEEE;             // output error distance 
        break; 
    } 
 
}// end trigger_tinyLiDARs 

/* 
 * tiny_LiDAR_handler.h 
 * 
 *  Created on: Apr 18, 2019 
 *  Modified:   Oct 11, 2019 
 *      Author: tholliday 
 */ 
 
#ifndef TINYLIDAR_HANDLER_H_ 
#define TINYLIDAR_HANDLER_H_ 
 
 
void tinyLiDAR_init(void); 
void trigger_tinyLiDAR(unsigned int *, int, int); 
 
 

#endif /* TINYLIDAR_HANDLER_H_ */ 

 

Ultrasonic handler 

/* 
 * ultrasonic_handler.c 
 * 
 *  Created on: Feb 19, 2019 
 *  Modified:   Oct 16, 2019 
 *  Author:     tholliday 
 * 
 */ 
 
// Inclusions 
#include <msp430.h> 
#include <math.h> 
 
// Defines 
#define TRIG        BIT3 
#define ECHO        BIT4 
#define TRIG_DIR    P2DIR 
#define TRIG_OUT    P2OUT 
#define ECHO_DIR    P2DIR 
#define ECHO_IE     P2IE 
#define ECHO_IES    P2IES 
#define ECHO_IFG    P2IFG 
 
// Global variables 
unsigned int Distclicks; 
int UPCOUNTSTATE; 
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/* UPCOUNTSTATE VALUES 
 *      0 - system ready/not running 
 *      1 - trigger signal sent, waiting for trigger timing 
 *      2 - end trigger timing, initialize echo receiving, waiting for echo 
 *      3 - echo received and time value acquired 
 *      4 - (or greater) timeout has occurred. 
 */ 
 
 
 
void ultrasonic_init(void){ 
 
    // Initialize TRIG 
    TRIG_DIR |= TRIG;               // Set pin 2.3 as a trigger for the ultrasonic sensor 
    TRIG_OUT &=~ TRIG;              // Initialize 2.3 as low for the trigger (trigger is high) 
 
    // Initialize ECHO 
    ECHO_IES &=~ ECHO;              // set echo hardware interrupt to lo/high edge 
    ECHO_IE |= ECHO;                // set pin 2.4 as echo hardware interrupt 
 
    // Enable timer and hardware interrupts 
    _BIS_SR(GIE);                               // Enable interrupts for the Port Triggering 
    TA1CTL = (TASSEL_2 + ID_3 + MC_2);          // configure interrupt timer 
    TA1CCR0 = 42000; 
 
    // Initialize ultrasonic state 
    UPCOUNTSTATE = 0; 
 
}// end ultrasonic_init() 
 
 
 
void trigger_ultrasonic(void){ 
 
    /* state: system ready */ 
    if (UPCOUNTSTATE==0){ 
        UPCOUNTSTATE = 1;           // set state to "signal sent" 
        TRIG_OUT |= TRIG;           // Trigger the output to start the signal 
        ECHO_IES &=~ ECHO;          // set lo/hi edge on echo interrupt 
        __delay_cycles(160);        // approximately 10us wait 
        TRIG_OUT &=~ TRIG;          // End the trigger sequence 
    } 
 
    if (UPCOUNTSTATE>3){ 
        TA1CCTL0 &=~ CCIE;          // disable timer interrupt 
    } 
 
}// end trigger_ultrasonic() 
 
 
 
void ultrasonic_dist_capture(unsigned int *dist){ 
 
    /* state: echo received & recorded */ 
    if (UPCOUNTSTATE==3){ 
//        TA1CCTL0 &=~ CCIE;                      // disable timer interrupt 
        UPCOUNTSTATE = 0;                       // reset state 
        dist[0] = 0.0884*Distclicks - 16;       // convert and output the value as a distance 
//        dist[0] = Distclicks; 
    } 
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    /* state: timeout or global failure */ 
    if (UPCOUNTSTATE>=4){ 
        TA1CCTL0 &=~ CCIE;                      // disable timer interrupt 
        UPCOUNTSTATE = 0;                       // reset state 
        dist[0] =  0xFFFF;                     // output error value 
    } 
 
}// end ultrasonic_dist_capture() 
 
 
// ECHO hardware interrupt 
#pragma vector=PORT2_VECTOR 
__interrupt void Port_2(void) 
{ 
    // when the echo is captured the value is outputed in Distclicks 
    if (UPCOUNTSTATE<4){ 
        if (ECHO_IES & ECHO){       // End of echo time 
            ECHO_IES &=~ ECHO;      // Set lo/hi edge trigger 
            Distclicks = TA1R;      // store value in Distclicks 
            UPCOUNTSTATE = 3;       // set state to "time value acquired" 
            TA1CCTL0 &=~ CCIE;      // disable timer interrupt 
        }else{                      // Beginning of echo time 
            ECHO_IES |= ECHO;       // set hi/lo edge trigger 
            TA1R = 0;               // clear distance register 
            UPCOUNTSTATE = 2;       // set state to "waiting" 
            TA1CCTL0 = CCIE;        // enable timer interrupt 
        } 
    } 
    ECHO_IFG &=~ ECHO;              // reset echo interrupt flag 
 
}// end echo received interrupt 
 
 
 
// ECHO rx timeout interrupt 
#pragma vector=TIMER1_A0_VECTOR 
__interrupt void TIMERA1_ISR (void) 
{ 
    // timer that ends echo receiving if it is taking too long 
    if (UPCOUNTSTATE==2){       // Timeout has occurred 
        UPCOUNTSTATE = 4;       // set state to "timeout" 
    }else{ 
        UPCOUNTSTATE++; 
    } 
 
}// end timer interrupt 

 

/* 
 * ultrasonic_header.h 
 * 
 *  Created on: Feb 19, 2019 
 *  Modified:   Sept 11, 2019 
 *      Author: tholliday 
 */ 
 
#ifndef ULTRASONIC_HANDLER_H_ 
#define ULTRASONIC_HANDLER_H_ 
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extern unsigned int UPCOUNTSTATE; 
 
 
void ultrasonic_init(void); 
void trigger_ultrasonic(void); 
void ultrasonic_dist_capture(unsigned int *); 
 
 
#endif /* ULTRASONIC_HANDLER_H_ */ 

 

I2C bitbang handler for tinyLiDARs 

/* 
 * i2c_handler.c 
 * 
 *  Created on: Feb 23, 2019 
 *    Modified: April 25, 2019 
 *      Author: tholliday 
 * 
 *https://www.embeddedrelated.com/showcode/334.php 
 * 
 */ 
 
// Inclusions 
#include <msp430.h> 
 
// Defines 
#define SDA         BIT0 
#define SCL         BIT1 
#define SDA_DIR     P2DIR 
#define SDA_OUT     P2OUT 
#define SCL_DIR     P2DIR 
#define SCL_OUT     P2OUT 
#define SDA_IN      P2IN 
#define i2cDelay    500 
 
 
 
void i2c_bb_init(void){ 
    // i2c pin initialization 
 
    SDA_DIR |= SDA;     // set data output 
    SCL_DIR |= SCL;     // set clk output 
    SDA_OUT |= SDA;     // data high 
    SCL_OUT |= SCL;     // clk high 
 
}// end i2c_bb_init() 
 
 
 
void i2c_bb_start(void){ 
    // i2c start: DATA low when CLK high 
 
    SCL_OUT |= SCL;         // clk high 
    SDA_DIR |= SDA;         // set data output 
    SDA_OUT &=~ SDA;        // data low 
    __delay_cycles(i2cDelay); 
    SCL_OUT &=~ SCL;        // clk low 
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    __delay_cycles(2); 
 
}// end i2c_bb_start() 
 
 
 
void i2c_bb_stop(void){ 
    // i2c stop: CLK high when DATA low 
 
    __delay_cycles(i2cDelay); 
    SCL_OUT &=~ SCL;        // clk low 
    SDA_DIR |= SDA;         // set data output 
    SDA_OUT &=~ SDA;        // data low 
    __delay_cycles(i2cDelay); 
    SCL_OUT |= SCL;         // clk high 
    __delay_cycles(i2cDelay); 
    SDA_OUT |= SDA;         // data high 
 
}// end i2c_bb_stop() 
 
 
int i2c_bb_rxtx(char *i2cData, int numTX, int numRX){ 
    /* master read and write to slave 
     * 
     * *i2cData = pointer to i2c buffer data 
     * numTX    = number of 8-bit writes 
     * numRX    = number of 8-bit reads 
     * 
     * returns 0 if unsuccessful (failed ACK) 
     * returns 1 if successful 
     */ 
 
    // Variables 
    volatile unsigned int i,k,temp; 
 
    /* Start condition */ 
    i2c_bb_start(); 
 
    /* start i2c TX */ 
    for (i=0;i<numTX;i++){ 
        temp = i2cData[i];              // store i-th buffer value 
 
        /* start 8-bit tx */ 
        for (k=0;k<8;k++){ 
            __delay_cycles(i2cDelay); 
            if ((temp & 0x80)==0x80){ 
                SDA_OUT |= SDA;         // data high 
            }else{ 
                SDA_OUT &=~ SDA;        // data low 
            } 
            SCL_OUT |= SCL;             // clk high 
            __delay_cycles(i2cDelay); 
            temp <<= 1; 
            SCL_OUT &=~ SCL;            // clk low 
        } 
        /* end 8-bit tx */ 
 
        /* start tx acknowledge check */ 
        SDA_DIR &=~ SDA;                // set data input 
        __delay_cycles(i2cDelay); 
        SCL_OUT |= SCL;                 // clk high 



172 

        __delay_cycles(i2cDelay); 
        if (SDA_IN & SDA){              // ACK missed 
            SDA_DIR |= SDA;             // set data output 
            SDA_OUT &=~ SDA;            // data low 
            SCL_OUT &=~ SCL;            // clk low 
            __delay_cycles(i2cDelay); 
            SCL_OUT |= SCL;             // clk high 
            __delay_cycles(i2cDelay); 
            SDA_OUT |= SDA;             // data high 
            return 0; 
        } 
        SCL_OUT &=~ SCL;                // clk low 
        SDA_DIR |= SDA;                 // set data output 
        __delay_cycles(i2cDelay); 
        SDA_OUT &=~ SDA;                // data low 
        /* end tx acknowledge check */ 
    } 
    /* end i2c TX */ 
 
    SDA_DIR &=~ SDA;                    // set data input 
    SDA_OUT &=~ SDA;                    // data low 
    if (numRX==-1) 
        numRX = 100; 
 
    /* start i2c RX */ 
    for (i=numTX;i<(numTX+numRX);i++){ 
        temp = 0x00;                    // reset temp value 
        SDA_DIR &=~ SDA;                // set data input 
 
        /* begin 8-bit rx */ 
        for (k=0;k<8;k++){ 
            temp <<= 1;                 // bitshift temp by 1 
            __delay_cycles(i2cDelay); 
            SCL_OUT |= SCL;             // clk high 
            __delay_cycles(i2cDelay); 
            if ((SDA_IN & SDA)==SDA){ 
                temp |= 0x01;           // set temp to hex 1 
            }else{ 
                temp &=~ 0x01; 
            } 
            SCL_OUT &=~ SCL;            // clk low 
            SDA_OUT |= SDA;             // data high 
        } 
        /* end 8-bit rx */ 
 
        /* start rx acknowledge check */ 
        SDA_DIR |= SDA;                 // set data output 
        if (i==(numTX+numRX-1)){        // master send NACK 
            SDA_OUT |= SDA;             // data high 
        }else{                          // master send ACK 
            SDA_OUT &=~ SDA;            // data low 
            __delay_cycles(i2cDelay); 
        } 
        /* end rx acknowledge check */ 
 
        if (i==numTX){ 
            if (numRX==100) 
                numRX = temp; 
        } 
 
        i2cData[i] = temp; 
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        __delay_cycles(i2cDelay); 
        SCL_OUT |= SCL;                 // clk high 
        __delay_cycles(i2cDelay*3); 
        SCL_OUT &=~ SCL;                // clk low 
        __delay_cycles(i2cDelay); 
        SDA_OUT &=~ SDA;                // data low 
        SDA_DIR &=~ SDA;                // set data output 
    } 
    /* end i2c RX */ 
 
    /* Stop condition */ 
    i2c_bb_stop(); 
    return 1; 
 
}// end i2c_bb_rxtx()/* 
 * i2c_handler.h 
 * 
 *  Created on: March 4, 2019 
 *      Author: tholliday 
 */ 
 
#ifndef I2C_HANDLER_H_ 
#define I2C_HANDLER_H_ 
 
 
void i2c_bb_init(void); 
void i2c_bb_start(void); 
void i2c_bb_stop(void); 
int i2c_bb_rxtx(char *,int,int); 
 
 
#endif /* I2C_HANDLER_H_ */ 

 

I2C slave handler 

/* 
 * i2c_slave_handler.c 
 * 
 *  Created on: April 17, 2019 
 *      Author: tholliday 
 */ 
 
// Inclusions 
#include <msp430.h> 
 
// Defines 
#define i2c_max     12 
#define SEL         P1SEL 
#define SEL2        P1SEL2 
#define PINS        (BIT6|BIT7) 
 
// Global Variables 
unsigned char i2cTXData[i2c_max], i2cRXData[i2c_max]; 
unsigned int txDataPtr = 0, rxDataPtr = 0; 
unsigned int i2cRXflag = 0; 
unsigned int i2cmodeflag = 0; 
// 0    slave <-- master mode (TX) 
// 1    slave --> master mode (RX) 
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void i2c_slave_init(int slavAdd){ 
    // initializes i2c slave using USCI_B0 timers 
 
    // initialize pins 
    SEL |= PINS;                    // Assign I2C pins to USCI_B0 
    SEL2 |= PINS;                   // Assign I2C pins to USCI_B0 
 
    UCB0CTL1 |= UCSWRST;            // Enable SW reset 
    UCB0CTL0 = (UCMODE_3|UCSYNC);   // I2C Slave, synchronous mode 
    UCB0I2COA = slavAdd;            // set slave address 
    UCB0CTL1 &=~ UCSWRST;           // Clear SW reset, resume operation 
    UCB0I2CIE |= UCSTTIE;           // Enable STT interrupt 
    IE2 |= (UCB0TXIE|UCB0RXIE);     // enable TX interrupt 
 
    i2cmodeflag = 0;                // set to i2c TX slave mode 
 
}// end i2c_slave_init() 
 
 
// i2c TX interrupt 
#pragma vector = USCIAB0TX_VECTOR 
__interrupt void USCIAB0TX_ISR(void) 
{ 
    unsigned int i; 
 
    if (i2cmodeflag==1){                    // i2c TX slave mode? 
        UCB0TXBUF = i2cTXData[txDataPtr];   //      place TX data in buffer 
        txDataPtr++;                        //      increment TX pointer 
 
    }else{                                  // i2c RX slave mode? 
        i2cRXData[rxDataPtr] = UCB0RXBUF;   //      capture RX data 
        rxDataPtr++;                        //      increment RX pointer 
        i2cRXflag++;                        //      increment RX flag 
    } 
}// end i2c TX interrupt 
 
 
// i2c RX interrupt 
#pragma vector = USCIAB0RX_VECTOR 
__interrupt void USCIAB0RX_ISR(void) 
{ 
 
    /* Slave --> master mode (TX) */ 
    if (IFG2&UCB0TXIFG){                        // check TX flags for beginning of i2c RX 
slave mode 
        i2cmodeflag = 1;                        // set to i2c RX slave mode 
        if (UCB0STAT&UCSTTIFG){ 
            UCB0STAT &=~ (UCSTPIFG|UCSTTIFG);   // clear i2c interrupt flags 
            txDataPtr = 0;                      // reset TX pointer 
        } 
    } 
 
    /* Slave <-- master mode (RX) */ 
    if (IFG2&UCB0RXIFG){                        // check RX flags for beginning of i2c TX 
slave mode 
        i2cmodeflag = 0;                        // set to i2c TX slave mode 
        if (UCB0STAT&UCSTTIFG){ 
            UCB0STAT &=~ (UCSTPIFG|UCSTTIFG);   // clear i2c interrupt flags 
            rxDataPtr = 0;                      // reset RX pointer 
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        } 
    } 
}// end i2c RX interrupt 

 

/* 
 * i2c_slave_handler.h 
 * 
 *  Created on: Apr 17, 2019 
 *      Author: tholliday 
 */ 
 
#ifndef I2C_SLAVE_HANDLER_H_ 
#define I2C_SLAVE_HANDLER_H_ 
 
 
extern unsigned char i2cTXData[24], i2cRXData[24]; 
extern unsigned int i2cRXflag; 
 
void i2c_slave_init(int); 
 
 
#endif /* I2C_SLAVE_HANDLER_H_ */  
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Appendix F: MITM Code – Raspberry Pi Version 

Main script 

# rpi_mitm_v5.py 
 
# Created:  June 10, 2020 
# Modified: June 15, 2020 
# Author:   THolliday 
 
# This script runs the prototype MITM, including: 
#   sbus comms 
#   sensor board control 
#   feedback control on forward direction (Ele) 
#   data logging 
 
## RPi Setup 
#!/usr/bin/python3 
 
## Imports 
import serial 
import time 
import csv 
import pigpio 
 
 
## Handler functions 
from sbusRX_handler import *    # sbus RX 
__all__ = ["SBUS_RX"] 
 
from sbusTX_handler import *    # sbus TX 
__all__ = ["SBUS_TX"] 
 
from sbusDL_handler import *    # sbus data logging 
__all__ = ["SBUS_DL"] 
 
from multi_sb_handler_v2 import *  # multi sensor board comms 
__all__ = ["multi_sb_ctrl"] 
 
from fb_ctrl_handler_v2 import *   # feedback control 
__all__ = ["mitm_fb_ctrl"] 
 
 
## main loop 
if __name__ == '__main__': 
 
    # Constants 
    sbusMIN = 172   # min sbus value 
    sbusMID = 992   # neutral sbus value 
    sbusMAX = 1811  # max sbus value 
 
    # flags 
    logFlag = 0     # flag for start of logging 
    armFlag = 0     # flag for system arming 
    sbFlag = 0      # flag for sb connected 
    distflag = 0    # flag for dist capture 
    fbFlag = 0      # flag for start of feedback control 
 
    # states 
    sbState = 0     # sensor board states:    
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                    #   0, trigger ultrasonic & tinyLiDARs 
                    #   1, request min dist from tinyLiDARs, & compare dist from all sensors 
                    #   2, request min dist between all sensors 
 
    # sb error threshold (mm) 
    eThres = 100; 
 
    # capture start of logging session 
    log_timestr = time.strftime('%d%m%Y-%H%M%S') 
     
    # initialize handlers 
    sbusRX = SBUS_RX('/dev/ttyAMA0') 
    sbusTX = SBUS_TX('/dev/ttyAMA0') 
    sbusDL = SBUS_DL(log_timestr) 
    sboard = multi_sb_ctrl(eThres,log_timestr) 
     
    # set activation and desired distances 
    desDist = [500,500] 
    actDist = [1000,1000] 
 
    # ask for activation and desired distances 
    #desDist = [0 for i in range(sboard.sb_count)] 
    #for kk in range(sboard.sb_count): 
    #    usrMes = 'Minimum desired distance (mm) for ' + sboard.sb_IDs[kk] + ' sensor board: ' 
    #    desDist[kk] = int(input(usrMes)) 
 
    # initialize feedback controller if sb connected 
    if not sboard.sb_count == 0: 
        fbCtrl = mitm_fb_ctrl(sboard.sb_count) 
        distBuff = [0 for ii in range(sboard.sb_count)] 
        sbFlag = 1                              # set flag 
 
    while True: 
        # simulate time between sbus frames (~15 ms) 
        time.sleep(0.008) 
 
        # reset TX buffer 
        TXbuff = [0 for ii in range(len(sbusRX.sbusChannels))] 
 
        # sbus RX 
        sbusRX.sbus_read() 
 
        # sbus frame received? 
        if sbusRX.isReady: 
            rxTime = time.time()    # save rx timestamp 
 
        # system armed? 
        if not sbusRX.sbusChannels[4]==sbusMAX: 
            if armFlag == 0:                        # notify disarmed state 
                print('System disarmed') 
                armFlag = 1                         # set flag 
        else: 
            if armFlag == 1:                        # notify armed state 
                print('System armed') 
            armFlag = 0                             # reset flag 
 
        # cap Ele value for fb ctrl testing 
        if sbusRX.sbusChannels[2]>1200: 
            sbusRX.sbusChannels[2] = 1200    
 
        # read min dist from sensor boards? 
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        if sbusRX.sbusChannels[7]==sbusMAX and sbFlag==1: 
            # trigger ultrasonics & tinyLiDARs 
            if sbState==0: 
                sboard.sb_ultrasonic_trig()     # trigger ultrasonics 
                sboard.sb_tinyLiDAR_trig()      # trigger tinyLiDARs & find min dist 
                sbState += 1                    # update state 
                if distflag==1: 
                    for ii in range(len(sboard.SBdist)): 
                        sboard.devID[ii] = 'R' 
                        sboard.SBdist[ii] = sboard.distBuff[ii] 
                    stext = 'S0'                # update state for log 
 
            # request dist value from TLs & call for comparison between all sensors 
            elif sbState==1: 
                sboard.sb_dist_capture()        # request TL dist value 
                sboard.sb_full_trig()           # call for min dist between all sensors 
                sbState += 1                    # update state 
                distflag = 1                    # set flag 
                stext = 'S1'                    # update state for log 
                 
            # request min dist between all sensors 
            elif sbState==2: 
                sboard.sb_dist_capture()        # request dist value 
                sbState = 0                     # reset flag 
                stext = 'S2'                    # update state for log 
 
        else: 
            sbState = 0                         # reset state 
            distflag = 0                        # reset flag 
             
        # run feedback control? 
        if sbusRX.sbusChannels[7]==sbusMAX and sbusRX.sbusChannels[9]==sbusMAX and 
distflag==1: 
            TXbuff = 
fbCtrl.fb_ctrl(actDist,desDist,sbusRX.sbusChannels,sboard.sb_IDs,sboard.SBdist) 
            if fbFlag == 0:                             # notify controller enable 
                print('Controller enabled') 
                fbFlag = 1                              # set flag 
        else: 
            for ii in range(len(sbusRX.sbusChannels)):  # fill TX buffer 
                TXbuff[ii] = sbusRX.sbusChannels[ii] 
            if fbFlag == 1:                             # notify controller disable 
                print('Controller disabled') 
                for ii in range(3):                     # reset controller buffers 
                    fbCtrl.front_err_buff[ii] = 0 
                    fbCtrl.front_fc_buff[ii] = 0 
            fbFlag = 0                                  # reset flag 
 
        # sbus TX 
        for ii in range(len(TXbuff)): 
            sbusTX.sbusChannels[ii] = TXbuff[ii]        # fill TX sbus channels 
        sbusTX.sbus_write() 
        txTime = time.time()                            # save tx timestamp 
 
        # log data 
        if sbusRX.sbusChannels[6]==sbusMAX: 
            sbusDL.sbus_data_log(sbusRX.sbusChannels,sbusTX.sbusChannels,rxTime,txTime) 
            if distflag == 1:                   # log sensor board values 
                sboard.sb_logging(stext,fbCtrl.ctrlEnable) 
            if logFlag == 0:                    # notify logging start 
                print('Logging started') 
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                logFlag = 1                     # set flag 
        else: 
            if logFlag == 1:                    # notify logging end 
                print('Logging ended') 
            logFlag = 0                         # reset flag 

 

LCAS feedback controller handler 

"""  
fb_ctrl_handler_v2.py 
 
Created:    Apr 3, 2020 
Modified:   June 2, 2020 
Author:     THolliday 
 
Script for running feedback control on the MITM. Currently 
limited to only the forward (Ele) direction. 
""" 
 
 
class mitm_fb_ctrl(): 
    def __init__(self,numSB): 
        # initialization 
 
        # Class Variables 
        self.front_err_buff = [0,0,0] 
        self.front_fc_buff = [0,0,0] 
        self.ctrlEnable = 0 
 
 
    def fb_ctrl(self,actDist,desDist,channelsIn,sbIDs,sbDist): 
        # feedback controller 
 
        # Constants 
        numSB = len(sbIDs)  # number of sensor boards 
        sbusMIN = 172 
        sbusMID = 992 
        sbusMAX = 1811 
 
        # Variables 
        modChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
        for ii in range(len(channelsIn)):       # set initial output to input 
            modChannels[ii] = channelsIn[ii] 
 
        # run controller 
        for kk in range(numSB): 
 
            ## Front (Ele 992-1811) ## 
            if sbIDs[kk]=='F': 
                # controller coefficients 
                a = [1,-1.9552,0.9552]      # denominator 
                b = [2.2435,-4.4752,2.2317] # numerator 
 
                # calculate error to des dist & convert to meters 
                self.front_err_buff[0] = (sbDist[kk]-desDist[kk])/1000   
 
                # controller 
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                self.front_fc_buff[0] = (-a[2]*self.front_fc_buff[2] - 
a[1]*self.front_fc_buff[1]) + \ 
                    (b[2]*self.front_err_buff[2] + b[1]*self.front_err_buff[1] + 
b[0]*self.front_err_buff[0]) 
 
                # saturation check 
                if self.front_fc_buff[0] > 1: 
                    self.front_fc_buff[0] = 1 
                elif self.front_fc_buff[0] < -1: 
                    self.front_fc_buff[0] = -1 
 
                # check if in activation window 
                if (sbDist[kk]<=actDist[kk]) and (channelsIn[2]>=sbusMID): 
                    # modify Ele sbus value 
                    modChannels[2] = int(self.front_fc_buff[0]*(sbusMAX-sbusMID) + sbusMID)    
# scale back to sbus from normalized 
                    self.ctrlEnable = 1 
                else: 
                    self.ctrlEnable = 0 
 
                # store error values for next iteration 
                self.front_err_buff[2] = self.front_err_buff[1] 
                self.front_err_buff[1] = self.front_err_buff[0] 
                self.front_err_buff[0] = 0 
                 
                # store controller outputs for next iteration 
                self.front_fc_buff[2] = self.front_fc_buff[1] 
                self.front_fc_buff[1] = self.front_fc_buff[0] 
                self.front_fc_buff[0] = 0 
                 
 
            ## Back (Ele 172-992) ## 
            if sbIDs[kk]=='B': 
                pass 
 
 
            ## Left (Ail 172-992) ## 
            if sbIDs[kk]=='L': 
                pass 
 
 
            ## Right (Ail 992-1811) ## 
            if sbIDs[kk]=='R': 
                pass 
 
 
            ## Up (Thr 992-1811) ## 
            if sbIDs[kk]=='U': 
                pass 
 
 
            ## Down (Thr 172-992) ## 
            if sbIDs[kk]=='D': 
                pass 
 
         
        # return modified channels 
        return modChannels 
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Sensor board communications handler 

"""  
multi_sb_handler_v2.py 
 
Created:    Feb 25, 2020 
Modified:   June 15, 2020 
Author:     THolliday 
 
Script for controlling and logging multiple 
sensor boards 
""" 
 
## RPi Setup 
#!/usr/bin/env python3 
 
## Imports 
import time 
import pigpio 
import csv 
 
 
class multi_sb_ctrl(): 
    def __init__(self,err,timestr): 
        # sensor board comms initialization 
 
        ## Constants 
        BUS = 1 
        errThres = err 
        max_numSB = 10 
 
        ## Variables 
        i2c_count = 0 
        self.sb_count = 0 
 
        ## scan for sensor boards 
        i2cScan = i2c_scan() 
        sb_addresses = i2cScan.i2c_scanner(BUS,max_numSB)   # find sb addresses 
        for jj in range(len(sb_addresses)):                 # check for non-zero addresses 
            if not sb_addresses[jj] == 0: 
                i2c_count += 1 
 
        self.sb_handles = [0 for i in range(i2c_count)]      # initialize handle list 
        self.sb_IDs = [0 for i in range(i2c_count)]          # initialize ID list 
 
        ## Initialize sensor board i2c 
        self.i2c = pigpio.pi() 
 
        ## initialize sensor boards 
        SBcommand = 0x45                # error threshold set command 
        for kk in range(i2c_count): 
            try: 
                # attempt to setup board at given address 
                self.sb_handles[kk] = self.i2c.i2c_open(BUS,sb_addresses[kk])         # open 
comms with sb 
                self.i2c.i2c_write_device(self.sb_handles[kk],[SBcommand,errThres])   # send 
threshold 
                self.sb_count += 1 
 
                # identify board  
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                if sb_addresses[kk] == 0x12:   # front SB 
                    self.sb_IDs[kk] = 'F' 
                if sb_addresses[kk] == 0x24:   # back SB 
                    self.sb_IDs[kk] = 'B' 
                if sb_addresses[kk] == 0x36:   # left SB 
                    self.sb_IDs[kk] = 'L' 
                if sb_addresses[kk] == 0x48:   # right SB 
                    self.sb_IDs[kk] = 'R' 
                if sb_addresses[kk] == 0x5A:   # up SB 
                    self.sb_IDs[kk] = 'U' 
                if sb_addresses[kk] == 0x6C:   # down SB 
                    self.sb_IDs[kk] = 'D' 
 
            except: 
                print('Non-sensor board or no response: ',hex(sb_addresses[kk])) 
 
        ## inform boards identified 
        print('Identified sensor boards:',self.sb_IDs) 
 
        ## Class Variables 
        self.distBuff = [0 for i in range(self.sb_count)]   # initialize dist buffer 
        self.numRead = 10                                   # number of readings in SMA window 
        self.readNdx = 0                                    # readings index 
        self.runSum = [0 for i in range(self.sb_count)]     # running sum for SMA 
        self.distReadings = [[0 for i in range(self.sb_count)] for j in range(self.numRead)]    
# SMA readings buffer 
 
        ## Initialize log 
        self.sb_timestr = timestr 
        # create/open log csv file (with time in file name) 
        with open('/home/pi/data_logs/SB_log_' + str(self.sb_timestr) + '.csv','w') as 
csvfile: 
            # initialize csv 
            sblog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
            # list available sensor boards 
            sblog.writerow(['Sensor_boards:',self.sb_IDs]) 
            # write column titles 
            sblog.writerow(['State','Board','Status','Device','Dist','Ctrl','Tsb']) 
 
             
    def sb_ultrasonic_trig(self): 
        # sends ultrasonic trigger command 
 
        SBcommand = 0x55    # 'U',85; trigger ultrasonic command 
        for kk in range(self.sb_count): 
            self.i2c.i2c_write_byte(self.sb_handles[kk],SBcommand)     # write to SB 
 
 
    def sb_tinyLiDAR_trig(self): 
        # sends only tinyLiDAR trigger command and requests measured dist 
 
        SBcommand = 0x54    # 'T',84; trigger only tinyLiDARs 
        for kk in range(self.sb_count): 
            self.i2c.i2c_write_byte(self.sb_handles[kk],SBcommand)     # write to SB 
 
 
    def sb_full_trig(self): 
        # sends command to trigger tinyLiDARs and compare dists measured by all three sensors 
         
        SBcommand = 0x56    # 'V'; trigger TLs and capture ultrasonic dist 
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        for kk in range(self.sb_count): 
            self.i2c.i2c_write_byte(self.sb_handles[kk],SBcommand)     # write to SB 
 
        
    def sb_dist_capture(self): 
        # requests min dist from each sensor board 
 
        RX_BYTES = 4 
        buffFlag = 0 
        self.SBdist = [0 for i in range(self.sb_count)]             # reset dist list 
        self.devID = [0 for i in range(self.sb_count)]              # reset ID list 
        self.sb_sample_time = [0 for i in range(self.sb_count)]     # reset sample time list 
 
        for kk in range(self.sb_count): 
            (count,data) = self.i2c.i2c_read_device(self.sb_handles[kk],RX_BYTES)   # read min 
dist 
            minDist = list(data)                                                    # convert 
tuple 
            self.SBdist[kk] = (minDist[1]<<8) | minDist[2]                          # combine 
dist bytes 
            self.devID[kk] = minDist[3]                                             # save 
sensor ID 
            self.sb_sample_time[kk] = time.time()                                   # save 
sample time 
 
            # error check distance values or if in first state 
            if self.SBdist[kk]==0xffff: 
                self.devID[kk] = 'X'                    # measurement failure 
                self.SBdist[kk] = self.distBuff[kk]     # replace error with previous value 
 
            elif self.SBdist[kk]==0xbbbb: 
                self.devID[kk] = 'E'                    # error in tinyLiDAR measurement 
                self.SBdist[kk] = self.distBuff[kk]     # replace error with previous value 
 
            #elif (self.SBdist[kk]<1000)and(self.distBuff[kk]-self.SBdist[kk])>=1000: 
            #    self.devID[kk] = 'Z'                    # significant drop in measurements 
            #    self.SBdist[kk] = self.distBuff[kk]     # replace error with previous value 
 
            else: 
                buffFlag = 1    # set flag to update buffer after SMA 
                 
            # filter using 10-point SMA 
            temp = self.SBdist[kk]                      # bring in new sample 
            temp /= self.numRead                        # divide by length of window 
            self.runSum[kk] += temp                     # add new sample to running sum 
            temp = self.distReadings[self.readNdx][kk]  # find older sample that is out of 
window 
            temp /= self.numRead                        # divide by length of window 
            self.runSum[kk] -= temp                     # subtract old sample from running sum 
            self.distReadings[self.readNdx][kk] = self.SBdist[kk]   # store new sample in SMA 
buffer 
            self.SBdist[kk] = round(self.runSum[kk])    # replace with filtered value 
 
            # SMA index check 
            if not (self.readNdx >= self.numRead - 1): 
                self.readNdx += 1       # increase readings count 
            else:                       # reached end of window 
                self.readNdx = 0        # reset count 
 
            # update buffer 
            if buffFlag==1: 
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                self.distBuff[kk] = self.SBdist[kk]     # update buffer 
                buffFlag = 0 
 
 
    def sb_logging(self,stext,ctrlEN): 
        # logs sb dist values 
 
        with open('/home/pi/data_logs/SB_log_' + str(self.sb_timestr) + '.csv','a') as 
csvfile: 
            # initialize csv 
            sblog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
 
            # write sb dists and timestamp data  
            for kk in range(self.sb_count): 
                if self.devID[kk]==85:      # change ultrasonic ID to ASCII character 
                    self.devID[kk] = 'U' 
                
sblog.writerow([stext,self.sb_IDs[kk],str(self.devID[kk]),str(self.SBdist[kk]), \ 
                    str(ctrlEN),str(self.sb_sample_time[kk])]) 
 
 
 
 
class i2c_scan(): 
    def __init__(self): 
        # initialization 
 
        # initialize i2c 
        self.i2c = pigpio.pi() 
 
 
    def close_handles(self): 
        # closes all open i2c handles 
 
        ## close all i2c handles 
        h = self.i2c.i2c_open(1,118)    # open i2c handle 
        self.i2c.i2c_close(h)           # close i2c handle 
        if h > 30:                      # check for max number of handles 
            x = h - 1                    
            while x >= 0:               # close all open handles 
                self.i2c.i2c_close(x) 
                x = x - 1 
            print(str(h),'pigpio handles closed') 
 
 
    def i2c_scanner(self,BUS,num): 
        # scans i2c bus for number of slaves 
 
        # Variables 
        i2cDevs = [0 for j in range(num)]   # vector for i2c devices 
        count = 0 
 
        # close handles 
        self.close_handles()    # close if max number of i2c handles  
 
        # begin scan 
        for device in range(128): 
            h = self.i2c.i2c_open(BUS,device)   # open i2c comms at address 
 
            try:                                # check for device at address 



185 

                self.i2c.i2c_write_byte(h,0xFA) 
                i2cDevs[count] = device         # save detected device address 
                count += 1                      # update count 
 
            except:                             # no device detected at address 
                pass 
 
            self.i2c.i2c_close(h)               # close i2c comms at address 
 
        self.i2c.stop                           # end i2c comms 
 
        return i2cDevs 

 

SBUS RX handler 

# sbusRX_handler.py 
 
# Created on:   Nov 4, 2019 
# Modified:     July 31, 2020 
# Author:       THolliday 
 
# derived from: 
#   sbusPythonDriver by Donald Simonet on Framagit 
#   https://framagit.org/dsimonet/sbusPythonDriver 
 
#   sbus_ultrasonic_v5 by THolliday 
#       sbus_handler.c by BHill & THolliday 
 
# This script captures sbus frames and decodes them into individual channels. 
# An sbus frame is made up of 25 bytes, with 16 channels spread out over  
# 22 of the bytes. 
 
 
## Imports 
import serial 
import time 
 
 
class SBUS_RX(): 
    def __init__(self, _uart_port = '/dev/ttyAMA0'): 
        # sbus comms initialization 
 
        # RPi uart initialization 
        self.ser = serial.Serial( 
            port = _uart_port,                  # indicate UART port 
            baudrate = 100000,                  # sbus runs at 100k baud 
            parity = serial.PARITY_EVEN,        # set even parity 
            stopbits = serial.STOPBITS_TWO,     # set two stopbits 
            bytesize = serial.EIGHTBITS,        # set byte size to 8 bits 
            timeout = 0                         # disable UART timeout 
        ) 
 
        # set sbus constants 
        self.START_BYTE = 0x0F    # startbyte 
        self.END_BYTE = 0x00      # endbyte 
        self.SBUS_FRAME_LEN = 25    # full frame length is 25 bytes 
        self.SBUS_CHAN_LEN = 16     # 16 individual channels 
        self.SBUS_BITS = 11         # number of bits per channel 
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        # variable initialization 
        self.isReady = True                     # RX flag 
        self.sbusFrameIn = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]  # captured 
sbus RX frame 
        self.sbusFrame = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]    # endian-
swapped sbus RX frame 
        self.sbusChanIn = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]                   # RX channels 
        self.sbusChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]                 # RX endian-
swapped channels 
         
 
    def chan_endian_swap(self): 
        # swaps the bit order of the sbus channel values 
 
        for i in range(0,(len(self.sbusChanIn))): 
            temp = 0 
            bmask = 0x8000 
            for j in range(0,16): 
                if j<8: 
                    temp |= (self.sbusChanIn[i]&int(bmask))>>(15-(j*2))  # first byte 
                else: 
                    temp |= (self.sbusChanIn[i]&int(bmask))<<((j*2)-15)  # second byte 
                bmask /= 2                                          # adjust mask 
            temp >>= (16-self.SBUS_BITS)                            # account for number of 
bits per packet 
            self.sbusChannels[i] = temp                             # store channel value 
 
 
    def frame_endian_swap(self): 
        # swaps the bit order of the full sbus frame 
 
        for i in range(0,len(self.sbusFrameIn)): 
            temp = 0 
            bmask = 0x80 
            for j in range(0,8): 
                if j<4: 
                    temp |= ((self.sbusFrameIn[i])&int(bmask))>>(7-(j*2))    # first nibble 
                else: 
                    temp |= ((self.sbusFrameIn[i])&int(bmask))<<((j*2)-7)    # second nibble 
                bmask /= 2                                              # adjust mask 
            self.sbusFrame[i] = temp                                    # store frame values 
 
 
    def sbus_read(self): 
        # reads sbus values over the serial port on the RPi 
 
        if self.ser.inWaiting() >= self.SBUS_FRAME_LEN*2:   # load at least two full frames 
            self.isReady = False                            # processing frames 
            rxBuff = self.ser.read(self.ser.inWaiting())    # capture sbus bytes 
            self.numBytes = len(rxBuff)                     # save number of received bytes 
            # parse full frame  
            for rr in range(0,self.SBUS_FRAME_LEN):         # step through bytes 
                # look for end byte, working backwards 
                if rxBuff[len(rxBuff)-1-rr] == self.END_BYTE: 
                    # based on end byte, find start byte 
                    if rxBuff[len(rxBuff)-rr-self.SBUS_FRAME_LEN] == self.START_BYTE: 
                        # frame is fully mapped and parity checked due to 8E2 format 
                        # only need to remap the frame if it is different than the last 
                        newFrame = rxBuff[len(rxBuff)-rr-self.SBUS_FRAME_LEN:len(rxBuff)-1-rr] 
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                        if not self.sbusFrameIn == newFrame:    # check if new frame is diff 
than previous frame (save CPU cycles) 
                            self.sbusFrameIn = newFrame         # store new frame     
                            self.sbus_decode()                  # decode new frame 
                         
                        # sbus frame succesfully captured and checked for changes    
                        self.isReady = True                     # RX frame is ready 
                        break 
 
             
    def sbus_decode(self): 
        # decodes an sbus frame into 16 individual channels 
 
        # Conversion parameters 
        # chan number   [1,     2,      3,      4,      5,      6,      7,      8,      9,      
10,     11,     12,     13,     14,     15,     16] 
        byte_num =      [0,     1,      3,      4,      5,      7,      8,      9,      11,     
12,     14,     15,     16,     18,     19,     20] 
        lowBS =         [5,     2,      7,      4,      1,      6,      3,      0,      5,      
2,      7,      4,      1,      6,      3,      0] 
        lowbitmask =    [0xE0,  0xFC,   0x80,   0xF0,   0xFE,   0xC0,   0xF8,   0xFF,   0xE0,   
0xFC,   0x80,   0xF0,   0xFE,   0xC0,   0xF8,   0xFF] 
        midBS =         [3,     6,      1,      4,      7,      2,      5,      8,      3,      
6,      1,      4,      7,      2,      5,      8] 
        midbitmask =    [0xFF,  0x1F,   0xFF,   0x7F,   0x0F,   0xFF,   0x3F,   0x07,   0xFF,   
0x1F,   0xFF,   0x7F,   0x0F,   0xFF,   0x3F,   0x07] 
        highBS =        [0,     0,      9,      0,      0,      10,     0,      0,      0,      
0,      9,      0,      0,      10,     0,      0] 
        highbitmask =   [0x00,  0x00,   0x03,   0x00,   0x00,   0x01,   0x00,   0x00,   0x00,   
0x00,   0x03,   0x00,   0x00,   0x01,   0x00,   0x00] 
 
        # swap bit order over entire frame (UART reads as LSB, but SBUS is MSB) 
        self.frame_endian_swap() 
 
        # decode data bytes 
        for i in range(0,self.SBUS_CHAN_LEN): 
            self.sbusChanIn[i] = ((self.sbusFrame[byte_num[i]]&highbitmask[i])<<highBS[i]) \ 
                + ((self.sbusFrame[byte_num[i]+1]&midbitmask[i])<<midBS[i]) \ 
                + ((self.sbusFrame[byte_num[i]+2]&lowbitmask[i])>>lowBS[i]) 
 
        # swap channel bit order (SBUS has channels encoded as LSB) 
        self.chan_endian_swap() 

 

SBUS TX handler 

# sbusTX_handler.py 
 
# Created on:   Oct 29, 2019 
# Modified:     July 31, 2020 
# Author:       THolliday 
 
# derived from: 
#   sbusPythonDriver by Donald Simonet on Framagit 
#   https://framagit.org/dsimonet/sbusPythonDriver 
 
#   sbus_ultrasonic_v5 by THolliday 
#       sbus_handler.c by BHill & THolliday 
 
# This script takes 16 individual channels and encodes them into an sbus frame. 
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# An sbus frame is made up of 25 bytes, with the channels spread out over  
# the bytes. 
 
## Imports 
import serial 
import time 
 
 
class SBUS_TX(): 
    def __init__(self, _uart_port = '/dev/ttyAMA0'): 
        # sbus comms initialization 
 
        # RPi uart initialization 
        self.ser = serial.Serial( 
            port = _uart_port,                  # indicate UART port 
            baudrate = 100000,                  # sbus runs at 100k baud 
            parity = serial.PARITY_EVEN,        # set even parity 
            stopbits = serial.STOPBITS_TWO,     # set to two stopbits 
            bytesize = serial.EIGHTBITS,        # set byte size to 8 bits 
            timeout = 0                         # disable UART timeout 
        ) 
 
        # set sbus constants 
        self.START_BYTE = 0xF0                  # first byte 
        self.END_BYTE = 0x00                    # last byte 
        self.sbusNbits = 11                     # bits per channel 
        self.SBUS_FRAME_LEN = 25                # bytes per frame 
 
        # variable initialization 
        self.numBytes = 0                       # number of transmitted bytes 
        self.sbusChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]                 # RX channels 
        self.sbusChanBitSwap = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]              # RX endian-
swapped channels 
        self.sbusBytes = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]    # TX frame 
        self.sbusFrame = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]    # TX endian-
swapped frame 
 
 
    def chan_endian_swap(self): 
        # swaps the bit order of the sbus channels 
 
        for i in range(0,(len(self.sbusChannels))): 
            temp = 0 
            bmask = 0x8000 
            for j in range(0,16): 
                if (j<8): 
                    temp |= (self.sbusChannels[i]&int(bmask))>>(15-(j*2))    # first byte 
                else: 
                    temp |= (self.sbusChannels[i]&int(bmask))<<((j*2)-15)    # second byte 
                bmask /= 2                                              # adjust mask 
            temp >>= (16-self.sbusNbits)                                # shift to account for 
number of bits per channel 
            self.sbusChanBitSwap[i] = temp                              # store channel 
 
 
    def frame_endian_swap(self): 
        # swaps the bit order of the entire frame 
 
        for i in range(0,self.SBUS_FRAME_LEN): 
            temp = 0 
            bmask = 0x80 
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            for j in range(0,8): 
                if (j<4): 
                    temp |= (self.sbusBytes[i]&int(bmask))>>(7-(j*2))   # first nibble 
                else: 
                    temp |= (self.sbusBytes[i]&int(bmask))<<((j*2)-7)   # second nibble 
                bmask /= 2                                              # adjust mask 
            self.sbusFrame[i] = temp                                    # store byte 
 
 
    def sbus_encode(self): 
        # encode 16 channels into single sbus frame 
 
        # Conversion parameters 
        # Byte number   [1      2       3       4       5       6       7       8       9       
10      11      12      13      14      15      16      17      18      19      20      21      
22] 
        chan1num =      [0,     0,      1,      2,      2,      3,      4,      5,      5,      
6,      7,      8,      8,      9,      10,     10,     11,     12,     13,     13,     14,     
15] 
        chan2num =      [0,     1,      2,      2,      3,      4,      5,      5,      6,      
7,      8,      8,      9,      10,     10,     11,     12,     13,     13,     14,     15,     
16] 
        chan1mask =     [0x00,  0xE0,   0xFC,   0x00,   0x80,   0xF0,   0xFE,   0x00,   0xC0,   
0xF8,   0xFF,   0x00,   0xE0,   0xFC,   0x00,   0x80,   0xF0,   0xFE,   0x00,   0xc0,   0xF8,   
0xFF] 
        chan2mask =     [0xff,  0x1F,   0x03,   0xFF,   0x7F,   0x0F,   0x01,   0xFF,   0x3F,   
0x07,   0x00,   0xFF,   0x1F,   0x03,   0xFF,   0x7F,   0x0F,   0x01,   0xFF,   0x3F,   0x07,   
0x00] 
        chan1BS =       [0,     5,      2,      0,      7,      4,      1,      0,      6,      
3,      0,      0,      5,      2,      0,      7,      4,      1,      0,      6,      3,      
0] 
        chan2BS =       [3,     6,      9,      1,      4,      7,      10,     2,      5,      
8,      0,      3,      6,      9,      1,      4,      7,      10,     2,      5,      8,      
0] 
 
        # swap bit order of channels to match SBUS format (reverse of the last step of decode) 
        self.chan_endian_swap() 
 
        # add startbyte 
        self.sbusBytes[0] = self.START_BYTE 
         
        # add in channels (note that the channels are spread across multiple bytes) 
        for rr in range(0,22): 
            tempFrame = 0 
            tempFrame = (self.sbusChanBitSwap[chan1num[rr]]<<chan1BS[rr]) & chan1mask[rr]    # 
add in first channel data 
            tempFrame |= (self.sbusChanBitSwap[chan2num[rr]]>>chan2BS[rr]) & chan2mask[rr]   # 
add in second channel data 
            self.sbusBytes[rr+1] = tempFrame      # store byte 
 
        # add flags & digital  
        self.sbusBytes[23] = 0 
 
        # add endbyte 
        self.sbusBytes[24] = self.END_BYTE 
 
        # swap bit order of entire SBUS frame (SBUS is read as MSB but UART transmits as LSB) 
        self.frame_endian_swap() 
 
 
    def sbus_write(self): 
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        # transmit the full sbus frame over UART 
 
        # encode sbus frame 
        self.sbus_encode() 
 
        # transmit the frame 
        self.numBytes = self.ser.write(self.sbusFrame) 

 

SBUS data logging handler 

# sbusDL_handler.py 
 
# Created on:   Jan 8, 2020 
# Modified:     May 28, 2020 
# Author:       THolliday 
 
# This script holds dedicated functions for logging sbus data 
# on a Raspberry Pi. 
 
 
## Imports 
import time 
import csv 
 
 
class SBUS_DL(): 
    def __init__(self, timestr): 
        # sbus data logging initialization 
 
        # create/open log csv file (with time in file name) 
        self.sbus_timestr = timestr 
        with open('/home/pi/data_logs/sbus_log_'+str(self.sbus_timestr)+'.csv','w') as 
csvfile: 
            # initialize csv 
            sbuslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
             
            # add column titles 
            
#sbuslog.writerow(['RX/TX','Ch0','Ch1','Ch2','Ch3','Ch4','Ch6','Ch7','Ch9','Tsbus']) 
            
sbuslog.writerow(['RX/TX','Thr','Ail','Ele','Rud','ARM','LOG','sbEN','Ctrl','Tsbus']) 
 
 
    def sbus_data_log(self,rx,tx,rxTime,txTime): 
        # logs sbus channel values of RX/TX  
 
        with open('/home/pi/data_logs/sbus_log_'+str(self.sbus_timestr)+'.csv','a') as 
csvfile: 
            # initialize csv 
            sbuslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
 
            # log RX channels 
            
sbuslog.writerow(['RX',str(rx[0]),str(rx[1]),str(rx[2]),str(rx[3]),str(rx[4]),str(rx[6]), 
                              str(rx[7]),str(rx[9]),str(rxTime)]) 
             
            # log TX channels 
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sbuslog.writerow(['TX',str(tx[0]),str(tx[1]),str(tx[2]),str(tx[3]),str(tx[4]),str(tx[6]), 
                              str(tx[7]),str(tx[9]),str(txTime)]) 
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Appendix G: MITM Code – GPS & Accelerometer Version 

Main script 

# sbus_gps_accel_v3.py 
 
# Created on:   Jan 30, 2020 
# Modified:     Mar 6, 2020 
# Author:       THolliday 
 
# This script runs and captures data for sbus, gps, 
# accel logging 
 
## RPi Setup 
#!/usr/bin/python3 
 
## Imports 
import serial 
import time 
import csv 
import pigpio 
from gps3 import agps3 
import os 
 
## Handler functions 
from sbusRX_handler import *    # sbus RX 
__all__ = ["SBUS_RX"] 
 
from sbusTX_handler import *    # sbus TX 
__all__ = ["SBUS_TX"] 
 
from sbusDL_handler import *    # sbus data logging 
__all__ = ["SBUS_DL"] 
 
from gps_handler import *       # GPS logging 
__all__ = ["GPS"] 
 
from accel_handler_v2 import *  # accel logging 
__all__ = ["ACCEL"] 
 
 
## start main() 
if __name__ == '__main__': 
 
    # Constants 
    sbusMIN = 172 
    sbusNEU = 992 
    sbusMAX = 1811 
 
    # Flags 
    stepFlag = 0        # flag for start of step 
    logFlag = 0         # flag for start of logging 
    armFlag = 0         # flag for system arming 
 
    # capture start of logging session 
    log_timestr = time.strftime('%d%m%Y-%H%M%S') 
     
    # initialize sbus 
    sbusRX = SBUS_RX('/dev/ttyAMA0') 
    sbusTX = SBUS_TX('/dev/ttyAMA0') 
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    sbusDL = SBUS_DL(log_timestr) 
 
    # initialize gps & accel 
    gps = GPS(log_timestr) 
    accel = ACCEL(log_timestr) 
 
    while True: 
        # simulate time between sbus frames (~15 ms) 
        time.sleep(0.01) 
 
        # sbus RX 
        sbusRX.sbus_read() 
 
        # check for new RX frame 
        if sbusRX.isReady: 
            sbusTX.sbusChannels = sbusRX.sbusChannels 
            rxTime = time.time() 
 
        # system armed? 
        if not sbusTX.sbusChannels[4]==sbusMAX:     # set to neutral values 
            sbusTX.sbusChannels[1] = sbusNEU        #   aileron 
            sbusTX.sbusChannels[2] = sbusNEU        #   elevator 
            if armFlag == 0:                        # notify disarmed state 
                print('System disarmed') 
                armFlag = 1                         # set flag 
        else: 
            if armFlag == 1:                        # notify armed state 
                print('System armed') 
            armFlag = 0                             # reset flag 
 
 
        # set forward (Ele) level 
        if sbusTX.sbusChannels[7]==sbusMAX: 
            sbusTX.sbusChannels[2] = int(0.5*sbusTX.sbusChannels[8] + 906)          # convert 
level to sbus value on Ele 
            if stepFlag == 0:                                                       # notify 
start of step 
                print('Elevator step started with value: ',str(sbusTX.sbusChannels[2])) 
                stepFlag = 1                                                        # set flag 
        else: 
            if stepFlag == 1:                                                       # notify 
end of step 
                print('Elevator step ended') 
            stepFlag = 0                                                            # reset 
flag 
 
        # sbus TX 
        sbusTX.sbus_write() 
        txTime = time.time() 
 
        # log data 
        if sbusTX.sbusChannels[6]==sbusMAX: 
            gps.gps_logging() 
            accel.accel_logging() 
            sbusDL.sbus_data_log(sbusRX.sbusChannels,sbusTX.sbusChannels,rxTime,txTime) 
            if logFlag == 0:                    # notify logging start 
                print('Logging started') 
                logFlag = 1                     # set flag 
        else: 
            if logFlag == 1:                    # notify logging end 
                print('Logging ended') 
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            logFlag = 0                         # reset flag 

 

GPS handler 

# gps_handler.py 
 
# Created on:   Jan 30, 2020 
# Modified:     Mar 2, 2020 
# Author:       THolliday 
 
# This script controls a GPS via gps3 
 
#!/usr/bin/python3 
 
## Imports 
from gps3 import agps3 
import time 
import csv 
import os 
 
 
class GPS(): 
    def __init__(self,timestr): 
 
        ## Setup GPS 
        #print('Setting up GPS...') 
        #os.system('sudo sh ./startup/gps_startup.sh') 
        #print('GPS setup') 
 
        ## initialize gps 
        self.gps_socket = agps3.GPSDSocket()     # set socket to default port 
        self.data_stream = agps3.DataStream()    # set up data stream 
 
        ## create/open log csv file (with time in file name) 
        self.gps_timestr = timestr 
        with open('/home/pi/data_logs/gps_log_'+str(self.gps_timestr)+'.csv','w') as csvfile: 
            # initialize csv 
            gpslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
            # write column titles 
            gpslog.writerow(['lat','long','alt','Tgps'])  
 
        ## start gps comms 
        self.gps_socket.connect()    # connect to gps module on default port 
        self.gps_socket.watch()      # begin data monitoring  
 
 
    def gps_logging(self): 
        # check for new data and if so log the data 
 
        for new_data in self.gps_socket: 
            if new_data: 
                self.data_stream.unpack(new_data)    # separate gps data 
                timelog = time.time()           # capture new sample time 
 
                # log new gps data 
                with open('/home/pi/data_logs/gps_log_'+str(self.gps_timestr)+'.csv','a') as 
csvfile: 
                    # initialize csv 
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                    gpslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
                    # write lat, long, alt, and timestamp data 
                    
gpslog.writerow([str(self.data_stream.lat),str(self.data_stream.lon),str(self.data_stream.alt)
,str(timelog)]) 
 
            break 

 

Accelerometer handler 

# accel_handler_v2.py 
 
# Created on:   Feb 12, 2020 
# Modified:     Feb 25, 2020 
# Author:       THolliday 
 
# This handler allows a RPi to capture and log 
# data from a BMA280 accelerometer using the PIGPIO 
# library. 
 
#!/usr/bin/python3 
 
## Imports 
import time 
import pigpio 
import csv 
 
class ACCEL(): 
    def __init__(self,timestr): 
        ## Registers 
        self.ACCD_X_LSB = 0x02  # LSB of x-accel measurement register 
        PMU_RANGE = 0x0F        # measurement sensitivity register 
        PMU_BW = 0x10           # measurement bandwidth register 
        SOFTRESET = 0x14        # reset register 
        OFC_SETTING = 0x37      # compensation targets register       
        OFC_CTRL = 0x36         # compensation control register 
        OFC_OFF_X = 0x38        # x-axis offset register 
        OFC_OFF_Y = 0x39        # y-axis offset register 
        OFC_OFF_Z = 0x3A        # z-axis offset register 
 
        ## Commands 
        RANGE_2G = 0x03     # measurement sensitivity 
        BW_62_5Hz = 0x0B    # measurement bandwidth, 125-Hz sample rate 
 
        ## Slave address 
        bma280_address = 0x19 
 
        ## Constants 
        BUS = 1             # i2c buss 
        self.RX_BYTES = 6   # number of bytes to receive 
        self.numRead = 10   # number of readings 
 
        ## Variables 
        offsets = [0,0,0]   # axes offsets for fast compensation 
        fcRes = 7.8125      # mg/LSB, based on min trigger amount 
        self.errCount = 0               # read error count 
        self.accelBuff = [0,0,0]        # accel values [x,y,z] 
        self.readNdx = 0                # samples/readings count 
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        self.accel_accum = [0,0,0,0]    # running sum for moving average 
        self.adxlReadings = [[0 for i in range(3)] for j in range(self.numRead)]     # 
initialize moving average vector 
 
        ## Initialize log 
        self.accel_timestr = timestr 
        # create/open log csv file (with time in file name) 
        with open('/home/pi/data_logs/accel_log_' + str(self.accel_timestr) + '.csv','w') as 
csvfile: 
            # initialize csv 
            accellog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
            # write column titles 
            accellog.writerow(['Xaccel','Yaccel','Zaccel','Taccel']) 
 
        ## Initialize i2c 
        self.i2c = pigpio.pi() 
        self.bma280_handle = self.i2c.i2c_open(BUS,bma280_address)   # open i2c comms with 
BMA280 
        time.sleep(0.005) 
 
        ## Setup BMA280 
        try: 
            self.i2c.i2c_write_byte_data(self.bma280_handle,SOFTRESET,0xB6)     # reset sensor 
        except: 
            print('Accel comms failed. Retrying...') 
            time.sleep(0.005) 
            self.i2c.i2c_write_byte_data(self.bma280_handle,SOFTRESET,0xB6)     # reset sensor 
 
        self.i2c.i2c_write_byte_data(self.bma280_handle,PMU_RANGE,RANGE_2G)     # measurement 
sensitivity 
        time.sleep(0.005) 
        self.i2c.i2c_write_byte_data(self.bma280_handle,PMU_BW,BW_62_5Hz)       # bandwidth 
        time.sleep(0.005) 
 
        ## Run fast compensation 
        #if input("Find axes compensations for accelerometer? (y/n) ") == 'y': 
        # indicate beginning of process to user 
        print('Hold drone level and motionless for compensation') 
        time.sleep(2) 
        print('Beginning fast compensation...') 
 
        # set compensation targets (0,0,+1) g 
        self.i2c.i2c_write_byte_data(self.bma280_handle,OFC_SETTING,(0x20|0x01)) 
 
        # x-axis compensation 
        self.i2c.i2c_write_byte_data(self.bma280_handle,OFC_CTRL,0x20) 
        while not (0x10 & self.i2c.i2c_read_byte_data(self.bma280_handle,OFC_CTRL)): 
            pass 
 
        # y-axis compensation 
        self.i2c.i2c_write_byte_data(self.bma280_handle,OFC_CTRL,0x40) 
        while not (0x10 & self.i2c.i2c_read_byte_data(self.bma280_handle,OFC_CTRL)): 
            pass 
         
        # z-axis compensation 
        self.i2c.i2c_write_byte_data(self.bma280_handle,OFC_CTRL,0x60) 
        while not (0x10 & self.i2c.i2c_read_byte_data(self.bma280_handle,OFC_CTRL)): 
            pass 
 
        # save x-offset 
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        (count,data) = self.i2c.i2c_read_i2c_block_data(self.bma280_handle,OFC_OFF_X,2) 
        temp = list(data) 
        offsets[0] = 
int.from_bytes([temp[0],temp[1]],byteorder='little',signed=True)*(fcRes/256)/1000 
 
        # save y-offset 
        (count,data) = self.i2c.i2c_read_i2c_block_data(self.bma280_handle,OFC_OFF_Y,2) 
        temp = list(data) 
        offsets[1] = 
int.from_bytes([temp[0],temp[1]],byteorder='little',signed=True)*(fcRes/256)/1000 
 
        # save z-offset 
        (count,data) = self.i2c.i2c_read_i2c_block_data(self.bma280_handle,OFC_OFF_Z,2) 
        temp = list(data) 
        offsets[2] = 
int.from_bytes([temp[0],temp[1]],byteorder='little',signed=True)*(fcRes/256)/1000 
 
        # write offsets to log 
        with open('/home/pi/data_logs/accel_log_' + str(self.accel_timestr) + '.csv','a') as 
csvfile: 
                # initialize csv 
                accellog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
                # write accel and timestamp data 
                
accellog.writerow([str(offsets[0]),str(offsets[1]),str(offsets[2]),'mg_offsets']) 
 
        # denote completion of compensation 
        print('Compensation finished & offsets recorded. Ready to fly!') 
 
 
 
    def accel_logging(self): 
        # capture and convert accel values, and run a moving average filter over 10 samples 
 
        # check accel values 
        try: 
            (count,data) = 
self.i2c.i2c_read_i2c_block_data(self.bma280_handle,self.ACCD_X_LSB,self.RX_BYTES) 
        except: 
            count = 0 
 
        if count == self.RX_BYTES: 
            # convert tuple to list 
            tempVal = list(data) 
 
            # fill buffer [x,y,z] 
            self.accelBuff[0] = 
int.from_bytes([tempVal[0],tempVal[1]],byteorder='little',signed=True) 
            self.accelBuff[1] = 
int.from_bytes([tempVal[2],tempVal[3]],byteorder='little',signed=True) 
            self.accelBuff[2] = 
int.from_bytes([tempVal[4],tempVal[5]],byteorder='little',signed=True) 
 
            # convert to g's 
            self.accelBuff[0] = (self.accelBuff[0]/16384) 
            self.accelBuff[1] = (self.accelBuff[1]/16384) 
            self.accelBuff[2] = (self.accelBuff[2]/16384) 
 
            # moving average filter 
            for k in range(3): 
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                temp = self.accelBuff[k] 
                temp /= self.numRead 
                self.accel_accum[k+1] += temp 
                temp = self.adxlReadings[self.readNdx][k] 
                temp /= self.numRead 
                self.accel_accum[k+1] -= temp 
                self.adxlReadings[self.readNdx][k] = self.accelBuff[k] 
                self.accelBuff[k] = self.accel_accum[k+1] 
 
            # index check 
            if not (self.readNdx >= self.numRead - 1): 
                self.readNdx += 1       # increase readings count 
            else: 
                self.readNdx = 0        # reset count 
 
            # log accel data 
            timelog = time.time() 
            with open('/home/pi/data_logs/accel_log_' + str(self.accel_timestr) + '.csv','a') 
as csvfile: 
                # initialize csv 
                accellog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
                # write accel and timestamp data 
                
accellog.writerow([str(self.accelBuff[0]),str(self.accelBuff[1]),str(self.accelBuff[2]),str(ti
melog)]) 
        else: 
            self.errCount += 1 
            print('Total read errors: ',str(self.errCount)) 

 

SBUS RX handler (older version than previous) 

# sbusRX_handler.py 
 
# Created on:   Nov 4, 2019 
# Modified:     Jan 20, 2020 
# Author:       THolliday 
 
# derived from: 
#   sbusPythonDriver by Donald Simonet on Framagit 
#   https://framagit.org/dsimonet/sbusPythonDriver 
 
#   sbus_ultrasonic_v5 by THolliday 
#       sbus_handler.c by BHill & THolliday 
 
# This script captures sbus frames and decodes them into individual channels. 
# An sbus frame is made up of 25 packets, with the channels spread out over  
# packets. 
 
 
## Imports 
import serial 
import time 
 
 
class SBUS_RX(): 
    def __init__(self, _uart_port = '/dev/ttyAMA0'): 
        # sbus comms initialization 
 



199 

        # RPi uart initialization 
        self.ser = serial.Serial( 
            port = _uart_port,                  # indicate UART port 
            baudrate = 100000,                  # sbus runs at 100k baud 
            parity = serial.PARITY_EVEN,        # set even parity 
            stopbits = serial.STOPBITS_TWO,     # set two stopbits 
            bytesize = serial.EIGHTBITS,        # set byte size to 8 bits 
            timeout = 0                         # disable UART timeout 
        ) 
 
        # set sbus constants 
        self.START_PACKET = 0x0F 
        self.END_PACKET = 0x00  
        self.SBUS_FRAME_LEN = 25    # full frame length is 25 packets 
        self.SBUS_CHAN_LEN = 16     # 16 individual channels 
        self.SBUS_BITS = 11         # number of bits in sbus packet 
 
        # variable initialization 
        self.isReady = True                     # RX flag 
        self.lastFrameTime = 0                  # new frame time 
        self.sbusFrameIn = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]  # captured 
sbus RX frame 
        self.sbusFrame = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]    # endian-
swapped sbus RX frame 
        self.sbusChanIn = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]                   # RX channels 
        self.sbusChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]                 # RX endian-
swapped channels 
         
 
    def chan_endian_swap(self): 
        # swaps the bit order of the sbus channels 
 
        for i in range(0,(len(self.sbusChanIn))): 
            temp = 0 
            bmask = 0x8000 
            for j in range(0,16): 
                if j<8: 
                    temp |= (self.sbusChanIn[i]&int(bmask))>>(15-(j*2))  # first byte 
                else: 
                    temp |= (self.sbusChanIn[i]&int(bmask))<<((j*2)-15)  # second byte 
                bmask /= 2                                          # adjust mask 
            temp >>= (16-self.SBUS_BITS)                            # account for number of 
bits per packet 
            self.sbusChannels[i] = temp                             # store channel value 
 
 
    def frame_endian_swap(self): 
        # swaps the byte order of the sbus frame 
 
        for i in range(0,len(self.sbusFrameIn)): 
            temp = 0 
            bmask = 0x80 
            for j in range(0,8): 
                if j<4: 
                    temp |= ((self.sbusFrameIn[i])&int(bmask))>>(7-(j*2))    # first nibble 
                else: 
                    temp |= ((self.sbusFrameIn[i])&int(bmask))<<((j*2)-7)    # second nibble 
                bmask /= 2                                              # adjust mask 
            self.sbusFrame[i] = temp                                    # store frame values 
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    def sbus_read(self): 
        # reads sbus values over the serial port on the RPi 
 
        if self.ser.inWaiting() >= self.SBUS_FRAME_LEN*2:   # load at least two full frames 
            self.isReady = False                            # processing frames 
            rxBuff = self.ser.read(self.ser.inWaiting())    # capture sbus packets 
            self.numPackets = len(rxBuff)                   # save number of received packets 
 
            # parse full frame  
            for rr in range(0,self.SBUS_FRAME_LEN):         # step through packets 
                # look for end packet, working backwards 
                #print(rxBuff) 
                if rxBuff[len(rxBuff)-1-rr] == self.END_PACKET: 
                    # based on end packet, find start packet 
                    if rxBuff[len(rxBuff)-rr-self.SBUS_FRAME_LEN] == self.START_PACKET: 
                        # frame is fully mapped and parity checked due to 8E2 format 
                        # only need to remap the frame if it is different than the last 
                        newFrame = rxBuff[len(rxBuff)-rr-self.SBUS_FRAME_LEN:len(rxBuff)-1-rr] 
                        if not self.sbusFrameIn == newFrame:    # check if new frame is diff 
than previous frame (save CPU cycles) 
                            self.sbusFrameIn = newFrame         # store new frame 
                            self.sbus_decode()                  # decode new frame 
                         
                        # sbus frame succesfully captured and checked for changes    
                        #self.lastFrameTime = time.time()        # timestamp of frame capture 
                        self.isReady = True                     # RX frame is ready 
                        break 
 
             
    def sbus_decode(self): 
        # decodes an sbus frame into 16 individual channels 
 
        # Conversion parameters 
        # chan number   [1,     2,      3,      4,      5,      6,      7,      8,      9,      
10,     11,     12,     13,     14,     15,     16] 
        packet_num =    [0,     1,      3,      4,      5,      7,      8,      9,      11,     
12,     14,     15,     16,     18,     19,     20] 
        lowBS =         [5,     2,      7,      4,      1,      6,      3,      0,      5,      
2,      7,      4,      1,      6,      3,      0] 
        lowbitmask =    [0xE0,  0xFC,   0x80,   0xF0,   0xFE,   0xC0,   0xF8,   0xFF,   0xE0,   
0xFC,   0x80,   0xF0,   0xFE,   0xC0,   0xF8,   0xFF] 
        midBS =         [3,     6,      1,      4,      7,      2,      5,      8,      3,      
6,      1,      4,      7,      2,      5,      8] 
        midbitmask =    [0xFF,  0x1F,   0xFF,   0x7F,   0x0F,   0xFF,   0x3F,   0x07,   0xFF,   
0x1F,   0xFF,   0x7F,   0x0F,   0xFF,   0x3F,   0x07] 
        highBS =        [0,     0,      9,      0,      0,      10,     0,      0,      0,      
0,      9,      0,      0,      10,     0,      0] 
        highbitmask =   [0x00,  0x00,   0x03,   0x00,   0x00,   0x01,   0x00,   0x00,   0x00,   
0x00,   0x03,   0x00,   0x00,   0x01,   0x00,   0x00] 
 
        # swap packet (frame bytes) order 
        self.frame_endian_swap() 
 
        # decode frames 
        for i in range(0,self.SBUS_CHAN_LEN): 
            self.sbusChanIn[i] = ((self.sbusFrame[packet_num[i]]&highbitmask[i])<<highBS[i]) \ 
                + ((self.sbusFrame[packet_num[i]+1]&midbitmask[i])<<midBS[i]) \ 
                + ((self.sbusFrame[packet_num[i]+2]&lowbitmask[i])>>lowBS[i]) 
 
        # swap channel bit order 
        self.chan_endian_swap() 
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SBUS TX handler (older version than previous) 

# sbusTX_handler.py 
 
# Created on:   Oct 29, 2019 
# Modified:     Jan 20, 2020 
# Author:       THolliday 
 
# derived from: 
#   sbusPythonDriver by Donald Simonet on Framagit 
#   https://framagit.org/dsimonet/sbusPythonDriver 
 
#   sbus_ultrasonic_v5 by THolliday 
#       sbus_handler.c by BHill & THolliday 
 
# This script takes 16 individual channels and encodes them into an sbus frame. 
# An sbus frame is made up of 25 packets, with the channels spread out over  
# packets. 
 
## Imports 
import serial 
import time 
 
 
class SBUS_TX(): 
    def __init__(self, _uart_port = '/dev/ttyAMA0'): 
        # sbus comms initialization 
 
        # RPi uart initialization 
        self.ser = serial.Serial( 
            port = _uart_port,                  # indicate UART port 
            baudrate = 100000,                  # sbus runs at 100k baud 
            parity = serial.PARITY_EVEN,        # set even parity 
            stopbits = serial.STOPBITS_TWO,     # set to two stopbits 
            bytesize = serial.EIGHTBITS,        # set byte size to 8 bits 
            timeout = 0                         # disable UART timeout 
        ) 
 
        # set sbus constants 
        self.START_PACKET = 0xF0                # first packet 
        self.END_PACKET = 0x00                  # last packet 
        self.sbusNbits = 11                     # bits per packet 
        self.SBUS_FRAME_LEN = 25                # packets per frame 
 
        # variable initialization 
        self.lastFrameTime = 0                  # frame time 
        self.numPackets = 0                     # number of transmitted packets 
        self.sbusChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]                 # RX channels 
        self.sbusChanBitSwap = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]              # RX endian-
swapped channels 
        self.sbusPackets = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]  # TX packets 
        self.sbusFrame = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]    # TX endian-
swapped frame 
 
 
    def chan_endian_swap(self): 
        # swaps the bit order of the sbus channels 
 
        for i in range(0,(len(self.sbusChannels)-1)): 
            temp = 0 
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            bmask = 0x8000 
            for j in range(0,16): 
                if (j<8): 
                    temp |= (self.sbusChannels[i]&int(bmask))>>(15-(j*2))    # first byte 
                else: 
                    temp |= (self.sbusChannels[i]&int(bmask))<<((j*2)-15)    # second byte 
                bmask /= 2                                              # adjust mask 
            temp >>= (16-self.sbusNbits)                                # shift to account for 
number of bits per packet 
            self.sbusChanBitSwap[i] = temp                              # store channel 
 
 
    def frame_endian_swap(self): 
        # swaps the byte order of the sbus frame 
 
        for i in range(0,self.SBUS_FRAME_LEN): 
            temp = 0 
            bmask = 0x80 
            for j in range(0,8): 
                if (j<4): 
                    temp |= (self.sbusPackets[i]&int(bmask))>>(7-(j*2))  # first nibble 
                else: 
                    temp |= (self.sbusPackets[i]&int(bmask))<<((j*2)-7)  # second nibble 
                bmask /= 2                                          # adjust mask 
            self.sbusFrame[i] = temp                                # store frame 
 
 
    def sbus_encode(self): 
        # encode 16 channels into single sbus frame 
 
        # Conversion parameters 
        # Frame number  [1      2       3       4       5       6       7       8       9       
10      11      12      13      14      15      16      17      18      19      20      21      
22] 
        chan1num =      [0,     0,      1,      2,      2,      3,      4,      5,      5,      
6,      7,      8,      8,      9,      10,     10,     11,     12,     13,     13,     14,     
15] 
        chan2num =      [0,     1,      2,      2,      3,      4,      5,      5,      6,      
7,      8,      8,      9,      10,     10,     11,     12,     13,     13,     14,     15,     
16] 
        chan1mask =     [0x00,  0xE0,   0xFC,   0x00,   0x80,   0xF0,   0xFE,   0x00,   0xC0,   
0xF8,   0xFF,   0x00,   0xE0,   0xFC,   0x00,   0x80,   0xF0,   0xFE,   0x00,   0xc0,   0xF8,   
0xFF] 
        chan2mask =     [0xff,  0x1F,   0x03,   0xFF,   0x7F,   0x0F,   0x01,   0xFF,   0x3F,   
0x07,   0x00,   0xFF,   0x1F,   0x03,   0xFF,   0x7F,   0x0F,   0x01,   0xFF,   0x3F,   0x07,   
0x00] 
        chan1BS =       [0,     5,      2,      0,      7,      4,      1,      0,      6,      
3,      0,      0,      5,      2,      0,      7,      4,      1,      0,      6,      3,      
0] 
        chan2BS =       [3,     6,      9,      1,      4,      7,      10,     2,      5,      
8,      0,      3,      6,      9,      1,      4,      7,      10,     2,      5,      8,      
0] 
 
        # swap bit order of channels 
        self.chan_endian_swap() 
 
        # add startbyte 
        self.sbusPackets[0] = self.START_PACKET 
         
        # add in channels (note that the channels are spread across multiple frames) 
        for rr in range(0,22): 
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            tempFrame = 0 
            tempFrame = (self.sbusChanBitSwap[chan1num[rr]]<<chan1BS[rr]) & chan1mask[rr]    # 
add in first channel data 
            tempFrame |= (self.sbusChanBitSwap[chan2num[rr]]>>chan2BS[rr]) & chan2mask[rr]   # 
add in second channel data 
            self.sbusPackets[rr+1] = tempFrame      # store frame 
 
        # add flags & digital  
        self.sbusPackets[23] = 0 
 
        # add endbyte 
        self.sbusPackets[24] = self.END_PACKET 
 
        # swap byte order of frames 
        self.frame_endian_swap() 
 
 
    def sbus_write(self): 
        # transmit the full sbus frame over UART 
 
        # encode sbus frame 
        self.sbus_encode() 
 
        # transmit the frame 
        self.numPackets = self.ser.write(self.sbusFrame) 
        #self.lastFrameTime = time.time() 

 

SBUS data logging handler (older version than previous) 

# sbusDL_handler.py 
 
# Created on:   Jan 8, 2020 
# Modified:     Mar 2, 2020 
# Author:       THolliday 
 
# This script holds dedicated functions for logging sbus data 
# on a Raspberry Pi Zero. 
 
 
## Imports 
import time 
import csv 
 
 
class SBUS_DL(): 
    def __init__(self, timestr): 
        # sbus data logging initialization 
 
        # create/open log csv file (with time in file name) 
        self.sbus_timestr = timestr 
        with open('/home/pi/data_logs/sbus_log_'+str(self.sbus_timestr)+'.csv','w') as 
csvfile: 
            # initialize csv 
            sbuslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
             
            # add column titles 
            
#sbuslog.writerow(['RX/TX','Ch0','Ch1','Ch2','Ch3','Ch4','Ch6','Ch7','Ch8','Tsbus']) 
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sbuslog.writerow(['RX/TX','Thr','Ail','Ele','Rud','ARM','LOG','vEN','VEL','Tsbus']) 
 
 
    def sbus_data_log(self,rx,tx,rxTime,txTime): 
        # logs sbus channel values of RX/TX  
 
        with open('/home/pi/data_logs/sbus_log_'+str(self.sbus_timestr)+'.csv','a') as 
csvfile: 
            # initialize csv 
            sbuslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting = 
csv.QUOTE_MINIMAL) 
 
            # log RX channels 
            
sbuslog.writerow(['RX',str(rx[0]),str(rx[1]),str(rx[2]),str(rx[3]),str(rx[4]),str(rx[6]), 
                              str(rx[7]),str(rx[8]),str(rxTime)]) 
             
            # log TX channels 
            
sbuslog.writerow(['TX',str(tx[0]),str(tx[1]),str(tx[2]),str(tx[3]),str(tx[4]),str(tx[6]), 
                              str(tx[7]),str(tx[8]),str(txTime)]) 
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Appendix H: MITM Code – MSP430G2553 & Ultrasonic Version 

Main script 

/*  main.c 
 * 
 *  Created on: Oct 10, 2019 
 *  Authors: BHill, THolliday 
 * 
 *  SBUS read/write with single ultrasonic 
 *  for ENGR 5940 presentation 
 */ 
 
// Inclusions 
#include <msp430.h> 
#include <math.h> 
#include "sbus_handler.h" 
#include "ultrasonic_handler.h" 
 
// Defines 
void rw_flash(char * , int, int , int ); 
 
// Start main.c 
int main(void){ 
    // MSP430 initialization 
    WDTCTL = WDTPW | WDTHOLD;       // Stop watchdog timer 
 
    // Variables 
    unsigned int k; 
    unsigned int channel_vals[] = 
{992,992,992,992,992,992,992,992,992,992,992,992,992,992,992,992,992}; // initialize all 
channels to neutral values 
    int channel_ret[16],calflash; 
    char sbus_buffer[25],rx_sbus_buffer[25],calchar[2]; 
    unsigned char us_dist_flag = 0, usflag = 0; 
    unsigned int us_dist = 0; 
 
    // Initialize ultrasonic 
    init_us_trigger(); 
 
    // Initialize clock & sbus 
    rw_flash(calchar, 0,0,2);       // read time value from the flash memory to sync with sbus 
protocol rx 
    calflash = calchar[0]; 
    calflash <<= 8; 
    calflash += calchar[1]; 
    sbus_init(calflash); 
    sbus_frame_maker(channel_vals, sbus_buffer,0);  // create sbus frame 
 
 
    for (k=0;k<25;k++){ 
        tx_data_str[k] = 0x3C;          // fill sbus transmit frame 
    } 
 
    byte_endian_swap(tx_data_str,25);   // perform 8-bit endian swap 
    tx_data_str[0] = 0xAA;              // set values of the first two frames 
    tx_data_str[1] = 0xAA; 
 
    while(1){ 
//        if (usflag==0){                 // ready to trigger ultrasonic? 
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//            trigger_us();               // trigger ultrasonic 
//            usflag = 1;                 // set flag 
//        }else if (usflag==1){           // echo recieved? 
//            trigger_distance(&us_dist); // capture distance 
//            us_dist_flag = 1;           // set dist flag 
//            usflag = 0;                 // reset flag 
//        } 
 
        if ((eos_flag==1)&&rx_flag>18){                     // sbus packet is ready 
            byte_endian_swap(rx_data_str,25);               // perform 8-bit endian swap 
            for (k=0;k<25;k++){ 
                rx_sbus_buffer[k] = rx_data_str[k];         // store the current rx value in 
the sbus buffer 
            } 
            eos_flag=0;                                     // reset flag 
            sbus_frame_reader(channel_ret,rx_sbus_buffer);  // read and separate channels from 
rx sbus 
            for (k=0;k<16;k++){ 
                channel_vals[k] = channel_ret[k];           // plot out the channel values 
returned from the frame reader 
            } 
 
 
            // Ultrasonic collision detection 
            if ((channel_vals[6]!=172)&&(us_dist_flag==1)&&(channel_vals[2]>992)){     // 
ultrasonic enabled while in motion? 
 
                if ((us_dist<500)&&(us_dist>250)){              // slow forward speed 
                    channel_vals[2] = channel_vals[2]*2/3; 
                }else if (us_dist<=250){                        // stop forward motion 
                    channel_vals[2] = 992; 
                } 
 
                // check that new channel value is within sbus bounds 
                if ((channel_vals[2]<172)||(channel_vals[2]>1811)){ 
                    channel_vals[2] = 992;                          // out of bounds, stop 
motion 
                } 
                us_dist_flag = 0;   // reset ultrasonic values 
//                us_dist = 0; 
            } 
            // end ultrasonic collision check 
 
 
            // Check for system enable 
            if (channel_vals[4] != 1811){       // send neutral values if system is not armed 
                channel_vals[2] = 992;          // elevator (forward/backward) 
                channel_vals[1] = 992;          // aileron (left/right) 
            } 
 
            sbus_frame_maker(channel_vals, sbus_buffer,0);  // create the sbus frame with the 
new/same channel values 
            for (k=0;k<25;k++){ 
                tx_data_str[k] = sbus_buffer[k];            // set the tx value to the value 
in the sbus buffer 
            } 
            byte_endian_swap(tx_data_str,25);               // perform 8-bit endian swap 
            sbus_write_fast_string(0,25); 
            rx_flag = 0;                                    // reset flags 
        } 
        else if (eos_flag==2){                              // error in receiving sbus packet 
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            sbus_write_fast_string(0,25);                   // send out zeros over sbus 
            eos_flag = 0;                                   // reset flags 
            rx_flag = 0; 
        } 
    } 
}// end main() 
 
 
void rw_flash(char * data_vec, int mem_mode, int stnum, int lennum){ 
    /* looks at the timer oscillator on the board 
     * and calculates a time difference constant to 
     * better synchronize the clocks for reading, 
     * writing, and sending sbus protocol 
     */ 
 
    /* mem_mode = indicates reading (0) or writing (non 0) 
     * stnum = 
     * lennum = maximum length of the value being read from the 
     *          flash memory 
     * 
     */ 
 
    // Variables 
    char *Flash_ptr;        // pointer to value in flash memory 
    volatile char temp, k; 
 
    Flash_ptr = (char *) (0x1040+stnum); 
 
    if (mem_mode){  //write to the flash memory 
        FCTL1 = FWKEY + ERASE;                    // Set Erase bit 
        FCTL3 = FWKEY;                            // Clear Lock bit 
        *Flash_ptr = 0;                           // Dummy write to erase Flash segment 
 
        FCTL1 = FWKEY + WRT;                      // Set WRT bit for write operation 
        for (k=0;k<lennum;k++) 
            *Flash_ptr++=data_vec[k]; 
        FCTL1 = FWKEY;                            // Clear WRT bit 
        FCTL3 = FWKEY + LOCK;                     // Set LOCK bit 
    } 
    else if (mem_mode==0){  // Read from flash memory 
        for (k=0;k<lennum;k++) 
            data_vec[k]=*Flash_ptr++; 
    } 
} 

 

Ultrasonic handler (older version than previous) 

/* 
 * ultrasonic_handler.c 
 * 
 *  Created on: Feb 19, 2019 
 *      Author: tholliday 
 */ 
 
// Inclusions 
#include <msp430.h> 
 
// Defines 
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#define TRIG0   BIT3 
#define ECHO0   BIT4 
#define TRIGDIR P2DIR 
#define TRIGOUT P2OUT 
#define ECHODIR P2DIR 
#define ECHOSEL P2SEL 
#define ECHOIE  P2IE 
#define ECHOIES P2IES 
#define ECHOIFG P2IFG 
 
// Global variables 
unsigned int Distclicks; 
int UPCOUNTSTATE; 
/* UPCOUNTSTATE VALUES 
 *      0 - system ready/not running 
 *      1 - trigger signal sent, waiting for trigger timing 
 *      2 - end trigger timing, initialize echo receiving, waiting for echo 
 *      3 - echo received and time value acquired 
 *      4 - (or greater) timeout has occurred. 
 */ 
 
 
void init_us_trigger(void){ 
    // Initialize ultrasonic pins 
    TRIGDIR |= TRIG0;                   // Set pin 2.3 as a trigger for the ultrasonic sensor 
    TRIGOUT &=~ TRIG0;                  // Initialize 2.3 as low for the trigger (trigger is 
high) 
    ECHOIES &=~ ECHO0;                  // set echo hardware interrupt to lo/high edge 
    ECHOIE |= ECHO0;                    // set pin 2.4 as echo hardware interrupt 
 
    // Enable timer and interrupt 
    _BIS_SR(GIE);                               // Enable interrupts for the Port Triggering 
    TA1CTL = (TASSEL_2 + ID_3 + MC_2);          // configure interrupt timer 
    TA1CCR0 = 42000; 
 
    // Initialize ultrasonic state 
    UPCOUNTSTATE = 0; 
}// end init_us_trigger 
 
 
void trigger_us(void){ 
    if (UPCOUNTSTATE==0){ 
        UPCOUNTSTATE = 1;               // set state to "signal sent" 
        TRIGOUT |= TRIG0;               // Trigger the output to start the signal 
        ECHOIES &=~ ECHO0;              // set lo/hi edge on echo interrupt 
        __delay_cycles(160);            // approximately 10us wait 
        TRIGOUT &=~ TRIG0;              // End the trigger sequence 
    } 
    if (UPCOUNTSTATE>3){ 
        TA1CCTL0 &=~ CCIE;      // disable timer interrupt 
    } 
}// end trigger_us 
 
 
void trigger_distance(unsigned int *dist_out){ 
 
    if ((UPCOUNTSTATE==3)){                 // state: echo received & recorded 
        UPCOUNTSTATE = 0;                   // reset state 
        dist_out[0] = (Distclicks/30e5)*343000;    // convert and output the value as a 
distance 
    } 
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    if (UPCOUNTSTATE>=4){                   // state: timeout 
        UPCOUNTSTATE = 0;                   // reset state 
        TA1CCTL0 &=~ CCIE;                  // disable timer interrupt 
        dist_out[0] = 0xFFFF; 
    } 
}// end trigger_distance 
 
 
#pragma vector=PORT2_VECTOR 
__interrupt void Port_2(void) 
{   // when the echo is captured the value is outputed in Distclicks 
    if (UPCOUNTSTATE<4){ 
        if (ECHOIES & ECHO0){       // End of echo time 
            ECHOIES &=~ ECHO0;      // Set lo/hi edge trigger 
            Distclicks = TA1R;      // store value in Distclicks 
            UPCOUNTSTATE = 3;       // set state to "time value acquired" 
            TA1CCTL0 &=~ CCIE;      // disable timer interrupt 
        }else{                      // Beginning of echo time 
            ECHOIES |= ECHO0;       // set hi/lo edge trigger 
            TA1R = 0;               // clear distance register 
            UPCOUNTSTATE = 2;       // set state to "waiting" 
            TA1CCTL0 = CCIE;        // enable timer interrupt 
        } 
    } 
    ECHOIFG &=~ ECHO0;              // reset echo interrupt flag 
}// end echo received interrupt 
 
 
#pragma vector=TIMER1_A0_VECTOR 
__interrupt void TIMERA1_ISR (void) 
{   // timer that ends echo receiving if it is taking too long 
    if (UPCOUNTSTATE==2){            // Timeout has occurred 
        UPCOUNTSTATE = 4;           // set state to "timeout" 
    }else{ 
        UPCOUNTSTATE++; 
    } 
}// end timer interrupt 

 

/* 
 * ultrasonic_header.h 
 * 
 *  Created on: Feb 19, 2019 
 *      Author: tholliday 
 */ 
 
#ifndef ULTRASONIC_HANDLER_H_ 
#define ULTRASONIC_HANDLER_H_ 
 
 
void init_us_trigger(void); 
void trigger_us(void); 
void trigger_distance(unsigned int *); 
 
 
#endif /* ULTRASONIC_HANDLER_H_ */ 
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SBUS handler  

/* 
 *   sbus_handler.c 
 * 
 *  Created on: Oct. 1, 2018; modified: Jan. 10, 2019 
 *     Authors: BHill, THolliday 
 */ 
 
// Inclusions 
#include  "msp430.h" 
 
// Defines 
#define sbus_max 99 
 
// Global Variables 
unsigned int tout_counter = 0; 
unsigned char rx_last = 0xff,tx_data_str[sbus_max], rx_data_str[sbus_max], rx_flag = 0, 
dec_str[6], eos_flag = 0; 
int tx_ptr,e_tx_ptr; 
 
/* Defined Functions 
 *      endian_swap() 
 *      byte_endian_swap() 
 *      sbus_frame_maker() 
 *      sbus_frame_reader() 
 *      sbus_init() 
 *      sbus_write_fast_string() 
 *      TX & RX sbus timers 
 */ 
 
 
void endian_swap(int * valsin,int nbitsswap, int numvals){ 
    /* takes the inputed 16-bit string and switches 
     * the value from little-endian to big-endian 
     * format 
     */ 
 
    // Variables 
    int i,n; 
    unsigned int tempval; 
    unsigned int bmask; 
 
    for (i=0;i<numvals;i++){ 
        tempval = 0; 
        bmask = 0x8000; 
        for(n=0;n<16;n++){ 
            if (n<8){ 
                tempval |= ((valsin[i]&bmask)>>(15-(n*2))); 
            } 
            else{ 
                tempval |= ((valsin[i]&bmask)<<((n*2)-15)); 
            } 
            bmask /= 2; 
        } 
        tempval >>= (16-nbitsswap); 
        valsin[i] = tempval; 
    } 
}// end endian_swap 
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void byte_endian_swap(char * valsin, int numvals){ 
    /* takes the inputed byte (8-bits) and switches 
     * the value from little-endian to big-endian 
     * format 
     */ 
 
    // Variables 
    int i,n; 
    char tempval; 
    char bmask; 
 
    for (i=0;i<numvals;i++){ 
        tempval = 0; 
        bmask = 0x80; 
        for(n=0;n<8;n++){ 
            if (n<4){ 
                tempval |= ((valsin[i]&bmask)>>(7-(n*2))); 
            } 
            else{ 
                tempval |= ((valsin[i]&bmask)<<((n*2)-7)); 
            } 
            bmask /= 2; 
        } 
        valsin[i] = tempval; 
    } 
}// end byte_endian_swap 
 
 
void sbus_frame_maker(unsigned int * channel_in, char * sbus_frame_out, char sbus_last){ 
    /* Outlines and creates the 22 frames in sbus protocal 
     * as well as setups the placement of the individual 
     * channels in the frame 
     */ 
 
    // Variables 
    int i; 
    unsigned int tempchar; 
    // Frame number        {1  2  3  4 
 5  6  7  8  9  10 
 11  12  13  14  15  16 
 17  18  19  20  21  22} 
    char channel1_num[]     = {0,  0,  1,  2,  2, 
 3,  4,  5,  5,  6,  7, 
 8,  8,  9,  10,  10,  11, 
 12,  13,  13,  14,  15}; 
    char channel2_num[]     = {0,  1,  2,  2,  3, 
 4,  5,  5,  6,  7,  8, 
 8,  9,  10,  10,  11,  12, 
 13,  13,  14,  15,  16}; 
    char chan1mask[]        = {0x00, 0xE0, 0xFC, 0x00, 0x80, 0xF0, 0xFE, 0x00, 0xC0,
 0xF8, 0xFF, 0x00, 0xE0, 0xFC, 0x00, 0x80, 0xF0, 0xFE, 0x00, 0xc0, 0xF8,
 0xFF}; 
    char chan2mask[]        = {0xff, 0x1F, 0x03, 0xFF, 0x7F, 0x0F, 0x01, 0xFF, 0x3F,
 0x07, 0x00, 0xFF, 0x1F, 0x03, 0xFF, 0x7F, 0x0F, 0x01, 0xFF, 0x3F, 0x07,
 0x00}; 
    char chan1bitshift[]    = {0,  5,  2,  0,  7, 
 4,  1,  0,  6,  3,  0, 
 0,  5,  2,  0,  7,  4, 
 1,  0,  6,  3,  0}; 
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    char chan2bitshift[]    = {3,  6,  9,  1,  4, 
 7,  10,  2,  5,  8,  0, 
 3,  6,  9,  1,  4,  7, 
 10,  2,  5,  8,  0}; 
 
    endian_swap(channel_in,11,16);      // perform endian swap on the channel values 
    sbus_frame_out[0] = 0xF0;           // create the sbus output frame 
    for (i=0;i<22;i++){ 
        tempchar = 0; 
        tempchar = (channel_in[channel1_num[i]]<<chan1bitshift[i])&chan1mask[i]; 
        tempchar |= (channel_in[channel2_num[i]]>>chan2bitshift[i])&chan2mask[i]; 
        sbus_frame_out[i+1] = tempchar; 
    } 
    sbus_frame_out[23] = sbus_last;     // set the last values of the sbus frame 
    sbus_frame_out[24] = 0; 
    endian_swap(channel_in,11,16);      // perform endian swap on entire sbus frame 
}// end sbus_frame_maker 
 
 
int sbus_frame_reader(unsigned int * channel_out, char * sbus_frame_in){ 
    /* reads in sbus frame and maps out the channels 
     * for possible modification based on distance 
     * readings 
     */ 
 
    // Variables 
    int i; 
    // channel number      {1,  2,  3,  4,  5, 
 6,  7,  8,  9,  10,  11, 
 12,  13,  14,  15,  16} 
    char byte_num[16]       = {0,  1,  3,  4,  5, 
 7,  8,  9,  11,  12,  14, 
 15,  16,  18,  19,  20}; 
    char lowbitshift[16]    = {5,  2,  7,  4,  1, 
 6,  3,  0,  5,  2,  7, 
 4,  1,  6,  3,  0}; 
    char lowbitmask[16]     = {0xE0, 0xFC, 0x80, 0xF0, 0xFE, 0xC0, 0xF8, 0xFF, 0xE0,
 0xFC, 0x80, 0xF0, 0xFE, 0xC0, 0xF8, 0xFF}; 
    char midbitshift[16]    = {3,  6,  1,  4,  7, 
 2,  5,  8,  3,  6,  1, 
 4,  7,  2,  5,  8}; 
    char midbitmask[16]     = {0xFF, 0x1F, 0xFF, 0x7F, 0x0F, 0xFF, 0x3F, 0x07, 0xFF,
 0x1F, 0xFF, 0x7F, 0x0F, 0xFF, 0x3F, 0x07}; 
    char highbitshift[16]   = {0,  0,  9,  0,  0, 
 10,  0,  0,  0,  0,  9, 
 0,  0,  10,  0,  0}; 
    char highbitmask[16]    = {0,  0,  0x03, 0,  0, 
 0x01, 0,  0,  0,  0,  0x03, 0, 
 0,  0x01, 0,  0}; 
 
    if(sbus_frame_in[0]!=0xF0){ 
        return 1;     // This frame is not starting with the 
correct value 
    } 
    for(i=0;i<16;i++){ 
        channel_out[i] = 
((sbus_frame_in[byte_num[i]]&highbitmask[i])<<highbitshift[i])+((sbus_frame_in[byte_num[i]+1]&
midbitmask[i])<<midbitshift[i])+((sbus_frame_in[byte_num[i]+2]&lowbitmask[i])>>lowbitshift[i])
; 
    } 
    endian_swap(channel_out,11,16); 
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    return 0; 
}// end sbus_frame_reader 
 
 
void sbus_init( int calval ){ 
    /* initializes the MSP430 to read in sbus over the serial pins 
     * and enables various timers and interrupts for possible use 
     */ 
 
    // Variables 
    volatile int temp=0; 
    // Set baud rate to 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 
460800, 921600 
    // use index of 0 1 2 3... corresponding to the rates above 
    long cal_temp; 
 
    cal_temp = calval; 
    cal_temp *= 118; 
    cal_temp /= 1000; 
    BCSCTL1 = CALBC1_16MHZ;                 // Set DCO 
    DCOCTL = CALDCO_16MHZ; 
    P1SEL |= (BIT1+BIT2);                   // P3.4,5 = USCI_A0 TXD/RXD 
    P1SEL2 |= (BIT1+BIT2); 
    DCOCTL = 0;                             // Select lowest DCOx and MODx settings 
    UCA0CTL0 |= UCSPB + UCPEN + UCPAR;  // 2 Stop Bits, Enable Parity, Even Parity 
    UCA0CTL1 |= UCSSEL_2;                   // SMCLK 
    UCA0BR0 = cal_temp;                     // 16MHz/160 = 100kbs SBUS baud  //115 for MSP1 
 128 because of two stop bits  Needs to be calibrated to the individual oscillator.  can 
be between 118 and 136 
    UCA0BR1 = 0;                            // 100kbs 
    UCA0MCTL = UCBRS0;                      // Modulation UCBRSx = 1 
    UCA0CTL1 &= ~UCSWRST;                   // **Initialize USCI state machine** 
    IE2 |= UCA0RXIE;                        // Enable USCI_A0 RX interrupt 
    CCTL0 = CCIE;                           // CCR0 interrupt enabled 
    CCR0 = 50000; 
    TACTL = TASSEL_2 + MC_2;                // SMCLK, contmode 
 
    __bis_SR_register(GIE);                 // interrupts enabled 
}// end sbus_init 
 
 
void sbus_write_fast_string(int vals, int vale){ 
    /* using values from tx_data_str a string 
     * is written for the new sbus transmit 
     * protocol 
     */ 
 
    // Variables 
    tx_ptr = vals;         // vals is starting pointer 
    e_tx_ptr = vale;           // vale is the ending value 
 
    UCA0TXBUF = tx_data_str[tx_ptr];    // fill sbus buffer with values from tx_data_str 
    IE2 |= UCA0TXIE;                    // Uses interrupts to send out bytes 
}// end sbus_write_fast_string 
 
 
#pragma vector = TIMER0_A0_VECTOR 
__interrupt void Timer_A (void) 
{ 
    tout_counter++; 
    if (tout_counter>11) 
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        tout_counter = 11; 
    CCR0 += 50000; 
} 
 
 
#pragma vector = USCIAB0TX_VECTOR 
__interrupt void USCI0TX_ISR(void) 
{ 
    if (IE2&UCA0TXIE){        
 //portion of sbus_write_fast_string 
        tx_ptr++; 
        if (tx_ptr<e_tx_ptr) 
            UCA0TXBUF = tx_data_str[tx_ptr]; 
        else{ 
            IE2 &= ~UCA0TXIE; 
        } 
    } 
} 
 
 
//  Place data in RX-buffer and set flag 
#pragma vector = USCIAB0RX_VECTOR 
__interrupt void USCI0RX_ISR(void) 
{ 
    volatile char temp; 
    if(IFG2 & UCA0RXIFG){       // Receive data on 
sbus 
        if (tout_counter>10){ 
            tout_counter = 0; 
            rx_flag = 0; 
            eos_flag = 1; 
        } 
 
        rx_data_str[rx_flag] = UCA0RXBUF; 
        rx_flag++; 
        if (rx_flag>sbus_max){       // maximum of 
characters starts at the beginning again 
            rx_flag = 0; 
            eos_flag = 2; 
        } 
    } 
} 

 

/* 
 * SBUS_handler.h 
 * 
 *  Created on: Jan. 10, 2019 
 *      Author: BHill, tholliday 
 */ 
 
#ifndef SBUS_HANDLER_H_ 
#define SBUS_HANDLER_H_ 
 
extern unsigned char tx_data_str[24], rx_data_str[24],rx_flag ,dec_str[7],eos_flag; 
 
void endian_swap(int *,int, int); 
void byte_endian_swap(char *, int); 
void sbus_frame_maker(unsigned int *, char *,char); 
int sbus_frame_reader(unsigned int *, char *); 



215 

void sbus_init(int); 
void sbus_write_fast_string(int,int); 
 
#endif /* SBUS_HANDLER_H_ */ 
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