
Montana Tech Library Montana Tech Library

Digital Commons @ Montana Tech Digital Commons @ Montana Tech

Graduate Theses & Non-Theses Student Scholarship

Summer 2020

MODELING AND PROTOTYPING A MODULAR, LOW-COST MODELING AND PROTOTYPING A MODULAR, LOW-COST

COLLISION AVOIDANCE SYSTEM FOR UAVS COLLISION AVOIDANCE SYSTEM FOR UAVS

Tyler Holliday

Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch

 Part of the Electrical and Computer Engineering Commons

https://digitalcommons.mtech.edu/
https://digitalcommons.mtech.edu/grad_rsch
https://digitalcommons.mtech.edu/stdt_schr
https://digitalcommons.mtech.edu/grad_rsch?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages

MODELING AND PROTOTYPING A MODULAR, LOW-COST

COLLISION AVOIDANCE SYSTEM FOR UAVS

by

Tyler Holliday

A thesis submitted in partial fulfillment of the

requirements for the degree of

Masters of Science Electrical Engineering

Montana Technological University

2020

ii

Abstract

Many challenges arise when attempting to use unmanned aerial vehicles (UAVs) in indoor

environments, such as the lack of a GPS signal for use in navigation and the smaller margin of

error in movements. Typically, those challenges are addressed by using a collision avoidance

system. However, most commercially available collision avoidance systems are expensive,

limited in suppliers, and are restricted to use on a specific platform. Additionally, some of the

collision avoidance systems choose to forego obstacle detection in one or more directions,

usually the upward direction. This work proposes that it is possible to develop a custom,

low-cost collision avoidance system with modular capabilities, allowing it to be adapted to any

UAV platform. The feasibility of the proposed system was determined by creating a

single-direction prototype that was implemented on a small quadcopter and tested by flying the

quadcopter towards a wall at slow speeds. To develop the system’s control algorithm a model of

a quadcopter was built. Two different control algorithms were developed and tested via

simulation with the model, and the better performing algorithm was implemented in the

prototype. The feasibility of the proposed collision avoidance system is promising with the

prototype able to prevent the quadcopter from colliding with a wall. However, further refinement

in the methodology and techniques used to develop the system is needed to improve performance

and reliability of the system, especially as obstacle detection is added in other directions of

motion.

Keywords: unmanned aerial vehicles, collision avoidance systems, feedback control system

design, modeling of UAVs, obstacle detection

iii

Dedication

 This work is dedicated to my parents, Cindy and Mike Holliday, and my best friends,

Benjamin Rathman and Cody Barnett. All of you have been critical to my success, believing in

and supporting me when I struggled to myself. I could not have done any of this without all of

you.

iv

Acknowledgements

 I would like to thank my advisor, Dr. Bryce Hill. His guidance and expertise were critical

to my undertaking of this project. He was also extraordinarily helpful at keeping my morale high

and providing constant insight. I would also like to thank Dr. Kevin Negus, who alongside Dr.

Hill, convinced me to continue my education and pursue my interests more deeply.

 I would like to thank my remaining committee members, Dr. Josh Wold and Dr. Curtis

Link. I am grateful for Dr. Wold’s guidance during the development of the model and controller.

Dr. Link’s observations and critiques were much appreciated when I was determining how to

present and defend my work. I also extend the same gratitude to the entire Electrical Engineering

department. All were instrumental in supporting and encouraging me during my tenure at

Montana Tech.

 A special thanks goes to Mary MacLaughlin of the Mining Engineering department and

the Montana Space Grant Consortium for providing funding for my research.

 Finally, I extend my gratitude to Charles Linney. His piloting skills were crucial for

collecting the data needed for modeling the Canary. Also, his vast knowledge of UAVs was a

valuable resource when troubleshooting.

v

Table of Contents

ABSTRACT .. II

DEDICATION ... III

ACKNOWLEDGEMENTS ... IV

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

LIST OF EQUATIONS .. XIII

GLOSSARY OF ACRONYMS & TERMS ... XVI

1. INTRODUCTION ... 1

1.1. Background .. 1

1.2. Problem Statement .. 2

1.3. Overview of Obstacle Detection ... 3

1.4. Thesis Organization .. 8

2. RELATED WORKS ... 10

2.1. Commercially Available Systems .. 10

2.2. Published Literature ... 16

3. TECHNICAL REVIEW .. 19

3.1. Quadcopter Basics .. 19

3.2. SBUS Communication Protocol .. 21

3.3. Kalman Filter .. 28

3.4. Root Locus Technique ... 30

4. MODELING ... 33

4.1. Methodology .. 34

4.2. Data Processing .. 36

vi

4.3. Estimating the Canary’s Position ... 39

4.4. Step Response Results .. 41

4.5. Deriving the Model Equation ... 45

5. CONTROLLER DESIGN ... 53

5.1. Overview .. 53

5.2. Design Methodology .. 53

5.3. Simulation Results .. 57

5.4. Noise Resiliency .. 61

5.5. Choosing a Controller ... 64

6. HARDWARE .. 68

6.1. Overview .. 68

6.2. Testing Platforms ... 70

6.3. RC Receiver & Transmitter ... 74

6.4. Sensor Board .. 75

6.5. MITM .. 93

6.6. Final Prototype Design/Layout ... 110

7. PROTOTYPE TESTING .. 113

7.1. Methodology .. 113

7.2. Results .. 114

8. CONCLUSIONS ... 119

9. FUTURE WORK .. 123

REFERENCES ... 125

APPENDIX A: STANDARD COMMUNICATION PROTOCOLS ... 134

APPENDIX B: PCB LAYOUTS .. 136

APPENDIX C: TECHNICAL DRAWINGS ... 138

vii

APPENDIX D: MATLAB SCRIPTS .. 142

APPENDIX E: SENSOR BOARD CODE ... 162

APPENDIX F: MITM CODE – RASPBERRY PI VERSION .. 176

APPENDIX G: MITM CODE – GPS & ACCELEROMETER VERSION ... 192

APPENDIX H: MITM CODE – MSP430G2553 & ULTRASONIC VERSION .. 205

viii

List of Tables

Table I: Mavic 2 Pro sensor specifications ..13

Table II: SBUS decoding values ..25

Table III: SBUS encoding values ..26

Table IV: SBUS channel naming scheme ..28

Table V: Canary step input magnitudes ...35

Table VI: Conversion factors per flight for latitude & longitude to meters38

Table VII: Estimates of 𝑹 ..48

Table VIII: Ultrasonic linear regression values ...79

Table IX: Sensor Board I2C commands ..84

Table X: LCAS Sensor Board components ...89

Table XI: Sensor Board MSP430G2553 pin mapping ..93

Table XII: Sensor Board identifiers. I2C addresses, and locations101

Table XIII: LCAS MITM Docking Board components ..107

ix

List of Figures

Figure 1: DJI Mavic 2 Pro rear stereovision cameras [5] ..4

Figure 2: How the HC-SR04 ultrasonic range finding sensor measures distances [6]5

Figure 3: tinyLiDAR single-point TOF LiDAR [15] ..7

Figure 4: Velodyne Puck multi-point rotating LiDAR [13] ..7

Figure 5: DJI Mavic Air 2 ..12

Figure 6: Visualization of the Mavic Air 2’s backward obstacle detection [20]12

Figure 7: DJI Mavic 2 Pro’s collision avoidance system [21] ...14

Figure 8: Skydio 2 [24] ..16

Figure 9: Rotating LiDAR-based collision avoidance system used in [29].......................17

Figure 10: Low-cost, multi-sensor system used in [9] ...18

Figure 11: Quadcopter motor “X” configuration, showing reaction torques [34]19

Figure 12: Quadcopter motion [35] ...20

Figure 13: SBUS frame structure ...22

Figure 14: SBUS signal inverter ..23

Figure 15: Traditional feedback control loop ..30

Figure 16: Root locus and transient response of the open-loop system31

Figure 17: Root locus and transient response of the closed-loop system32

Figure 18: One-dimensional free-body diagram of a UAV flying towards a wall33

Figure 19: Canary testing area, Leonard Field [44] ...35

Figure 20: Flight 1 position estimate ...42

Figure 21: Flight 2 position estimate ...42

Figure 22: Flight 1 position versus time ..43

x

Figure 23: Flight 2 position versus time ..44

Figure 24: Flight 1 step responses ...45

Figure 25: Flight 2 step responses ...45

Figure 26: Results from the 𝑹 estimation using Flight 1 parameters47

Figure 27: Results from the 𝑹 estimation using Flight 2 parameters48

Figure 28: Model simulation with 𝑹 = 𝟏. 𝟐𝟖𝟒𝟗 using Flight 1 parameters49

Figure 29: Model simulation with 𝑹 = 𝟏. 𝟐𝟖𝟒𝟗 using Flight 2 parameters49

Figure 30: Model simulation with 𝑹 = 𝟏. 𝟔𝟐𝟕𝟎 using Flight 1 parameters50

Figure 31: Model simulation with 𝑹 = 𝟏. 𝟔𝟐𝟕𝟎 using Flight 2 parameters51

Figure 32: Phase I controller block diagram ..54

Figure 33: Open-loop system root locus ..55

Figure 34: Phase II closed-loop system root locus ..56

Figure 35: Phase II closed-loop system step response ...56

Figure 36: Scenario 1 simulation results ..58

Figure 37: Scenario 2 simulation results ..59

Figure 38: Scenario 3 simulation results ..60

Figure 39: Scenario 4 simulation results ..61

Figure 40: Case 1 simulation results for Phase I controller ...62

Figure 41: Case 1 simulation results for Phase II controller ..62

Figure 42: Case 2 simulation results for Phase I controller ...63

Figure 43: Case 2 simulation results for Phase II controller ..64

Figure 44: Case 1 simulation results for Phase II controller with a SMA65

Figure 45: Case 2 simulation results for Phase II controller with a SMA66

xi

Figure 46: LCAS block diagram ..69

Figure 47: MITM block diagram ...69

Figure 48: Servo-based rover testing platform ..70

Figure 49: Canary quadcopter platform ...72

Figure 50: Matek F722-SE flight controller [48] ...73

Figure 51: Spedix ES30-HV electronic speed controller ...74

Figure 52: FrSky X8R receiver ..74

Figure 53: FrSky Taranis Q X7 transmitter ...75

Figure 54: HC-SR04 ultrasonic range finding sensor [6] ..77

Figure 55: Ultrasonic linear regression ..80

Figure 56: tinyLiDAR TOF Range Finder Sensor [15] ...81

Figure 57: LCAS Sensor Board’s MSP430G2553 ..82

Figure 58: Flowchart of Sensor Board distance value processing87

Figure 59: LCAS Sensor Board ...89

Figure 60: Sensor Board power circuit schematic ...90

Figure 61: Bidirectional voltage shifter schematic [56] ..91

Figure 62: LCAS Sensor Board schematic ..92

Figure 63: Location of the MITM in the layout of a quadcopter control system93

Figure 64: MSP430G2553 version of the MITM on the SBUS-to-PWM Rover96

Figure 65: Raspberry Pi 3 Model B [59] ...99

Figure 66: Raspberry Pi GPIO pinout [60] ..99

Figure 67: 3DR GPS module & its connection to the MITM ..105

Figure 68: BMA280 accelerometer & interfacing board ...105

xii

Figure 69: LCAS MITM Docking Board ..107

Figure 70: MITM Docking Board I2C bus schematic ...108

Figure 71: MITM Docking Board SBUS communication bus schematic108

Figure 72: LCAS MITM Docking Board schematic ...109

Figure 73: LCAS-Canary mounting plate ..110

Figure 74: LCAS Sensor Board mounting bracket ..111

Figure 75: LCAS prototype layout on the Canary ...112

Figure 76: LCAS prototype testing area ..114

Figure 77: Canary position during LCAS testing flight...115

Figure 78: Canary input during LCAS testing flight ...115

Figure 79: Prototype LCAS Test 1 results ...116

Figure 80: Prototype LCAS Test 2 results ...116

Figure 81: Prototype LCAS Test 3 results ...117

Figure 82: Prototype LCAS Test 4 results ...118

Figure 83: Prototype LCAS Test 3.5 results ..120

Figure 84: General structure of a UART signal [62] ...134

Figure 85: I2C bus adapted from [63] ..135

Figure 86: Overview of I2C protocol structure [63] ..135

xiii

List of Equations

Equation

(1) ..5

(2) ..5

(3) ..25

(4) ..27

(5) ..28

(6) ..28

(7) ..29

(8) ..29

(9) ..29

(10) ..29

(11) ..30

(12) ..31

(13) ..33

(14) ..33

(15) ..34

(16) ..34

(17) ..34

(18) ..38

(19) ..38

(20) ..38

(21) ..39

xiv

(22) ..40

(23) ..40

(24) ..40

(25) ..40

(26) ..40

(27) ..40

(28) ..40

(29) ..41

(30) ..41

(31) ..41

(32) ..46

(33) ..46

(34) ..46

(35) ..46

(36) ..46

(37) ..46

(38) ..46

(39) ..46

(40) ..47

(41) ..47

(42) ..51

(43) ..51

(44) ..52

xv

(45) ..52

(46) ..52

(47) ..54

(48) ..56

(49) ..57

(50) ..57

(51) ..66

(52) ..67

(53) ..71

(54) ..71

(55) ..71

(56) ..71

(57) ..72

(58) ..77

(59) ..78

(60) ..78

(61) ..79

(62) ..88

(63) ..88

(64) ..103

(65) ..104

xvi

Glossary of Acronyms & Terms

Term Definition

Canary 260-millimeter quadcopter used for testing the LCAS

GPS Global Positioning System

I2C Inter-Integrated Circuit serial communication protocol

LCAS Low-cost collision avoidance system

LiDAR Light detection and ranging

MITM Monkey-in-the-middle

PCB Printed circuit board

RC Radio control

RX Received data

SBUS Proprietary serial communication protocol developed by Futaba Corp.

SMA Simple moving average

tinyLiDAR Single-point LiDAR module

TOF Time-of-flight

TX Transmitted data

UART Universal Asynchronous Receiver/Transmitter serial communication protocol

UAV Unmanned aerial vehicle

Ultrasonic Short for ultrasonic range finding sensor

1

1. Introduction

1.1. Background

Over the course of the last decade, interest in unmanned aerial vehicles (UAVs) has

grown beyond the hobbyist level. Large-scale factories and warehouses have begun to use UAVs

to monitor and track inventories [1]; while mining operations have seen the potential of using

UAVs for surveying areas that are hazardous to employees [2] [3]. All of these operations share

a common application: flying UAVs in indoor environments.

There are many challenges associated with flying UAVs in an indoor environment, such

as the lack of access to the Global Positioning System (GPS) for aid in navigation and the strict

boundaries of the environment itself. The obvious method to overcome these challenges is to

have an experienced pilot, who has hours of practice flying in restrictive conditions and a steady

hand on the controls. However, even the most skilled pilot would be limited by his or her field of

vision and reaction time, when navigating indoor environments. This is where collision

avoidance systems come in. Collision avoidance systems look to aid, or even supplant, the pilot

in control of the UAV. Using an array of range finding sensors, the system can identify obstacles

and modify the control algorithm of the UAV to avoid said obstacles.

There are commercial collision avoidance systems available, but the systems are

expensive and limited in suppliers. Another downside to a commercial system is that typically

the system is designed to work only on a specific platform, and cannot be easily transferred to

another. Finally, most commercial collision avoidance systems lack full collision avoidance,

choosing to forego obstacle detection in one or multiple directions. The most notable direction

foregone is the upward direction since most UAVs are not intended to fly in upward restrictive

environments.

2

1.2. Problem Statement

This work proposes that it is possible to design a custom, low-cost collision avoidance

system (LCAS) with the modularity needed to be transferred between UAV platforms without

significant modification to the new platform.

To lower the cost, while ensuring obstacle detection in every direction, the LCAS made

use of hobbyist-grade range finding sensors alongside lower power microcontrollers and

processors. The modularity of the LCAS is defined by two separate major components: a

centralized processor and sensor modules. The centralized processor, referred to as the

Monkey-in-the-Middle (MITM), captures and decodes the control signal coming into the UAV

from a radio control (RC) receiver and modifies it before re-encoding and passing the signal onto

the UAV’s flight controller. The modifications are made by a custom feedback controller using

distance measurements provided by sensor modules. The LCAS’s sensor modules, referred to as

the Sensor Boards, utilize embedded microcontrollers to control an array of range finding sensors

and determine the smallest distance measurement from the array. One Sensor Board operates

independently from another, allowing each direction of motion to have its own board.

In addition to the prototyping of the LCAS hardware, a one-dimensional model of a UAV

was developed to aide in the design of the MITM’s custom feedback controller for the forward

direction. The model was derived by curve-fitting the response of the Canary quadcopter to a

series of increasing step inputs. The Canary is a 260-mm quadrotor platform used for developing

and testing the prototype LCAS. Using the computational software MATLAB, simulations were

conducted that tested the model’s response to the same step inputs used previously. The model

was then validated by comparing the model’s responses to those of the Canary quadcopter.

The overall goal of this work was to provide a proof of concept for and determine the

feasibility of the LCAS for use on UAVs in indoor environments. To complete this work in a

3

reasonable amount of time, the proof of concept was done for only a single direction of motion:

the forward direction. As a result, the methodology created can be used for developing future

models and controllers for the remaining directions of motion.

1.3. Overview of Obstacle Detection

Within the context of use in the LCAS, obstacle detection is defined as the process of

measuring the linear distance from the UAV platform to an obstacle. When maneuvering in a

three-dimensional environment obstacle detection is needed for each direction about the center of

a UAV. This means that a total of six directions must have obstacle detection. The following

sections describe the obstacle detection methods considered for use in the LCAS.

1.3.1. Stereovision

Stereovision is an increasingly popular method used on commercial UAVs, such as on

the DJI Mavic 2 Pro and Skydio 2. This method uses one or more cameras to capture images of

the environment around a UAV. Through image processing, certain information about obstacles

can be extracted, notably the relative angle of the UAV to the obstacle. However, it can be

computationally difficult to estimate the location, size, and distance to an obstacle; that is not

even taking into consideration the quality of the image, such as lighting and any restriction on

the cameras’ field-of-view [4].

Figure 1 shows the usage of stereovision by the DJI Mavic 2 Pro for backward direction

obstacle detection.

4

Figure 1: DJI Mavic 2 Pro rear stereovision cameras [5]

While recent advancements in the field of image processing have made stereovision more

consistent and reliable, the implementation is complex and can be difficult in low-cost systems

like the LCAS.

1.3.2. Ultrasonic Sensing

A classic method for obstacle detection is sonar via ultrasonic range finding sensors

(ultrasonic for short). The use of ultrasonic sound waves in navigation has been around for

decades and can be found in many transportation systems [4]. Ultrasonics emit bursts of high

frequencies that are bounced back as an echo when encountering an obstacle. The time between

the burst emission and detection of an echo can be used to calculate a distance to the obstacle,

since the speed of sound is known [6] [7]. Figure 2 depicts the ultrasonic sensing method used by

the HC-SR04 ultrasonic.

5

Figure 2: How the HC-SR04 ultrasonic range finding sensor measures distances [6]

Ultrasonics are considered very reliable, not being affected by dust or atmospheric

conditions. Also, ultrasonics have rather large sensing ranges and areas, such as the 4-m range

offered by the HC-SR04 ultrasonic [4] [8]. However, ultrasonics are not without faults. Porous

materials tend to absorb sound waves thus reducing the effectiveness and measurement accuracy

of the sensor when encountering such obstacles [9]. Finally, compared to other methods of

obstacle detection, ultrasonic sensing is slow due to the operating speed being limited to the

speed of sound. For example, consider there to be an object at 2 m from an ultrasonic. The

operating time required to measure that distance can be found using the following equation,

adapted from [8]:

 𝑡 =
𝑑

𝑣𝑠𝑜𝑢𝑛𝑑
 (1)

Substituting 2 m for 𝑑 and 343 m/s for 𝑣𝑠𝑜𝑢𝑛𝑑, the operating time is

 𝑡 =
(2 𝑚)

343 𝑚/𝑠
= 5.83 𝑚𝑠 (2)

An operating time of 5.83 ms seems reasonable, but that is only for one sensor. A collision

avoidance system like the LCAS will need an ultrasonic for each of a UAV’s six directions of

6

motion. Additionally, each of the six ultrasonics would have to be operated sequentially to

prevent the sensors from interfering with each other, as low-cost ultrasonics like the HC-SR04

do not have the means to differentiate between its own echo or that of another ultrasonic.

Extrapolating the operating time from Equation (2) to account for an additional five ultrasonics,

the total operating time would be approximately 35 ms. Considering the speeds at which a UAV

can fly, a 35-ms operating time is too slow for providing distance measurements to the LCAS.

Either a different obstacle detection method is needed or a different type of ranging sensor is

needed to provide distance measurements in the interim between ultrasonic distance

measurements.

1.3.3. TOF LiDAR Systems

Another common method for obstacle detection is the use of light detection and ranging,

or LiDAR. A LiDAR operates on the concept of light reflection. When triggered, a LiDAR emits

an infrared laser light pulse and measures the amount of time it takes for the reflected pulse to be

detected [7] [10]. Different types of LiDAR are defined by how the time measurements are

handled. In regards to the LCAS, the type of LiDAR under consideration is time-of-flight (TOF),

which derives a distance value from the time measurement using the same methodology as

ultrasonic sensing.

Unlike ultrasonics, a LiDAR is quick to make distance measurements since it operates at

the speed of light. However, a LiDAR is susceptible to interference from dust and atmospheric

conditions. Also, the infrared pulses used by a LiDAR can be adversely affected by objects with

a sheen or a property that alters how the infrared pulse is reflected [9] [11] [12].

It might be assumed that a LiDAR system is an expensive option for use in the LCAS,

given most professional applications use a rotating platform and high-end optics. For example,

7

the Velodyne Puck comes in at around $9000 and features 16 measurement channels on a

rotating platform that provide up to 300,000 points per second [13] [14]. However, there are

lower-cost versions of LiDAR systems available. Instead of using a single multi-point, rotating

LiDAR like the Puck, multiple single-point, static TOF LiDAR sensors can be used to measure

distances to obstacles. Single-point TOF LiDAR sensors are significantly cheaper than the more

popular multi-point LiDAR sensors but the lower monetary cost comes at the cost of ranging

distance and measurement accuracy [15]. The tinyLiDAR is a single-point TOF LiDAR that

comes in at a price around $25 [16], significantly more cost effective than the $9000 Puck [14].

Furthermore, the tinyLiDAR features a built-in microcontroller that handles the complex

interface of the infrared TOF flight sensor. The tinyLiDAR and Velodyne Puck are shown in

Figures 3 and 4.

Figure 3: tinyLiDAR single-point TOF LiDAR [15]

Figure 4: Velodyne Puck multi-point rotating LiDAR [13]

8

For use in the LCAS, the decrease in ranging distance and measurement accuracy

associated with single-point TOF LiDARs is negligible due to the tight operating conditions of

the LCAS and the availability of additional distance-measuring sensors.

1.3.4. Complementary Sensors

Ultimately, the obstacle detection method chosen for the LCAS was to combine

ultrasonic sensing with a TOF LiDAR system. This multi-sensor system allowed for the faults of

each individual method to be addressed by the other, thus the complementary nature. Ultrasonics

suffer from inaccuracies when bouncing signals off of porous materials but are not affected by

the sheen of materials’ surfaces. Also, in general, ultrasonics are slow in operation being limited

to the speed of sound for operation. LiDARs do not struggle to measure distances to porous

materials but are prone to inaccuracies introduced by unpredictable light reflections off of

materials with a sheen. Furthermore, LiDARs operate significantly faster than ultrasonics

because by using infrared light LiDARs operate at or near the speed of light.

There were two main reasons behind the choice to combine ultrasonic sensing with a

TOF LiDAR. The first reason was the availability of low-cost sensors for each method. The

HC-SR04 ultrasonic and tinyLiDAR used in the LCAS came in at around $4 [17] and $25 [16],

respectively. The second reason was the precedented use of the two methods in complementary

sensor systems, such as in [9] and [18].

1.4. Thesis Organization

Section 2, Related Works, takes a look at three, commercially-available collision

avoidance systems. Next, a pair of published papers are reviewed for how the collision avoidance

systems proposed in each performed. Section 3, Technical Review, provides an overview of

technologies and methods used when developing the LCAS that are mentioned throughout this

9

document. Section 4, Modeling, is an in-depth discussion into the development and validation of

the Canary quadcopter model. This section also provides the reasoning behind the decision to

focus on a single direction of motion. Section 5, Controller Design, covers the development of

the LCAS’s forward direction feedback controller. Section 6, Hardware, takes a highly-detailed

look at the hardware used in the LCAS. Furthermore, the section details the operational concepts

behind the system’s programming algorithm. Section 7, Prototype Testing, covers the testing

procedure and results for the prototype LCAS. Section 8, Conclusions, discusses the results from

all aspects of this work and draws conclusions on the feasibility of the LCAS. Finally, Section 9,

Future Work, provides suggestions on how to improve the LCAS.

Multiple appendices are included with this thesis. Appendix A provides an overview of

the UART and I2C serial communication protocols. Appendix B contains the printed circuit

board layouts for the LCAS’s Sensor Board and MITM Docking Board. Technical drawings for

the 3D printed components of the Canary are found in Appendix C. The MATLAB scripts used

throughout this work are presented in Appendix D. The code behind the LCAS Sensor Boards is

given in Appendix E. Appendices F, G, and H contain the code for the three different versions

of the MITM.

10

2. Related Works

As the use of UAVs has expanded outside of the hobbyist space and into the commercial

space, there has been a significant increase in the research and development of collision

avoidance systems. Most of the research has focused on the development of systems for

autonomous flight, such as on the DJI Mavic 2 Pro and the Skydio 2. These systems tend to be

platform specific and expensive.

This section reviews three examples of commercially-available collision avoidance

systems. After the commercial systems review, a look is taken at recent published literature on

custom collision avoidance systems like the LCAS.

2.1. Commercially Available Systems

2.1.1. DJI Mavic Air 2

Intended for hobbyists and entry-level professionals looking for a smooth and reliable

platform for aerial cinematics and video steaming, the DJI Mavic Air 2’s collision avoidance

system is utilized to stabilize the UAV while in flight [19]. The Mavic Air 2, released in April

2020, is capable of sensing objects in three directions: forward, backward, and downward. The

forward and backward directions feature dual vision sensors capable of measuring distances

between 0.35 m and 47.2 m. The forward dual vision sensors have a field of view of 71° and 56°

horizontally and vertically, respectively. The backward sensor is more restricted in its field of

view with 44° and 57° horizontally and vertically, respectively. For the downward direction the

Mavic Air 2 combines infrared TOF sensors with another pair of vision sensors. Using the dual

vision sensors alone, the UAV has a hovering range of 0.5 m to 60 m; however, by adding data

from the infrared TOF sensors the UAV can increase the precision of its hovering position at the

cost of lowering the range to between 0.5 m and 30 m [19] [20].

11

The Mavic Air 2 is only capable of full autonomy when using DJI’s ActiveTrack 3.0.

When in this mode the UAV is set to follow a predetermined target, such as a runner or a

vehicle, and the collision avoidance system is used to detect and avoid obstacles in the tracking

path. If an obstacle is detected, the Mavic Air 2 will attempt to fly around it and will hover in

place if a suitable path cannot be detected [19].

The collision avoidance system is further utilized by the Mavic Air 2’s Advanced Pilot

Assistance System (APAS). This system complements a user piloting the UAV manually by

using data from the sensors to generate a real-time map of its surroundings and determine an

appropriate path to avoid any obstacles detected while in flight [19] [20].

A major drawback of the Mavic Air 2’s collision avoidance lies in the type of sensors and

the absence of collision avoidance in the left, right, and upward directions. By only using vision

and infrared sensors, the UAV is susceptible to measurement errors when an obstacle’s surface

has a sheen or is reflective. Under low light conditions the vision sensors are not able to work,

leaving only the downward infrared TOF sensor to provide distance measurements. Also, the

Mavic Air 2’s collision avoidance system is not capable of sensing small objects, such as

electrical wires, and tracking moving objects, such as people [19].

At the time of writing the UAV is available, from DJI, for $799 [20]. The Mavic Air 2 is

shown in Figure 5 and an operational visualization of the UAV’s backward sensors is given in

Figure 6.

12

Figure 5: DJI Mavic Air 2

Figure 6: Visualization of the Mavic Air 2’s backward obstacle detection [20]

2.1.2. DJI Mavic 2 Pro

DJI’s Mavic 2 Pro was released in August 2018. [21]. The Mavic 2 Pro is DJI’s first

UAV capable of obstacle detection in all six directions. Dual vision sensors are used in the

forward, backward, and downward directions, while single vision sensors are used in the lateral

(left-right) directions. Dual, three-dimensional infrared sensors are used on both the upward and

13

downward directions. The measurement ranges and field of view angles for all directions are

summarized in the Table I, adapted from [22].

Table I: Mavic 2 Pro sensor specifications

Direction Sensor type(s) Range [m] Horizontal FOV

[°]

Vertical FOV

[°]

Forward Dual vision 0.5 – 40 40 70

Backward Dual vision 0.5 – 32 60 77

Downward Dual vision

Dual infrared

0.5 – 22 n/a n/a

Upward Dual infrared 0.1 – 8 n/a n/a

Lateral Single vision 0.5 – 10 80 65

 The Mavic 2 Pro expands upon the Mavic Air 2’s autonomous flight capabilities by

introducing additional flight modes that utilize the increased number of sensors and sensing

directions. The first mode is Waypoint Navigation. In this mode the user draws a path for the

UAV to follow by marking GPS waypoints in DJI’s mission planning software. During the

flight, the UAV will attempt to navigate to the waypoints and utilize the collision avoidance

system to detect any obstacles in the path. If obstacles are detected the UAV will scan for the

most appropriate path that will avoid the obstacle [21] [22]. The second mode is an autonomous

Return to Home (RTH). When switched into RTH, the Mavic 2 Pro automatically creates a flight

path to return to the last known home position using GPS data. Once following the flight path,

the UAV uses its collision avoidance system to scan for obstacles and adjust the path as

necessary [21].

 Furthermore, the Mavic 2 Pro offers stability and tracking accuracy in ActiveTrack 2.0.

By utilizing its obstacle detection sensors, the UAV can track targets at high speeds and maintain

a constant distance. When tracking, the UAV can detect and actively avoid obstacles in the

forward and backward direction, provided the collision avoidance system can determine an

14

appropriate path. This methodology is the same one used in the newer Mavic Air 2’s

ActiveTrack 3.0.

 Finally, the Mavic 2 Pro’s APAS operates the same as on the Mavic Air 2. When under

manual control, the APAS scans the environment looking for obstacles in the forward and

backward directions. Upon detection of obstacles, the system determines the most appropriate

path to avoid those obstacles and overrides manual control in order to follow the path [21] [22].

Also, the Mavic 2 Pro shares the same faults of the Mavic Air 2, being susceptible to sensor

failure in low-light conditions.

 At time of this writing, the UAV is available directly from DJI for $1599 [22]. The Mavic

2 Pro is shown in Figure 7 with the UAV’s collision avoidance system sensors labeled.

Figure 7: DJI Mavic 2 Pro’s collision avoidance system [21]

2.1.3. Skydio 2

One of the main competitors to DJI’s Mavic 2 Pro is the Skydio 2. The intended use of

the Skydio 2, released in October 2019, is for capturing smooth, cinematic footage of actively

moving targets. The UAV is known for superior camera stability and excellent autonomous

navigation [23]. The Skydio 2’s collision avoidance system makes use of six professional-grade,

15

4K cameras for building a three-dimensional map of the UAV’s environment. The cameras are

arranged in trinocular configurations on the top and bottom sides of the Skydio 2. Each camera

has a 200° field of view and via the Skydio Autonomy Engine the UAV’s navigation system can

build a 360° model of its environment. The collision avoidance system uses the model to predict

the changes in the environment and makes decisions on any changes to the UAV’s flight path.

All of this is done 500 times per second, with the cameras providing 30 frames per second. The

measurement range of the Skydio 2’s cameras is not specified, though, the UAV is reported to be

capable of tracking and following targets at a maximum height of 8 m, which can be increased to

16 m for larger targets, such as vehicles [23] [24].

The Skydio 2’s collision avoidance system is, by default, always enabled. Therefore,

when the UAV is under manual control the system overrides the pilot’s input when the UAV

needs to avoid an obstacle. While both the DJI Mavic Air 2 and Mavic 2 Pro were limited to

forward and backward obstacle detection during manual flight, the Skydio 2 is not so limited,

allowing the pilot to have obstacle avoidance assistance in all six directions [24] [25].

The only drawbacks of the Skydio 2 are that the UAV’s navigation cameras are not able

to function properly in low-light conditions or darkness and cannot detect objects smaller than

12 mm in diameter, much like both DJI UAVs [23].

At the time of this writing the Skydio 2 is available from Skydio for $999, with an

additional $149 for an RC controller to enable manual control [24]. The Skydio 2 is shown in

Figure 8.

16

Figure 8: Skydio 2 [24]

2.2. Published Literature

Significant amounts of research have gone into the development of collision avoidance

systems for UAVs. As mentioned previously most of the research has been for systems that work

in conjunction with, or are a component of, autonomy systems, such as [26], [27], and [28].

However, there has been literature published on the concept of low-cost, collision avoidance

systems providing aid to a pilot when a UAV is under manual control.

Described in [29] is a low-cost system that utilized a rotating TOF LiDAR on top of the

UAV to detect obstacles. When in operation, the LiDAR scanned the environment around the

UAV to produce a constantly updating 360° scan. The scan data were split into eight zones that

the system’s obstacle detection algorithm classified on a threat scale. If the same threat was

detected three times in a row in the same zone, then the system defined the threat as an obstacle

to avoid. The system then chose a zone with the lowest threat level to move into. The reactionary

force used to move to the safest zone was determined based on the threat level of the obstacle

and the distance of the UAV to the obstacle. While the system was able to avoid collisions, it

limited the UAV to low operating speeds and small roll and pitch angles [29]. Furthermore, by

17

using a rotating LiDAR the system was only able to detect obstacles in the forward, backward,

and lateral directions. Finally, a single sensor offered no redundancy and in-flight error checking

that multiple sensors would. Figure 9 shows the system.

Figure 9: Rotating LiDAR-based collision avoidance system used in [29]

A system similar to the LCAS is described in [9]. The system attempted to improve upon

simple collision avoidance systems that drive the UAV in the opposite direction of detected

obstacles by applying techniques used in SLAM-based systems. A SLAM, or simultaneous

localization and mapping, algorithm is a process that uses measurements from range finding

sensors to construct a virtual map of an environment and determine the location of the device

running the SLAM algorithm. Significant research, as detailed in [30] and [31], has gone into

developing SLAM algorithms. However, SLAM algorithms can require considerable

computational power sometimes using processors on the level of desktop computers, such as in

[31].

By utilizing the complementary nature of ultrasonic and infrared sensors, the system in

[9] had great reliability and could operate in a variety of conditions. An inertial measurement

unit (IMU) and optical flow sensors were used in conjunction with the ultrasonic and infrared

18

sensors to improve distance estimations via sensor fusion. Sensor fusion is the process of

combining data from a variety of sensors to produce a single estimate that has less uncertainty

than estimates created from the individual sensors would [32]. The system then used the distance

estimations and the locations of the sensors to build a model of its environment, divided into

12 sectors. The sectors were then ranked by threat level and the system chose the safest sector to

move into. A PID (proportional, integral, and derivative) controller was used to control the

strength of the reaction, with the proportional and derivative parts adjusted according to the

distance in order to prevent overshooting and improve stability. The main goal of the system was

to allow autonomous operation of a UAV, but the system could be used to create a pilot

assistance system [9]. The drawbacks of the system were the requirement of replacing a flight

controller with the system’s main processing unit and the complexity of the collision avoidance,

limiting the modularity of the system. The system is shown in Figure 10.

Figure 10: Low-cost, multi-sensor system used in [9]

19

3. Technical Review

This section provides explanations and background information on the technologies and

methods used in the development of the LCAS and mentioned throughout this document. Key

concepts include quadcopter basics, the decoding and encoding of SBUS signals, sensor fusion

via a Kalman filter, and control system design via root locus.

3.1. Quadcopter Basics

The main platform of development for the custom collision avoidance system was on a

UAV with a quadrotor arrangement. More commonly known as a quadcopter, this UAV platform

has the advantage of combining high reliability and stability with simplistic design and agile

maneuverability [33].

A quadcopter utilizes an X-configuration for the placement of four propellers on four

motors. Two propellers spin clockwise, and the other two propellers spin counterclockwise. The

propeller pairs are placed diametrically about the quadcopter’s center, allowing the torque from

each motor to balance out the torque of the corresponding motor. By balancing the motor torques

the X-configuration yields greater stability and control when the quadcopter is in flight [33] [34].

Figure 11 shows the quadcopter X-configuration and motor arrangement.

Figure 11: Quadcopter motor “X” configuration, showing reaction torques [34]

20

 The direction of movement for a quadcopter is controlled by adjusting the speed of the

motors independently. Movement of a quadcopter is defined as follows: pitch for the forward

and backward directions, roll for the left and right directions, yaw for rotation about the center,

and altitude for the upward and downward directions. For pitch and roll a quadcopter will

increase the speed of one or two motors and decrease the speed of one or two diametrically

opposing motors. For yaw a quadcopter will increase the speed of same-spinning direction

propellers. Finally, for altitude a quadcopter increases or decreases the speed of all motors,

equally. Figure 12 provides a pictorial depiction of the changing motor speeds needed for

quadcopter movement.

Figure 12: Quadcopter motion [35]

 Control of a quadcopter is mainly handled by a flight controller. A flight controller

receives user input from an RC receiver and translates the input into individual motor

commands. Individual motor commands are sent to the corresponding motor’s electronic speed

controller (ESC), which translate the commands into voltage levels that dictate the rotation speed

21

of the connected motor. For a depiction of the layout of a quadcopter control system refer to

Figure 63 in Section 6.5.

3.2. SBUS Communication Protocol

The SBUS protocol is a specialized serial communication protocol developed by Futaba

Corporation for use in RC devices. The protocol is designed to condense 16 individual channels

into a single data frame that can then be transferred over a single line.

SBUS is based on the UART communication protocol (see Appendix A) but uses

inverted voltage levels and a specialized 100,000 baud rate. Additionally, SBUS bytes are

structured with the most significant bit first, differing from UART’s byte structure of least

significant bit first. A standard SBUS transmission is comprised of 25 bytes, which all together

form the SBUS frame. The first byte is the header, or start byte, which identifies the beginning of

the SBUS frame. The following 22 bytes contain the data for the 16 channels in the format of

one start bit, eight data bits, one even parity bit, and two stop bits. The 23rd byte contains

information for two digital channels and the “frame lost” and “failsafe” flags. The final byte is

the footer, or end byte, which identifies the end of the SBUS frame [36]. The SBUS frame

structure is summarized in Figure 13, adapted from [37] and [38].

22

Figure 13: SBUS frame structure

3.2.1. Decoding

Since SBUS is a non-standard communication protocol, the ability to read and write in

the protocol is not a feature on the processor used for the MITM. That means in order to interpret

an SBUS signal a processor must be able to read and decode the frame before it can modify any

of the channel values.

Before the MITM can even receive an SBUS signal the signal has to be inverted. The

reason for the inversion is that SBUS is based on an inverted UART signal (see Appendix A). To

invert the SBUS signal, a 2N7002 metal-oxide-semiconductor field-effect transistor (MOSFET)

23

was used. A hardware solution was chosen over a software solution for the SBUS inversion

because of the availability of a UART bus on the processors used for the MITM. A schematic of

the SBUS inverter is shown in Figure 14.

Figure 14: SBUS signal inverter

As shown in the figure the original SBUS signal is passed into the gate of the 2N7002

MOSFET and the inverted SBUS signal is output at the drain. The inversion works by the

MOSFET adjusting current flow based on the original signal’s voltage levels. When the input

voltage is high the MOSFET will allow the current to flow to ground, resulting in the output

signal being pulled low. When the input voltage is low the MOSFET will be disabled, allowing

the current to flow to the output where the signal will be pulled high by the 10-kΩ pullup

resistor.

With the SBUS signal inverted, the MITM can now read the signal like it would any

standard UART signal using the MITM processor’s built-in UART bus; however, the UART bus

must be initialized to read the SBUS signal at the specialized 100,000 baud rate. With the baud

rate accounted for the MITM captures 50 bytes, or two SBUS frames worth of data. Since the

SBUS start and end bytes are predetermined, the MITM searches the 50 bytes for an end byte

24

and then searches for a start byte 24 bytes before the found end byte, thus mapping a single

SBUS frame. Additionally, by capturing two frames worth of bytes the MITM is guaranteed to

capture at least one frame, thus eliminating concerns over clock synchronization and clock drift.

Once an SBUS frame is mapped the MITM checks if the new frame is different from the

previous frame and if so the MITM can begin parsing the 22 data bytes for the 16 individual

channels. If the frame is the same as the previous frame then the MITM uses the channel values

from the previous frame, skipping the decoding process for the new frame. The first step is to

perform a bit endian swap on each byte because the UART bus reads the bytes as having the

least significant bit first but SBUS bytes are structured with the most significant bit first. Next

since the data for individual channels is comprised of 11 bits and spaced across multiple bytes,

the parsing must operate at the bit level, using bitshifting and bitmasking. For example, to parse

the data for Channel 1 the entire first data byte (8 bits) and 3 bits from the second data byte are

needed. For simplicity the bitshifting and bitmasking values for each channel are detailed in

Table II. Note that the “Byte Index” column does not apply to the channels explicitly. Rather the

values refer to the bytes that contain information for the channels.

25

Table II: SBUS decoding values

Channel Low

bitshift

Low

bitmask

Mid

bitshift

Mid

bitmask

High

bitshift

High

bitmask

Byte

Index

1 5 0xE0 3 0xFF 0 0x00 0

2 2 0xFC 6 0x1F 0 0x00 1

3 7 0x80 1 0xFF 9 0x03 3

4 4 0xF0 4 0x7F 0 0x00 4

5 1 0xFE 7 0x0F 0 0x00 5

6 6 0xC0 2 0xFF 10 0x01 7

7 3 0xF8 5 0x3F 0 0x00 8

8 0 0xFF 8 0x07 0 0x00 9

9 5 0xE0 3 0xFF 0 0x00 11

10 2 0xFC 6 0x1F 0 0x00 12

11 7 0x80 1 0xFF 9 0x03 14

12 4 0xF0 4 0x7F 0 0x00 15

13 1 0xFE 7 0x0F 0 0x00 16

14 6 0xC0 2 0xFF 10 0x01 18

15 3 0xF8 5 0x3F 0 0x00 19

16 0 0xFF 8 0x07 0 0x00 20

Using the information from the table, the following equation, in the Python coding

language syntax, was used to determine the channel values:

𝑐ℎ𝑎𝑛𝑛𝑒𝑙[𝑘] = (𝑏𝑦𝑡𝑒[𝑛𝑑𝑥[𝑘]]&ℎ𝑖𝑔ℎ𝑏𝑖𝑡𝑚𝑎𝑠𝑘[𝑘]) ≪ ℎ𝑖𝑔ℎ𝑏𝑖𝑡𝑠ℎ𝑖𝑓𝑡[𝑘] +

+ (𝑏𝑦𝑡𝑒[𝑛𝑑𝑥[𝑘 + 1]]&𝑚𝑖𝑑𝑏𝑖𝑡𝑚𝑎𝑠𝑘[𝑘]) ≪ 𝑚𝑖𝑑𝑏𝑖𝑡𝑠ℎ𝑖𝑓𝑡[𝑘]

+(𝑏𝑦𝑡𝑒[𝑛𝑑𝑥[𝑘 + 2]]&𝑙𝑜𝑤𝑏𝑖𝑡𝑚𝑎𝑠𝑘[𝑘]) ≫ 𝑙𝑜𝑤𝑏𝑖𝑡𝑠ℎ𝑖𝑓𝑡[𝑘]

(3)

where 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is a unitless integer value ranging from 172 to 1811, 𝑏𝑦𝑡𝑒 is a data byte from the

SBUS frame, and 𝑛𝑑𝑥 is the byte index from Table II.

 The final step is to perform a bit endian swap on the individual channel values to change

from little to big endian. This was done because the SBUS protocol encodes the channel values

as little endian across the data bytes.

 As a result of the decoding process, the channel values take on an integer range of 172 to

1811. Thus, the SBUS minimum, SBUS neutral, and SBUS maximum values are 172, 992, and

1811, respectively.

26

3.2.2. Encoding

 Any data being transmitted to the flight controller must be in the SBUS format.

Therefore, the MITM must encode the individual channel values back into bytes that when

output over the UART bus take the form of an SBUS frame.

The first step is to perform a bit endian swap on the individual channels, changing the bit

order from big to little endian. This is the reverse of the final step of the decoding procedure.

Secondly, the start byte is added as the first byte. Next the channel values are split across the data

bytes using bitshifting and bitmasking. The values used for the bit operations are summarized in

Table III.

Table III: SBUS encoding values

Data byte First

channel

First

channel

bitmask

First

channel

bitshift

Second

channel

Second

channel

bitmask

Second

channel

bitshift

1 0 0x00 0 0 0xFF 3

2 0 0xE0 5 1 0x1F 6

3 1 0xFC 2 2 0x03 9

4 2 0x00 0 2 0xFF 1

5 2 0x80 7 3 0x7F 4

6 3 0xF0 4 4 0x0F 7

7 4 0xFE 1 5 0x0F 10

8 5 0x00 0 5 0xFF 2

9 5 0xC0 6 6 0x3F 5

10 6 0xF8 3 7 0x07 8

11 7 0xFF 0 8 0x00 0

12 8 0x00 0 8 0xFF 3

13 8 0xE0 5 9 0x1F 6

14 9 0xFC 2 10 0x03 9

15 10 0x00 0 10 0xFF 1

16 10 0x80 7 11 0x7F 4

17 11 0xF0 4 12 0x0F 7

18 12 0xFE 1 13 0x01 10

19 13 0x00 0 13 0xFF 2

20 13 0xC0 6 14 0x3F 5

21 14 0xF8 3 15 0x07 8

22 15 0xFF 0 16 0x00 0

Using the information from Table III, the data byte values can be found using the

following equation, written in the Python coding language syntax:

27

𝑏𝑦𝑡𝑒[𝑘] = ((𝑐ℎ𝑎𝑛𝑛𝑒𝑙[𝑐ℎ𝑎𝑛1[𝑘]] ≪ 𝑐ℎ𝑎𝑛1𝐵𝑆[𝑘]) & 𝑐ℎ𝑎𝑛1𝐵𝑀[𝑘])

| ((𝑐ℎ𝑎𝑛𝑛𝑒𝑙[𝑐ℎ𝑎𝑛2[𝑘]] ≫ 𝑐ℎ𝑎𝑛2𝐵𝑆[𝑘]) & 𝑐ℎ𝑎𝑛2𝐵𝑀[𝑘])

(4)

where 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is a channel value, 𝑐ℎ𝑎𝑛1 is the first channel index, 𝑐ℎ𝑎𝑛2 is the second channel

index, 𝑐ℎ𝑎𝑛1𝐵𝑆 is the first channel bitshift, 𝑐ℎ𝑎𝑛1𝐵𝑀 is the first channel bitmask, 𝑐ℎ𝑎𝑛2𝐵𝑆 is

the second channel bitshift, and 𝑐ℎ𝑎𝑛2𝐵𝑀 is the second channel bitmask.

 The second to last byte is set to zero and the final byte is set as the end byte. Finally, with

all the data in the SBUS frame the frame’s 25 bytes are endian swapped. The reason for doing

this was because the UART module on the MITM’s processor transmits the lowest bit first but

the SBUS bytes are read with the highest bit first by the Canary’s flight controller.

 With encoding finished, the MITM outputs the SBUS frame through another signal

inverter like the one in Figure 14. However, 5 V is used on the MOSFET’s drain rather than

3.3 V. It would later be discovered that the shift in voltage was not needed since SBUS voltage

levels are at 3.3 V rather than 5 V.

3.2.3. Channel Naming Scheme

Throughout this work the two different SBUS signals, received and transmitted, will be

referred to as RX and TX, respectively. Furthermore, the individual SBUS channels were given

specific names that will be referenced throughout this work. The channel names were derived

from standard channel names for UAV control, such as Thr for throttle and Ele for elevator, as

well as custom names used in this work, such as LOG for enabling data logging. For clarity and

simplicity, the full naming scheming is detailed in the Table IV, with standard SBUS channel

names denoted by an asterisk.

28

Table IV: SBUS channel naming scheme

Channel Name Description

1 Thr Throttle; altitude (upward/downward) control*

2 Ail Aileron; roll (left/right) control*

3 Ele Elevator; pitch (forward/backward) control*

4 Rud Rudder; yaw (rotation) control*

5 ARM System arm/disarm*

6 Hld Altitude hold enable

7 LOG Data logging enable

8 sbEN Enables communications with the Sensor Boards & feedback system

 vEN Overrides Ele with the step magnitude from VEL; used only during

modeling data collection

9 ctrlEN Enables LCAS feedback controllers; sbEN has to be enabled first

10 VEL Controls magnitude of Ele step; used only during modelling data

collection

11 n/a Unused

12 n/a Unused

13 n/a Unused

14 n/a Unused

15 n/a Unused

16 n/a Unused

3.3. Kalman Filter

To aid in the development of the Canary model data fusion was used to combine GPS and

accelerometer data into a position estimate that was more accurate and consistent than an

estimate based on the individual sensors. A common method of data fusion, the Kalman filter is a

recursive algorithm that estimates unknown states, or variables, based on an estimation of a joint

probability distribution over the known states for each sampling period [39] [40]. There are two

stages to the Kalman filter: prediction/extrapolation and update.

3.3.1. State-space Model

To begin with, a state-space model has to be derived for the system. The system model

used is given by the following equations adapted from [41, pp. 123-124]:

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 (5)

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 (6)

29

where 𝑥 is the state vector, 𝑦 is the output vector, 𝑢 is the input vector, 𝐴 is the system matrix, 𝐵

is the input matrix, 𝐶 is the output matrix, and both 𝑤𝑘 and 𝑣𝑘 are jointly Gaussian noise vectors.

Since there were no deterministic inputs used in the modeling of the Canary the 𝐵𝑢𝑘 term was

ignored.

3.3.1.1. Prediction Stage

The prediction stage of the Kalman filter is focused entirely on the state estimation. The

state estimate from the previous sampling period is used to produce a state estimate for the

current sampling period. The predicted state estimate and the predicted estimate covariance were

produced using the following equations, adapted from [39] and [40],

 𝑥̂𝑘+1
− = 𝐴𝑥̂𝑘 (7)

 𝑃𝑘+1
− = 𝐴𝑃𝑘𝐴

𝑇 + 𝑄 (8)

where 𝑥̂𝑘+1
− is the predicted state estimate, 𝑥̂𝑘 is the previous state estimate, 𝑃𝑘+1

− is the predicted

estimate covariance, 𝑃𝑘 is the previous estimate covariance, and 𝑄 is the process noise

covariance matrix. The process noise covariance matrix is associated with the level of

uncertainty, 𝑞, towards the system measurements.

3.3.1.1. Update Stage

The update stage of the Kalman filter uses the measurements of the current sampling

period to refine the state estimate and estimate covariance matrix produced by the prediction

stage. During this stage the optimal Kalman gain is calculated to aid in the refinements. The

update stage equations are as follows, adapted from [39] and [40]:

 𝐾𝑘+1 = 𝑃𝑘+1
− 𝐶𝑇[𝐶𝑃𝑘+1

− 𝐶𝑇 + 𝑅]−1 (9)

 𝑥̂𝑘+1 = 𝑥̂𝑘+1
− + 𝐾𝑘+1[𝑦𝑘+1 − 𝐶𝑥̂𝑘+1

−] (10)

30

 𝑃𝑘+1 = [𝐼 − 𝐾𝑘+1𝐶] 𝑃𝑘+1
− (11)

where 𝐾𝑘+1 is the optimal Kalman gain, 𝑥̂𝑘+1 is the updated state estimate, and 𝑅 is the

measurement noise covariance matrix.

3.4. Root Locus Technique

Root locus is a control system design technique that uses a graphical representation of a

closed-loop system’s poles and zeros to assess system stability and observe the effect of varying

certain system parameters [41, pp. 388, 456-459]. Before delving into the specifics of the

technique, consider the example traditional closed-loop, or feedback control, system depicted in

Figure 15.

Figure 15: Traditional feedback control loop

Plotting the locations (locus) of the plant’s poles and zeros in the s-plane as a function of

the loop gain, the stability of the closed-loop system can be observed via the system’s transient

response. The system is stable when the poles and zeros are located in the left-half plane. The

root locus and transient response of the plant (controller set to unity) from Figure 15 are shown

in Figure 16.

31

Figure 16: Root locus and transient response of the open-loop system

To improve the transient response and system stability, additional poles and zeros can be

added to the controller. For example, to decrease the system’s settling time to under 1.9 seconds

a single pole and zero can be added, on top of increasing the gain. The controller now takes the

form:

 𝐶(𝑠) =
1.25 (𝑠 + 4)

(𝑠 + 10)
 (12)

Implementing the controller, the root locus and transient response shown in Figure 17 is

produced for the closed-loop system.

32

Figure 17: Root locus and transient response of the closed-loop system

By implementing the designed controller, the closed-loop system can achieve a settling

time of less than 1.9 seconds. Further design requirements, such as rise time and percent

overshoot, can be addressed by adjusting the controller’s gain and/or by adding or removing

poles and zeros to the controller.

33

4. Modeling

There are numerous variables to consider when attempting to model a UAV in flight.

Even when just hovering in place, a UAV is experiencing and generating forces in a variety of

directions. From motor torques to air resistance, building a mathematical model for a UAV is a

complicated task. Entire research projects and papers are dedicated to the task, such as [42] and

[43]. Therefore, the building of a full mathematical model for tuning the LCAS was out of the

scope of this thesis. However, by limiting the variables and experimental parameters it was

possible to derive a reasonable model of a UAV for tuning the LCAS.

Instead of considering all six directions, the derived model was only for a single

direction, specifically the forward direction. By focusing only on one direction, the model

became one-dimensional and thus the forces were simplified. The free-body diagram in Figure

18 provides a depiction of this concept.

Figure 18: One-dimensional free-body diagram of a UAV flying towards a wall

Working in the frequency domain, the forces from Figure 18 can be depicted using the

following equations adapted from [41, pp. 35, 64]:

 𝑠 = 𝜎 + 𝑗𝜔 (13)

 𝐹𝑀(𝑠) = 𝑀𝑠
2𝑋(𝑠) (14)

F

34

 𝐹𝐷(𝑠) = 𝐷𝑠𝑋(𝑠) (15)

where 𝑠 is the complex frequency parameter; 𝐹𝑀 is the force exerted by the UAV; 𝐹𝐷 is the

damping force from air resistance; 𝐷 is the damping coefficient; and 𝑋 is displacement.

Applying Newton’s second law, the sum of the forces is

 𝐹(𝑠) − 𝐷𝑠𝑋(𝑠) = 𝑀𝑠2𝑋(𝑠) (16)

Solving for 𝑋(𝑠),

 𝑋(𝑠) =
𝐹(𝑠)

𝑀𝑠2 + 𝐷𝑠
 (17)

where 𝑋(𝑠) is the displacement of the UAV, in meters, and 𝐹(𝑠) is the normalized input.

 Looking at Equation (17), the parameters 𝑀 and 𝐷 need to be derived to finish the model

equation. 𝐷, the damping coefficient, is derived from the effect of air resistance of UAV while it

is in flight. A UAV, like the Canary, is unlikely to reach high enough speeds, especially in

indoor environments, for the air resistance to start causing a damping effect on the UAV.

Therefore, 𝐷 can be considered negligible. 𝑀, on the other hand, is a bit more complex.

Typically, 𝑀 is the mass but when it comes to a UAV the parameter is a function of the flight

controller. Essentially, the flight controller handles numerous parameters of the UAV while in

flight, such as motor speed and motor torque, which causes 𝑀 to be dynamic. Instead of

attempting to mathematically model the dynamics of 𝑀, it was decided that it would be simpler

to use data-driven modeling and curve-fit the response of the Canary to a known input to derive

an equation for 𝑀.

4.1. Methodology

4.1.1. Step Input

A step input was chosen to test the response of the Canary quadcopter. Over the course of

two flights a series of six steps were tested, with each step a constant SBUS value applied in the

35

Canary’s forward direction. The magnitude of each step was controlled by a dial on the RC

transmitter (see Section 6.5.4.1). Table V shows the step magnitudes used for measuring the step

responses of the Canary.

Table V: Canary step input magnitudes

Flight Step number Magnitude [SBUS value]

1 1 1044

1 2 1182

1 3 1407

2 4 1683

2 5 1811

2 6 1810

4.1.2. Testing Area

The area used for testing the step responses of the Canary was Leonard Field on the east

side Montana Tech’s campus. The field and the UAV’s area of operation (red box) are shown

below in Figure 19.

Figure 19: Canary testing area, Leonard Field [44]

36

4.1.3. Procedure

Before triggering each step, the Canary was set to hover at an arbitrary altitude. Once the

Canary was hovering the step’s magnitude was set and then the step was triggered. The response

to the step was captured as position and acceleration values (see Section 6.5.4 for details on the

hardware and methodology). Upon approach of the end of the testing area, the step input was

ended, and the UAV was returned to its starting position. The same procedure was then repeated

for each step magnitude.

4.1.4. Data Collection

The parameters measured when recording the step response of the Canary were the

position and acceleration. Position of the UAV was captured as latitude, longitude, and altitude

values by a GPS module approximately every 100 ms. Acceleration on the x, y, and z axes were

measured by an accelerometer approximately every 20 ms and filtered using a 10-point moving

average. Both parameters were stored in logs.

In addition to the position and acceleration values, the RX and TX SBUS frames were

logged in order to provide time alignment of the position and acceleration data to the triggering

of the steps.

4.2. Data Processing

After copying the GPS, accelerometer, and SBUS logs off the MITM, the data were

imported into MATLAB for processing.

4.2.1. SBUS Data

Before working with the GPS and accelerometer, the relevant SBUS channel values had

to be parsed from the SBUS log. Since the step response testing was done in the forward

37

direction of the Canary, the channel value that was modified by the MITM was Ele. Triggering

of the step was handled by vEN. For more details on Ele and vEN refer to Table IV.

The first step was to separate the TX data from the RX data. This was done since the

MITM used the RX channel values for Ele and vEN to determine the value of Ele to be

transmitted to the flight controller. The TX data was parsed by using every even numbered row

in the data log to obtain the relevant values for Ele, vEN, and sample time (Tsbus).

The second step was to set the zero point of the sample time vector and check for time

logging errors. The zero-point had to be set since the sample time was recorded by the MITM in

Unix time, or the number of seconds since midnight on January 1, 1970. By subtracting the first

value of the sample time vector from every value in the vector, the vector started at zero,

corresponding with the start time of the Canary’s flight. With the zero-point set, the modified

sample time was checked for errors. The error-checking was needed after it was observed that

the MITM had arbitrarily added more than 1500 seconds to the sample times in the middle of

one of the flights. When a significant change in error time was found during error checking, the

difference between the last valid sample time and the first invalid sample time was subtracted

from the first invalid sample time and the succeeding sample times.

The final step in processing the SBUS data was to resample. Resampling was done since

the sampling rate of the SBUS data was not consistent, ranging from 19 to 23 ms thus making

the data difficult to work with later. The inconsistent sampling rate was a result of the MITM

checking if new RX SBUS frames were the same as previous frames. If a new frame was

different from the previous frame then the MITM needed additional time to decode the frame. If

the new frame was the same as the previous frame then the MITM skipped the decoding process

and reused the SBUS data from the previous frame. Using MATLAB’s built-in resample()

38

function, Ele and vEN were resampled with a sampling period of 0.02 seconds. A new sample

time vector was generated by the function to match the resampled values of Ele and vEN.

4.2.2. GPS Data

The first step in processing the GPS data was to set the zero point and error checking.

The process was the same as the one used in the processing of the SBUS data.

The second step was to convert latitude and longitude values to positional values. The

conversion factors for latitude and longitude are dependent on the location of the coordinates in

the world. This stems from the fact that as latitude increases the width of a second decreases,

which in turn also affects longitude [45]. Taking that into consideration, the following equations

were used to determine the latitude and longitude to meters conversion factors, courtesy of [45]:

 𝑙𝑎𝑡𝑚 = 111,132.92 − 559.82 cos 2𝜑 − 0.0023 cos 6𝜑 (18)

 𝑙𝑜𝑛𝑔𝑚 = 111,412.84 cos𝜑 − 93.5 cos 3𝜑 + 0.118 cos 5𝜑 (19)

where 𝑙𝑎𝑡𝑚 is the conversion factor for latitudinal degrees to meters; 𝑙𝑜𝑛𝑔𝑚 is the conversion

factor for longitudinal degrees to meters; and 𝜑 is the initial latitude coordinate. Both equations

return the conversion factors in meters per degree. The conversion factors were calculated for

each flight and the values are shown in Table VI.

Table VI: Conversion factors per flight for latitude & longitude to meters

Flight 𝒍𝒂𝒕𝒎 (m/degree) 𝒍𝒐𝒏𝒈𝒎 (m/degree)

1 111,473.52 -49,356.33

2 111,473.46 -49,362.63

 Using the conversion factors, the GPS log’s latitude and longitude values were converted

to positional values with the initial values set to zero via the following equations:

 𝑦𝑔𝑝𝑠(𝑘) = 𝑙𝑎𝑡𝑚(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒(𝑘) − 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒(0)) (20)

39

 𝑥𝑔𝑝𝑠(𝑘) = 𝑙𝑜𝑛𝑔𝑚(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒(𝑘) − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒(0)) (21)

 The final step was to resample the GPS data to align with the sampling rate of the SBUS

data. The resample() function was used to resample 𝑥𝑔𝑝𝑠 and 𝑦𝑔𝑝𝑠.

4.2.3. Accelerometer Data

Processing of the accelerometer data began with the multiplying the acceleration values

by gravitational acceleration (9.81 m/s2) in order to convert from g-force. Next the zero point

was set in the sample time vector and the entire vector was error-checked using the same method

as in the SBUS and GPS data processing. The final step in processing the acceleration values

was to resample.

4.3. Estimating the Canary’s Position

By itself, the GPS position could have produced a relatively accurate estimation of the

Canary’s position during the two valid step response testing fights. However, the original GPS

data were limited to about 10 samples per second, while both the SBUS and accelerometer data

were recorded at about 50 samples per second. Resampling of the GPS data was able to increase

the number of samples, but minimally improved the accuracy of the position estimation.

Using the accelerometer data to estimate the position of the Canary would have been an

exercise in futility. Accelerometers are prone to degrading efficiency over time due to

compounding errors and are susceptible to hysteresis [46]. Some of the error was addressed by

using a moving average filter when the MITM recorded values, but the filter could not account

for all errors. Without removing errors, such as offsets, integrating to get a position estimate

would have only resulted in an estimation of the total error.

In order to produce an accurate position estimate, while addressing the shortcomings of

both sensors, data fusion was used. Data fusion is the process of combining relevant information

40

from multiple sources into a single more consistent and accurate estimate compared to using only

one of the individual sources [47]. The data fusion algorithm chosen for combining the GPS and

accelerometer data was the Kalman filter (Section 3.3).

 The first step in using the Kalman filter was to develop a state-space model of the system.

Given the known states are the positions and accelerations and the unknown states are the

velocities, the following relationships were considered:

 𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑥,𝑘∆𝑡 (22)

 𝑦𝑘+1 = 𝑦𝑘 + 𝑣𝑦,𝑘∆𝑡 (23)

 𝑣𝑥,𝑘+1 = 𝑣𝑥,𝑘 + 𝑎𝑥,𝑘∆𝑡 (24)

 𝑣𝑦,𝑘+1 = 𝑣𝑦,𝑘 + 𝑎𝑦,𝑘∆𝑡 (25)

 𝑎𝑥,𝑘+1 = 𝑎𝑥,𝑘 + 𝑤𝑥,𝑘 (26)

 𝑎𝑦,𝑘+1 = 𝑎𝑦,𝑘 +𝑤𝑦,𝑘 (27)

where 𝑥 and 𝑦 are the positions; 𝑣𝑥 and 𝑣𝑦 are the velocities; 𝑎𝑥 and 𝑎𝑦 are the accelerations; and

𝑤𝑥 and 𝑤𝑦 are random variables representing the system’s process noise, such as disturbances.

 The following sixth-order system model was derived by substituting the relationships,

linearly, into Equations (5) and (6).

[

𝑥𝑘+1
𝑦𝑘+1
𝑣𝑥,𝑘+1
𝑣𝑦,𝑘+1
𝑎𝑥,𝑘+1
𝑎𝑦,𝑘+1]

⏟
𝑥𝑘+1

=

[

1 0 ∆𝑡 0 0 0
0 1 0 ∆𝑡 0 0
0 0 1 0 ∆𝑡 0
0 0 0 1 0 ∆𝑡
0 0 0 0 1 0
0 0 0 0 0 1]

⏟
𝐴

[

𝑥
𝑦
𝑣𝑥
𝑣𝑦
𝑎𝑥
𝑎𝑦]

⏟
𝑥𝑘

+ 𝑤𝑘
(28)

41

[

𝑥𝑘
𝑦𝑘
𝑎𝑥,𝑘
𝑎𝑦,𝑘

]

⏟
𝑦𝑘

= [

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

]

⏟
𝐶 [

𝑥
𝑦
𝑣𝑥
𝑣𝑦
𝑎𝑥
𝑎𝑦]

⏟
𝑥𝑘

+ 𝑣𝑘
(29)

 With the state-space model built, the GPS and accelerometer data were passed into the

Kalman filter algorithm. For the prediction stage the uncertainty, 𝑞, was optimized to be 1x10-5

after a few iterations of the Kalman filter. Therefore, the process noise covariance was defined as

 𝑄 =

[

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 𝑞 0
0 0 0 0 0 𝑞]

 (30)

For the update stage the measurement noise covariance matrix, 𝑅, was derived by calculating the

magnitude of the autocorrelation of the measurement noise for each of the known states (𝑥, 𝑦, 𝑎𝑥,

and 𝑎𝑦). Thus, the matrix was defined as

 𝑅 =

[

𝑅𝑥𝑥 0 0 0
0 𝑅𝑦𝑦 0 0

0 0 𝑅𝑎𝑥𝑎𝑥 0

0 0 0 𝑅𝑎𝑦𝑎𝑦]

 (31)

4.4. Step Response Results

The GPS and Kalman filter position estimates for both flights are shown in Figures 20

and 21. Note that the x- and y-positions refer to the Canary’s latitude and longitude, respectively,

in meters.

42

Figure 20: Flight 1 position estimate

Figure 21: Flight 2 position estimate

From both figures it can be seen that the GPS position estimate was representative of the

Canary’s position during either flight, but exhibited sharper turns and less of the flowing motion

that the Canary exhibited during the flights. The Kalman filter estimate, on the other hand,

43

showed smoother turns and overall appeared to better portray the flowing motion of the Canary

during the flights.

To better show the individual step responses, the Kalman filter position estimate was

separated into component x- and y- positions and plotted versus time. These plots are showing in

Figures 22 and 23. Also, the SBUS channel vEN (step enable) was included to show the time

duration of the steps.

Figure 22: Flight 1 position versus time

44

Figure 23: Flight 2 position versus time

As can be seen in the figures, both Canary flights contained three individual steps in the

forward direction. The magnitudes of each step were set before the triggering of each step. To

aid in the derivation of the Canary’s model, the individual steps and the respective responses

were parsed from the data. To simply calculations to a single dimension, the magnitude between

the two position components was calculated using the Pythagorean theorem. Finally, each step

was set to start at time zero with the initial position at the origin. The parsed step responses are

shown in Figure 24, for Flight 1, and Figure 25, for Flight 2. The magnitude (in SBUS values) of

each step is noted above the respective plot.

45

Figure 24: Flight 1 step responses

Figure 25: Flight 2 step responses

4.5. Deriving the Model Equation

4.5.1. Curve-fitting the Model Equation

In order to curve-fit the model, an estimated equation had to be used to determine what

parameters need to be derived from the data. Rearranging Equation (17),

46

 𝑋(𝑠)(𝑀𝑠2 +𝐷𝑠) = 𝐹(𝑠) (32)

Taking the inverse Laplace transform to return to the time domain,

 𝑀𝑥̈(𝑡) + 𝐷𝑥̇(𝑡) = 𝑓(𝑡) (33)

As discussed previously the effect of 𝐷 is negligible. Also, 𝑓(𝑡) is constant at a given 𝑡. Ignoring

𝐷 and substituting the constant 𝐴 for 𝑓(𝑡),

 𝑀𝑥̈(𝑡) = 𝐴 (34)

Rearranging and taking the integral,

 ∫ 𝑥̈(𝑡) 𝑑𝑡 =
1

𝑀
∫𝐴𝑑𝑡 (35)

 𝑥̇(𝑡) = 𝐴
1

𝑀
𝑡 + 𝑣0 (36)

where 𝑣0 is the initial velocity. Integrating again to get position,

 ∫ 𝑥̇(𝑡) 𝑑𝑡 = ∫𝐴
1

𝑀
𝑡 + 𝑣0 𝑑𝑡 (37)

 𝑥(𝑡) = 𝐴
1

2𝑀
𝑡2 + 𝑣0𝑡 + 𝑥0 (38)

where 𝑥0 is the initial position.

 However, the methodology used for collecting the data had the Canary at a stationary

hover before triggering the steps, thus there was no initial velocity. Furthermore, when

processing the data, the initial position of the Canary for each step was normalized to zero. So,

zeroing the initial velocity and position,

 𝑥(𝑡) = 𝐴
1

2𝑀
𝑡2 (39)

 The coefficient,
1

2𝑀
, can be simplified into a single quantifiable value, 𝑅, as a function of

𝑀 with units of m/s2. Substituting in 𝑅 for
1

2𝑀
, the model equation is

47

 𝑥(𝑡) = 𝐴𝑅𝑡2 (40)

Solving for 𝑅,

 𝑅 =
𝑥(𝑡)

𝐴𝑡2
 (41)

An estimate for 𝑅 was made by substituting the position estimates from the step response

testing in for 𝑥(𝑡) and the step magnitudes in for 𝐴. The model was then simulated and

compared to the Canary’s responses. Results from the simulation are shown in Figures 26 and

27. The estimated value of 𝑅 for each step is given in Table VII.

Figure 26: Results from the 𝑹 estimation using Flight 1 parameters

48

Figure 27: Results from the 𝑹 estimation using Flight 2 parameters

Table VII: Estimates of 𝑹

Flight Step Magnitude 𝑹

1 1044 1.4152

1 1182 0.5789

1 1407 0.7622

2 1683 1.6577

2 1811 1.8080

2 1810 1.2711

 Taking the average of the estimates, the value of 𝑅 was found to be 1.2489. To test if the

estimate of 𝑅 was reasonable, it was substituted into Equation (40), simulated again with the

same step magnitudes, and compared to the Canary’s step responses. The simulation results are

shown in Figures 28 and 29.

49

Figure 28: Model simulation with 𝑹 = 𝟏. 𝟐𝟖𝟒𝟗 using Flight 1 parameters

Figure 29: Model simulation with 𝑹 = 𝟏. 𝟐𝟖𝟒𝟗 using Flight 2 parameters

Looking at the figures, the 1.2489 estimate for 𝑅 did not provide an adequate

approximation of the Canary, with the model’s step responses not quite replicating the Canary’s

step responses. The reasons behind this conclusion can be seen in the 𝑅 estimates for the

Canary’s 1182 and 1407 step responses. From Table VII, the 𝑅 estimates for the 1182 and 1407

50

step responses were 0.5789 and 0.7622, respectively. Both of the estimates were significantly

lower than the next largest 𝑅 estimate, 1.2711 for the 1810 step. Looking at the model’s response

versus the Canary’s response for either step it can be seen that the Canary was slower than the

prediction made by the model. Furthermore, looking at the 1810 step response the Canary did not

respond as quickly as it did to the 1811 step, as if the Canary experienced a disturbance when the

step was trigger which caused the initial response to be slowed.

Attempting to improve the model approximation, the values of 𝑅 for the 1182, 1407, and

1810 steps were left out of the average 𝑅 estimate calculation. Thus, resulting in a new average

𝑅 value of 1.6270. Running the validation simulation again, the results given in Figures 30 and

31 were produced. The 1182, 1407, and 1810 step simulations are included to show how the

model responded to those step values.

Figure 30: Model simulation with 𝑹 = 𝟏. 𝟔𝟐𝟕𝟎 using Flight 1 parameters

51

Figure 31: Model simulation with 𝑹 = 𝟏. 𝟔𝟐𝟕𝟎 using Flight 2 parameters

By leaving out the 𝑅 estimates from the 1182, 1407, and 1810 steps a better

approximation of the Canary was produced. Under the 1044, 1683, and 1811 steps the model

appeared to better match up with the Canary’s responses.

The new value of 𝑅 proved to be more reasonable and provided a better approximation of

the Canary. Substituting the value into Equation (40),

 𝑥(𝑡) = 𝐴(1.6270)𝑡2 (42)

4.5.2. Discretizing the Model

So far most of the model derivation had been in the continuous time domain. However, in

order to develop the LCAS’s controller the model must be in discrete time, since the controller

will only be able to operate on a sample-by-sample basis.

Moving Equation (42) to the Laplace domain via the Laplace transform,

 𝑋(𝑠) = 𝐴
2(1.6270)

𝑠2
 (43)

52

Substituting the Laplace form of the input 𝐹(𝑠) in for 𝐴 and solving for the output, 𝑋(𝑠), over

the input, the system transfer function is

𝑋(𝑠)

𝐹(𝑠)
=
2(1.6270)

𝑠2
 (44)

 Using MATLAB’s continuous-to-discrete time function, c2d(), Equation (43) was

discretized with a 0.02-second sampling period, resulting in:

𝑋(𝑧)

𝐹(𝑧)
=
0.0006508 + 0.0006508𝑧−1

1 − 2𝑧 −1 + 𝑧−2
 (45)

Using the inverse Z-transform, the model’s difference equation is

 𝑥[𝑘] = 0.0006508𝑓[𝑘] + 0.0005608𝑓[𝑘– 1] + 2𝑥[𝑘– 1]– 𝑥[𝑘– 2] (46)

53

5. Controller Design

5.1. Overview

In the process of developing the LCAS feedback controller, two separate controller

designs, utilizing two different control system design techniques, were built. The Phase I

controller was designed first and tuned using time domain techniques and trial-and-error until a

reasonable response was attained for four simulated scenarios. While able to drive the model to a

desired position, the controller was characterized by unfavorable, oscillatory behavior and slow

response times (shown later on).

Seeking to improve on the Phase I design, a second design phase was conducted to

produce a new controller. The Phase II controller design was made using the root locus technique

to observe the effect of the controller’s poles and zeros on the closed-loop system stability and

transient response. Overall, the Phase II controller was able to improve upon Phase I

substantially, exhibiting reduced oscillatory behavior and a faster response time across all four

scenarios.

5.2. Design Methodology

5.2.1. Phase I

The Phase I controller was based on the idea of modifying the input, 𝑓[𝑘], when the

position is detected to be within an activation window. For example, when the position is greater

than the activation threshold, 𝑥𝑎𝑐𝑡, the controller overrides the input with a new input that drives

the model to 𝑥𝑑𝑒𝑠. The controller’s block diagram is shown in Figure 32.

54

Figure 32: Phase I controller block diagram

Most of the design of the Phase I controller was done in the discrete time domain via

simulation in MATLAB. Before simulating, the controller algorithm from the block diagram in

Figure 32 was translated into the following difference equation:

𝑓𝑐𝑜𝑛𝑡[𝑘] = 𝐾𝑝(𝑥𝑑𝑖𝑓𝑓[𝑘]) + 𝐾𝑖(𝑥𝑑𝑖𝑓𝑓[𝑘] + 𝑥𝑑𝑖𝑓𝑓[𝑘 − 1])

+ 𝐾𝑑(𝑥𝑑𝑖𝑓𝑓[𝑘]– 𝑥𝑑𝑖𝑓𝑓[𝑘 − 1])
(47)

where 𝑥𝑑𝑖𝑓𝑓 is the difference between the desired position and the system’s actual position. The

gains, 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑, were found by iterating the controller until it produced a reasonable

response. The final values of the gains were 1.2 for 𝐾𝑝, 0.1 for 𝐾𝑖, and 5 for 𝐾𝑑.

5.2.2. Phase II

Unlike the design method for the Phase I controller, the Phase II controller’s design took

a more traditional approach in the root locus technique (detailed in Section 3.4). Most of the

design was done via MATLAB’s Control System Designer App.

55

Importing the frequency-domain model transfer function, Equation (44), into rltool() the

following root locus for the open-loop system was produced:

Figure 33: Open-loop system root locus

 Based on the response of the Phase I controller, it was determined that the Phase II

controller would need to drive the model with less overshoot and a faster settling time.

Therefore, to determine the pole, zero, and gain of the controller an overshoot of 40 percent and

a settling time of 10 seconds were arbitrarily chosen as the design requirements when the

controller is subjected to a 1.0-magnitude step (1811-magnitude in SBUS).

 By adding the controller to the root locus, the values of the pole and zero were adjusted

graphically in the Control Designer App until the step response of the closed-loop system met

the design requirements. The resulting closed-loop root locus and step response are shown in

Figures 34 and 35, respectively.

56

Figure 34: Phase II closed-loop system root locus

Figure 35: Phase II closed-loop system step response

With the design requirements met, the frequency domain transfer function for the Phase

II controller was

 𝐶(𝑠) =
𝐹𝑐(𝑠)

𝐸(𝑠)
=
2.2435 (𝑠 + 0.2685)

(𝑠 + 2.292)
 (48)

57

where 𝐹𝑐 is the output of the controller and 𝐸 is the error between the actual position and desired

position. The equation was discretized using MATLAB’s c2d() function at a sampling period of

0.02 seconds, resulting in

 𝐶(𝑧) =
𝐹𝑐(𝑧)

𝐸(𝑧)
=
2.2435(𝑧 − 0.9948)

(𝑧 − 0.9552)
 (49)

Using the inverse Z-transform to find the controller’s difference equation,

 𝑓𝑐[𝑘] = 0.9552𝑓𝑐[𝑘 − 1] + 2.2435𝑒[𝑘]) − 2.2318𝑒[𝑘 − 1] (50)

5.3. Simulation Results

Both phases of the LCAS controller design were subjected to four simulation scenarios

that were intended to simulate the behavior of the Canary under control of a pilot. All

simulations were conducted under ideal conditions, meaning no measurement noise was added.

For visualization purposes, consider there to be a wall at 1 m and each controller is

attempting to drive the model to maintain a desired position, 𝑥𝑑𝑒𝑠, of 0.5 m. The controller

activates when the model’s position is within 0.25 m (𝑥𝑎𝑐𝑡) of the desired position.

5.3.1. Scenario 1

The first scenario set the input as a constant 1200 SBUS value as if the pilot were

continuing to fly towards the wall without attempting to avoid a collision. The results from

Scenario 1 are shown in Figure 36.

58

Figure 36: Scenario 1 simulation results

Under the first scenario, both controllers were able to drive the system away from the

wall and towards the desired position. However, the Phase I controller exhibited oscillatory

behavior causing the model to swing about the desired position and was unable to reach a steady

state in the 30-second window. The Phase II controller, on the other hand, did not cause the

system to oscillate and was able to achieve a steady state in just over five seconds. Also, the

Phase II controller limited the system’s overshoot to 8.3% compared to Phase I’s 69%.

5.3.2. Scenario 2

The second scenario repeated the first; however, the pilot actively attempted to avoid a

collision. Every time the system reached a position of 0.45 m the pilot momentarily dropped the

input SBUS value to 785, attempting to slow the system’s approach to the desired position.

Furthermore, after the first reaction the pilot reduced the regular input to 1050. Figure 37 shows

the results for Scenario 2.

59

Figure 37: Scenario 2 simulation results

For Scenario 2, the Phase I controller appeared to amplify the effect of the pilot’s

intervention, driving the system below the zero position. This would be unacceptable behavior in

real applications. Thus, the design advantage of the Phase II controller is quite evident. Instead of

amplifying the pilot’s actions, the controller complemented the pilot, allowing the system to

settle about the 0.45-m position. The controller was less intrusive in its influence on the pilot’s

inputs, showcasing a significant improvement over the Phase I controller.

5.3.3. Scenario 3

Scenario 3 used the SBUS value 1000. By setting the input to a value close to neutral, the

scenario simulated a slow drift towards the wall. And as akin to the first scenario, the pilot did

not react to the approach of the desired position. The results are shown in Figure 38.

60

Figure 38: Scenario 3 simulation results

Another unfavorable behavior was exhibited by the Phase I controller under the third

scenario. Once the system’s position crossed into the activation window at 0.25 meters the Phase

I controller activated and instead of attempting to slow the model the controller’s output caused

the system to increase in speed. This then began the same oscillatory behavior exhibited by the

controller under Scenario 1.

Again, the design improvements of the Phase II controller over Phase I are clear. The

Phase II controller not only drove the system to a steady state at the desired position, but also did

not overshoot the desired position. Also, the system did not increase in speed at any point but

rather slowed as it approached the desired position.

5.3.4. Scenario 4

Scenario 4 combined the slow drift of Scenario 3 with the pilot’s intervention actions

from Scenario 2. Every time the system reached a position of 0.45 m the pilot lowered the input

to 825; however, the pilot would let the system return to the original input after the initial

reaction instead of a lower value. The results for the scenario are shown in Figure 39.

61

Figure 39: Scenario 4 simulation results

For the final scenario, the Phase I controller displayed peculiar behavior that was deemed

entirely unacceptable. The increasing of the system’s speed was exhibited once again as were the

oscillations. It appears as if the controller has more control of the system than the pilot.

The Phase II controller’s response is a stark difference. The controller complemented the

pilot’s actions by driving the system to the pilot’s reaction position, and, if allowed, the

controller would have approached the desired position in the same manner as the third scenario.

5.4. Noise Resiliency

The final testing stage of the LCAS feedback controller was to observe how each of the

Phases handled error and/or noise in the position measurements. Each controller was subjected to

two different cases. Both cases added normally distributed noise to the position values seen by

the controller. The cases were differentiated by the scaling factor applied to the magnitude of the

noise. The parameters of Scenario 1 were used to provide the simulation environment.

62

5.4.1. Case 1

The first case scaled the added noise by a value of 0.0036821. This value was found by

calculating the standard deviation of a tinyLiDAR’s distance measurements of an object at

150 mm over the course of 15 minutes, with a sampling period of approximately 15 ms. The

Case 1 results for each controller are shown in Figures 40 and 41.

Figure 40: Case 1 simulation results for Phase I controller

Figure 41: Case 1 simulation results for Phase II controller

63

Under the standard deviation of the tinyLiDAR’s error, both controllers were able to

drive the system to the desired position. In comparison to the position results for Scenario 1 in

Figure 36, both controllers maintained the same response to the model despite the noise.

An important observation is the effect of the noise on the input to the model. The Phase I

controller appeared to not suppress the measurement error, causing the model input to be noisy.

The Phase II controller had a better response to the noise, but the fluctuation of the input about

the SBUS neutral was a concern.

5.4.2. Case 2

The second case scaled the added noise by a factor of 0.1. This value was chosen to

simulate an extreme error in position measurement. The response of each controller to Case 2 is

shown in Figures 42 and 43.

Figure 42: Case 2 simulation results for Phase I controller

64

Figure 43: Case 2 simulation results for Phase II controller

Again, the controllers were able to drive the system to the desired position, but the

fluctuations from Case 1 were exaggerated by the increase in noise magnitude. The Phase I

controller oscillated the model input between the minimum and maximum SBUS values. The

Phase II controller did not saturate the model input, but did cause the model input to fluctuate

between 500 and 1500.

5.5. Choosing a Controller

Based on the results from the four scenarios, the decision between which controller to use

was simple: the Phase II controller. The Phase II controller showed significant advantages over

the Phase I controller. The Phase II controller did not exhibit oscillatory behavior about the

desired position, and instead was able to drive the system to a steady state at the desired position.

Overshooting of the desired position was dramatically reduced by the Phase II controller.

Furthermore, the Phase II controller appeared to better complement the pilot. Under Scenarios 2

and 4, the Phase I controller amplified the pilot’s reactions when the pilot intervened. The Phase

65

II controller, in comparison, did not amplify the reactions by incorporating previous model

inputs to limit the amount of change that could be made to the new model input.

The ability to account for previous inputs and outputs gave the Phase II controller an

advantage over the Phase I controller in the noise resiliency testing. Both controllers were able to

handle Case 1, but Case 2 exposed the Phase I controller’s inability to regulate its output,

swinging it between the SBUS extremes. The Phase II controller handled Case 2 better by not

letting its output swing so sporadically.

It is quite apparent, though, that the Phase II controller did not reduce the effect of noise

on the system, as the noise was passed from the position seen by the controller to the model

input. However, the noise in the controller’s output had minimal effect on the model’s actual

position because of the relatively slow response of the model to changes in its input.

Since it is possible that a noisy input could cause the Canary’s flight controller to go into

failsafe, a 10-point simple moving average (SMA) filter was applied to the input of the Phase II

controller. The results are shown in Figures 44 and 45.

Figure 44: Case 1 simulation results for Phase II controller with a SMA

66

Figure 45: Case 2 simulation results for Phase II controller with a SMA

The addition of the SMA filter improved the noise resiliency of the Phase II controller

noticeably. The noise of Case 1 had no effect on the system, with the response matching the ideal

response of Scenario 1 (Figure 36). The improvement was more notable in Case 2. The sporadic

fluctuations of the controller output never exceeded the original input of 1200 or fell too far

below the SBUS neutral when at steady state.

As a note, the implementation of the Phase II equation in the LCAS prototype had an

extra pole and zero at the origin. However, the additional pole and zero cancel each other out,

resulting in the implemented equation matching equations in the Phase II design (Section 5.2.2).

This simplification was discovered when documenting this work, which was after the LCAS

prototype testing, thus why the extra pole and zero do not show up in the Phase II controller

design but do show up in the LCAS prototype. The implemented equation is as follows:

 𝐶(𝑠) =
𝐹𝑐(𝑠)

𝐸(𝑠)
=
2.2435 𝑠 (𝑠 + 0.2685)

𝑠 (𝑠 + 2.292)
 (51)

Discretizing with a sampling period of 0.02 seconds and then taking the inverse Z-transform the

difference equation used for the LCAS feedback control algorithm was

67

𝑓𝑐[𝑘] = (−0.9552𝑓𝑐[𝑘 − 2] + 1.9552𝑓𝑐[𝑘 − 1]) + (2.2317𝑒[𝑘 − 2]

− 4.4753𝑒[𝑘 − 1] + 2.2435𝑒[𝑘])
(52)

68

6. Hardware

 An in-depth review of the hardware used in the LCAS is provided in this section. Section

6.1, Overview, details the basic functions and operations of the LCAS hardware. Section 6.2,

Testing Platforms, looks at the servo-based rover and Canary quadcopter used for the

development and testing of the LCAS. Section 6.3, RC Receiver & Transmitter, covers the RC

hardware used to control the Canary. Section 6.4, Sensor Board, discusses, in-depth, the design

and functions of the LCAS Sensor Boards. The main controller of the LCAS is given a detailed

look in Section 6.5, MITM. Section 6.6, Final Prototype Design/Layout, takes a look at the

layout of the LCAS prototype when installed on the Canary.

6.1. Overview

The intended implementation of the LCAS is to be installed on a quadcopter with

minimal modification to the platform and maintaining modularity of the LCAS. There are two

main parts of the system: the Monkey-in-the-Middle (MITM) and the Sensor Boards. The MITM

is placed in-between the RC receiver and the flight controller, where it can intercept SBUS

signals and modify the signals. The Sensor Boards are branched off of the MITM and measure

distances between obstacles and the quadcopter. Figure 46 is a general block diagram of the

LCAS, while a more detailed block diagram of the MITM is shown in Figure 47.

69

Figure 46: LCAS block diagram

Figure 47: MITM block diagram

 In the block diagram of Figure 46 SBUS signals are output by the RC receiver and

immediately intercepted by the MITM. Figure 47 shows the MITM then decodes a single SBUS

frame into individual channels. From there the MITM requests distance values from the Sensor

Boards and uses the values in a feedback control system to determine if it needs to modify the

70

channels to avoid obstacles. After channel modification, the MITM encodes the channels into a

new SBUS frame that is then transmitted to the flight controller. With the SBUS frame

transmitted, the MITM logs the RX and TX SBUS frames and the distance values reported by

the Sensor Boards.

6.2. Testing Platforms

The LCAS system used two different platforms for the testing of the individual

components. The first platform was a servo-based rover platform. The second platform was a

260-mm quadcopter known as the Canary.

6.2.1. Servo-based Rover

The servo-based rover was a simple metal platform propelled by two servos at the front

with a drag wheel at the rear. The rover was mostly used in the early development stages of the

LCAS, serving as the testing platform for the first version of the MITM (Section 6.5.2). Since the

rover did not have a dedicated flight controller, a MSP430G2553 microcontroller was used to

decode SBUS signals and convert the values to PWM (pulse width modulation) signals. Figure

48 shows the rover with the SBUS-to-PWM converter.

Figure 48: Servo-based rover testing platform

71

6.2.1.1. SBUS-to-PWM Converter

In order to provide the proper PWM signals to the servos, a microcontroller was needed

to receive and decode SBUS signals. Since it was readily available, a Texas Instruments

MSP430G2553 microcontroller was used. SBUS signals were passed through inverters

(Figure 14) before being received by the microcontroller. Once the signals were received, the

microcontroller converted the SBUS values for Ail and Ele (see Table IV) to PWM values using

the following procedure and equations:

1. Change the range of the channels to be within [-800, 800]

𝑥 = 𝐸𝑙𝑒 − 800

𝑦 = 𝐴𝑖𝑙 − 800

(53)

2. Find the angle, 𝜃, between x and y

𝑎 = 570 tan−1 (
𝑥

𝑦
) + 225

𝜃 = {
𝑎 − 3600, 𝑎 < 0

𝑎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(54)

3. Find the resultant magnitude, R, between x and y

𝑟 = √𝑥2 + 𝑦2

𝑅 = {
25, 𝑟 < 25
𝑟, 25 ≤ 𝑟 ≤ 800

800, 𝑟 > 800

(55)

4. Find the conversion gains

 𝑘𝑙𝑒𝑓𝑡 = {
1, 𝜃 < 1350
0, 1350 ≤ 𝜃 < 1800

−1, 𝜃 ≥ 1800
 (56)

72

𝑘𝑟𝑖𝑔ℎ𝑡 =

{

−1, 𝜃 < 450
0, 450 ≤ 𝜃 < 900
1, 900 ≤ 𝜃 < 2250
0, 2250 ≤ 𝜃 < 2700

−1, 𝜃 ≥ 2700

5. Find servo PWM values

𝑙𝑒𝑓𝑡𝑃𝑊𝑀 = (𝑅 ∗ 𝑘𝑙𝑒𝑓𝑡 + 992) + 1280

𝑟𝑖𝑔ℎ𝑡𝑃𝑊𝑀 = −(𝑅 ∗ 𝑘𝑟𝑖𝑔ℎ𝑡 + 992) + 1280

(57)

6.2.2. Canary Quadcopter

The Canary is a 260-millimeter quadcopter that features a carbon fiber frame and four

motors with 5-in, 3-blade propellers. Control of the Canary is handled by a Matek flight

controller with outputs to four ESCs. The quadcopter is powered by a 11.1-V 3-cell lithium

polymer battery. Figure 49 shows the base configuration of the Canary.

Figure 49: Canary quadcopter platform

6.2.2.1. Flight Controller

The Matek F722-SE flight controller used on the Canary features a 216-MHz

STM32F722RET6 microcontroller, dual gyroscopes, a barometer, and an accelerometer. The

73

controller supports up to four ESCs and has built-in inverters for SBUS signals [48]. The flight

controller was chosen for its easy programmability via the iNav Configurator software, blackbox

logging, and automatic flight stabilization. Figure 50 shows a stock photo of the flight controller.

Figure 50: Matek F722-SE flight controller [48]

6.2.2.2. Motors & ESCs

The motors on the Canary are Gartt ML2205S, 2300kV DC motors. Each motor is

controlled by a Spedix ES30-HV ESC. The ESCs are capable of handling 30 A of continuous

current with support of up to 40 A of burst current. The integrated microcontroller provides

reliability and quick response times to flight controller commands [49]. Figure 51 shows a stock

photo of the ES30-HV.

74

Figure 51: Spedix ES30-HV electronic speed controller

6.3. RC Receiver & Transmitter

 During the development of the LCAS, a FrSky X8R 2.4-GHz RC receiver was used. The

X8R features 16-channel support for SBUS and telemetry feedback [50]. The X8R is shown in

Figure 52.

Figure 52: FrSky X8R receiver

The transmitter used was the FrSky Taranis Q X7. The Taranis Q X7 supports up to

32 channels and uses the OpenTX software for customizing control schemes [51]. The Taranis Q

X7 is shown in Figure 53 with the controls used for testing labelled. For details about the channel

naming scheme refer to Section 3.2.3.

75

1. Thr 2. Ele

3. Ail 4. Rud

5. ARM 6. Hld

7. LOG 8. sbEN/vEN

9. ctrlEN 10. VEL

Figure 53: FrSky Taranis Q X7 transmitter

6.4. Sensor Board

As the main distance measurement device of the LCAS, the Sensor Board controls the

operation of a single ultrasonic sensor alongside dual tinyLiDARs. The Sensor Board utilizes a

dedicated MSP430G2553 microcontroller to control the sensors and process the distance

measurements. By using a dedicated microcontroller, the Sensor Board is able to operate mostly

independent of the MITM, only needing commands for triggering and distance reporting.

Through this independency, multiple Sensor Boards are able to be operated at the same time.

6.4.1. Operation Concept

The Sensor Board conducts several operations in order to provide the smallest distance

measurement to the MITM. To begin with the Sensor Board is connected as an I2C slave device

1

3

2

4

5

6

7

8

9

10

76

(see Appendix A) to the MITM and is assigned a unique address. The Sensor Board will only

operate if its address is called by the MITM and the proper commands are received. When a

triggering command is received, the Sensor Board triggers its sensors and records the measured

distances. Then the Sensor Board processes the distance measurements, checking for invalid

measurements and comparing the measurements to determine the smallest distance

measurement. With the smallest measurement determined, the Sensor Board stores the value

until the MITM calls its address again and requests the value.

6.4.2. Sensors

The Sensor Board uses two different types of sensors in order to make measurements: the

HC-SR04 ultrasonic sensor and the tinyLiDAR TOF LiDAR. Each sensor complements the

other. For example, the ultrasonic struggles with measuring distances to porous materials as the

sound waves are absorbed but the infrared light pulses from the tinyLiDAR are not. Furthermore,

since the ultrasonic is relatively slow to provide distance measurements, the tinyLiDARs are

used to provide supplemental distance measurements in the interim, allowing the LCAS to keep

operating while waiting for the ultrasonic. Once the ultrasonic provides a measurement the

Sensor Board can then compare that to the measurements provide by the tinyLiDARs, choosing

the smallest value.

6.4.2.1. HC-SR04 Ultrasonic Sensor

The HC-SR04 ultrasonic sensor is a low-cost, range-finding sensor that utilizes sonar to

determine the distance to objects. The sensor has a measuring range of 2 to 400 cm, a 30°

measuring angle, and a resolution of 3 mm. The HC-SR04 package contains modules for both

transmitting and receiving ultrasonic signals [6]. An example of the HC-SR04 package is shown

in Figure 54.

77

Figure 54: HC-SR04 ultrasonic range finding sensor [6]

The Sensor Board microcontroller controls the ultrasonic by first sending a 10-µs pulse to

the trigger pin. When the ultrasonic detects the trigger pulse, the transmitter module will output

eight cycles of a 40-kHz signal [8]. If an echo of the signal is detected the ultrasonic pulls the

ECHO pin high and keeps it high for the same amount of time there was between emitting the

trigger signal and receiving an echo. The time between the raising and lowering of the echo pin

is proportional to the distance traveled by the 40-kHz signal. Therefore, the distance from the

ultrasonic to an object is proportional to half of the echo time.

After capturing the echo time, the Sensor Board’s microcontroller can determine the

distance by using the following equation, courtesy of [8]:

 𝑑 =
1

2
𝑡𝑣𝑠𝑜𝑢𝑛𝑑 (58)

where 𝑑 is the measured distance in meters, 𝑡 is the length of the echo time in seconds, and

𝑣𝑠𝑜𝑢𝑛𝑑 is the speed of sound (343 m/s).

 However, Equation (58) does not take into consideration the clock speed of the

microcontroller and that the microcontroller’s measurement is a count of clock cycles rather than

78

time. Taking the clock speed and clock cycle count into consideration, the echo time can instead

be found using:

 𝑡 =
𝑛𝑐𝑦𝑐𝑙𝑒𝑠

𝑓𝑐𝑙𝑜𝑐𝑘
 (59)

where 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 is the number clock cycles in the echo time and 𝑓𝑐𝑙𝑜𝑐𝑘 is the frequency of the

microcontroller’s clock (16 megacycles per second). Now substituting Equation (59) into

Equation (58):

 𝑑 =
1

2
(
𝑛𝑐𝑦𝑐𝑙𝑒𝑠

𝑓𝑐𝑙𝑜𝑐𝑘
) 𝑣𝑠𝑜𝑢𝑛𝑑 (60)

 An issue arises when using this equation on the Sensor Board’s MSP430G2553

microcontroller, however. The multiple multiplication and division operations result in floating

point values and register overflow errors.

 Instead of using Equation (60), a linear regression was used to simplify the conversion

and remove the errors caused by register overflow. The independent variable was made the

actual distance, in millimeters, and the dependent variable was the number of clock cycles

counted by the microcontroller. For each 50-mm increase of the actual distance, the number of

clock cycles was recorded. The recorded data are shown in Table VIII.

79

Table VIII: Ultrasonic linear regression values

Distance [mm] Clock Cycles

50 762

100 1319

150 1981

200 2496

250 3195

300 3646

350 4030

400 4408

450 4985

500 5836

550 6467

600 6938

650 7576

700 8221

750 8748

800 9323

850 9894

900 10,437

950 10,965

1000 11,255

 The values were then imported into MATLAB and using the regression() function the

following equation was generated:

 𝑑 = 0.0884𝑛𝑐𝑦𝑐𝑙𝑒𝑠 − 16 (61)

where 𝑑 is the distance in millimeters.

 Figure 55 is a graphical representation of Equation (61).

80

Figure 55: Ultrasonic linear regression

6.4.2.2. tinyLiDAR

The tinyLiDAR TOF Range Finder Sensor is a module that combines a single point TOF

LiDAR with a dedicated microcontroller. Developed by MicroElectronicDesign, the module is

designed around ST Microelectronics’ VL53LOX TOF laser-ranging sensor, which is intended

for high performance devices, such as smartphones. A 32-bit, ARM-based STM32L051C8

microcontroller was implemented to serve as a dedicated controller for the VL53LOX. The

microcontroller handles communication and control of the VL53LOX and simplifies the

operation to simple I2C commands received from an I2C master [15] [52]. Figure 56 shows the

tinyLiDAR module and labels the module’s main components.

81

Figure 56: tinyLiDAR TOF Range Finder Sensor [15]

The tinyLiDAR’s VL53LOX infrared range finder operates on the same principles as the

HC-SR04 ultrasonic sensor. When triggered, the range finder emits a 940-nm infrared pulse via a

Class 1 Vertical Cavity Surface-Emitting Laser [53]. Moving at the speed of light, the pulse

moves through an environment until it is reflected off of an object. The reflection is then

captured by the range finder. The tinyLiDAR’s microcontroller interprets the time between

trigger and capture as proportional to the distance the infrared pulse traveled.

The Sensor Board utilizes dual tinyLiDARs for distance measurements. In order to

control the modules, the Sensor Board’s microcontroller hosts an I2C bus (see Appendix A),

acting as the master with the tinyLiDARs acting as the slaves. When requesting a distance

measurement, the Sensor Board’s microcontroller calls each tinyLiDARs’ I2C address and

transmits the distance capture command. The tinyLiDARs then capture individual distance

values using the method described above. Next, the Sensor Board’s microcontroller calls for

each tinyLiDAR’s distance value and compares the two values to determine the smallest distance

measurement. For a more detailed operation of the tinyLiDARs refer to Section 6.4.4.3.

82

The tinyLiDAR’s VL53LOX range finder has a range of up to 2 m [15]. Outside of this

range, the tinyLiDAR will report nonsensical distance values. To account for such values the

Sensor Board’s microcontroller compares the reported distance values to an error threshold

equivalent to the distance from the Sensor Board to the tips of the propellers on the UAV

platform. If one of the tinyLiDAR’s distance value is within the error threshold, that distance

value is discarded and the other tinyLiDAR’s distance value is chosen. If both distance values

are within the error threshold, then both values are discarded and the Sensor Board’s

microcontroller defaults to the distance value reported by the ultrasonic.

6.4.3. Main Controller

The main controller of the LCAS Sensor Board is a Texas Instruments MSP430G2553

mixed signal microcontroller. This ultra-low-power microcontroller uses a 16-bit RISC central

processing unit (CPU) that operates at a frequency of up to 16-MHz. Alongside the CPU, the

microcontroller has 512 bytes of random-access memory (RAM) and 16 kilobytes of flash

storage. The MSP430G2553 features two 16-bit timers, up to 24 input/output pins, a 10-bit

analog-to-digital converter, and a Universal Serial Communication Interface (USCI) [54]. Figure

57 shows the MSP430G2553 package used on the LCAS Sensor Board.

Figure 57: LCAS Sensor Board’s MSP430G2553

83

The Sensor Board’s microcontroller operates at the maximum 16-MHz frequency and

uses a 20-pin thin-shrink small-outline package (TSSOP). The three sensors and communication

to the MITM are controlled using a variety of combinations of the microcontroller’s features.

The ultrasonic is handled by voltage level control on a pair of pins and the time between trigger

and echo is measured via one of the 16-bit timers. The tinyLiDARs are handled by a bitbanged

I2C bus setup on another pair of pins. And finally, communication to the MITM is handled by

the built-in I2C bus under the USCI.

6.4.4. Detailed Operation

The LCAS Sensor Board is responsible for recording and reporting the minimum distance

to obstacles and it does so in a specific order of operation. The order of operation is required

because of the difference in operating times of the tinyLiDARs and the ultrasonic. To simplify

the description the Sensor Board’s operations are separated into the following sections:

initialization, ultrasonic control, tinyLiDAR control, distance value processing, and MITM

distance reporting.

6.4.4.1. Initialization

Initialization of the Sensor Board begins the moment that the board receives power from

the MITM. Most of the initialization is handled by the Sensor Board’s microcontroller with the

tinyLiDARs initializing themselves to firmware defaults. The microcontroller starts by setting

the CPU clock and timer reference clocks to 16 MHz and then disables the automatic watchdog

timer so that the Sensor Board can run its code on a loop indefinitely. Next the microcontroller

initializes communication to the MITM by opening the I2C bus on the USCI. With the USCI’s

I2C enabled, the microcontroller sets up a separate I2C bitbanging bus for control of the

tinyLiDARs. The microcontroller then proceeds onto the ultrasonic, where it sets up the needed

84

hardware interrupts for the trigger and echo pins and configures one of the timers for tracking the

echo time. With all three sensors initialized, the microcontroller begins listening on the USCI

I2C bus for commands sent by the MITM. The commands accepted by the Sensor Board are

listed in Table IX.

Table IX: Sensor Board I2C commands

Command Description

0x45 Set tinyLiDAR error threshold

0x54 Trigger only tinyLiDARs and report minimum distance

0x55 Trigger ultrasonic

0x56 Trigger tinyLiDARs, capture ultrasonic distance value, and report minimum distance

Before the Sensor Board can control the sensors, the MITM must provide an error

threshold. The error threshold is a minimum distance value that the Sensor Board can see before

the UAV crashes. For example, on a UAV the error threshold could be the distance from the

Sensor Board to the tips of propeller blades. The main use of the error threshold is for checking

tinyLiDAR values, since when the tinyLiDARs do not detect an obstacle it will report small,

nonsensical distance values. If the value is smaller than the threshold, then the Sensor Board

overrides the reading with a large value that the tinyLiDAR would not normally report.

6.4.4.2. Ultrasonic Control

 The ultrasonic trigger sequence begins when the Sensor Board’s microcontroller receives

a 0x55 command. The microcontroller raises the voltage level on the TRIG pin (2.3) and holds

the voltage high for approximately 10 µs. This triggers the ultrasonic to emit a 40-kHz pulse for

eight cycles. The microcontroller also sets up a hardware interrupt to detect a low-to-high

voltage on the ECHO pin (2.4).

 When the ultrasonic receives an echo, it raises the voltage level of its ECHO pin and

holds the pin high for the same amount of time measured between emission of the trigger signal

85

and the echo received. The microcontroller detects the voltage change and interrupts. A timer

counter is then started and counts the clock cycles of the microcontroller until a high-to-low

voltage shift is detected on the ECHO pin. Finally, the count is stored in memory until the

microcontroller is ready to process the value alongside tinyLiDAR values.

 If there is no high-to-low voltage shift after approximately 25 ms (amount of time needed

for a sound wave to travel 8 m), then the timer interrupts and flags the ultrasonic as timed out

and no distance value was captured.

6.4.4.3. tinyLiDAR Control

 Control of the tinyLiDARs is initiated by the Sensor Board’s microcontroller receiving a

0x54 or 0x56 command. The only difference between the two commands is whether the

microcontroller only processes the tinyLiDARs’ outputs (0x54) or includes the ultrasonic output

in the processing (0x56).

 Once either command is received, the microcontroller opens bitbanged I2C

communication to the first tinyLiDAR (0x10 address). The microcontroller then transmits a 0x44

command to the tinyLiDAR. Upon receiving the command, the tinyLiDAR emits an infrared

light pulse and waits to detect a reflection of the light. The tinyLiDAR then converts the time

between emission and reflection capture to a distance value. The tinyLiDAR transmits the

distance value across two bytes, which the microcontroller combines to reproduce the value.

With operation of the first tinyLiDAR complete, the microcontroller repeats the same operation

with the second tinyLiDAR (0x50 address).

6.4.4.4. Distance Value Processing

The Sensor Board processes the distance values from the tinyLiDARs and the ultrasonic

in two stages. The first stage (0x54 command) triggers, error-checks, and compares the

86

tinyLiDAR values, choosing the smallest. The second stage (0x56 command) compares the result

from the first stage to the ultrasonic value and chooses the smallest. This final value is the

minimum distance reported that the Sensor Board will report to the MITM.

For the first stage, the Sensor Board triggers and then error-checks tinyLiDAR distance

values by comparing each value to the error threshold indicated by the MITM during

initialization. If either value is below the threshold, then the value is changed to the error value

0xBBBB (a value larger than any distance value that can be captured by the tinyLiDARs). If the

first tinyLiDAR’s distance value is smaller than or equal to the second tinyLiDAR’s distance

value, then the first tinyLiDAR’s distance value is the chosen as the minimum distance reported

from the tinyLiDARs. If the second tinyLiDAR’s distance value is smaller, then that value is

reported as the minimum distance.

The second stage takes the resultant distance value from the first stage and compares it to

the ultrasonic distance value. If the tinyLiDAR distance value is smaller than or equal to the

ultrasonic distance value, then the tinyLiDAR distance value is chosen as the minimum distance

to be reported to the MITM. If the ultrasonic distance value is smaller than the tinyLiDAR

distance, then the ultrasonic distance value is chosen as the minimum distance to be reported to

the MITM.

The Sensor Board distance value processing is summarized in Figure 58.

87

Figure 58: Flowchart of Sensor Board distance value processing

88

6.4.4.5. MITM Distance Reporting

The final operation of the Sensor Board is the reporting of the minimum distance between

the three sensors to the MITM. When the Sensor Board receives a read request from the MITM,

it sends the MITM four bytes carrying three data values.

The first byte is a status flag, that indicates whether the Sensor Board was able to capture

a distance value or not. A successful capture is indicated by P; an unsuccessful capture is

indicated by F.

The second and third bytes contain a 16-bit representation of the minimum distance

value. The distance value is split across the bytes using the following equations:

 𝑏𝑦𝑡𝑒2 = (𝑑𝑖𝑠𝑡 & 0𝑥𝐹𝐹00) ≫ 8 (62)

 𝑏𝑦𝑡𝑒3 = 𝑑𝑖𝑠𝑡 & 0𝑥00𝐹𝐹 (63)

The second byte is created by Equation (62) which separates out the most significant byte of the

distance value. Created by Equation (63), the third byte contains the least significant byte of the

distance value. For example, if the distance value was 300 (0x012C in hexadecimal), then the

second byte would be 0x01 via Equation (62) and the third byte would be 0x2C via Equation

(63).

The fourth and final byte contains the device identifier for which distance value was

selected as the minimum distance. If the ultrasonic distance value was selected, then the fourth

byte is U. If the first or second tinyLiDAR distance value was selected, then the fourth byte is 1

or 2, respectively. If there was an error when capturing distance values, then the fourth byte is set

to X.

89

6.4.5. PCB Design

The LCAS Sensor Board is a custom printed circuit board (PCB) that condenses all of the

board’s components into a small package. The board measures 60 mm by 26 mm and contains

the following components listed in Table X. Figure 59 provides a photo of the Sensor Board and

labels the components, according to Table X.

Table X: LCAS Sensor Board components

Label Component Amount

U1 MSP430G2553 microcontroller 1

U2 AP2210N-3.3TRG1 voltage regulator 1

U3 BSS138 MOSFET 2

U4 Grove 4-pin female connector 3

U5 4-pin male pinheader 1

U6 4-pin female pinheader 1

U7 10-kΩ resistor 5

U8 2.2-µF capacitor 1

U9 1-µF capacitor 1

Figure 59: LCAS Sensor Board

There are three main circuits on the Sensor Board. The first is the power circuit, which

uses the AP2210N-3.3TRG1 regulator. The second circuit is the bidirectional voltage shifter,

U1

U2 U2 U3

U5

U4 U4

U4

U8

U9

U6

U7

U7

U7
U7

U7

90

using the BSS138 MOSFET. The third circuit is the MSP430G2553 interface, including the

tinyLiDAR and MITM I2C buses.

The PCB layout of the Sensor Board can be found in Appendix B.

6.4.5.1. Power Circuit

The Sensor Board power circuit uses an AP2210N-3.3TRG1 regulator to reduce the 5 V

input to the 3.3 V level used by the MSP430G2553 and tinyLiDARs. Figure 60 shows a

schematic of the power circuit.

Figure 60: Sensor Board power circuit schematic

The AP2210N-3.3TRG1 regulator was chosen for its excellent output accuracy (±1%)

and power supply ripple rejection (75 dB at 100 Hz) [55]. The regulator is capable of outputting

a steady 3.3 V, a critical component of maintaining power to the Sensor Board’s microcontroller

and tinyLiDARs.

The 1-µF and 2.2-µF capacitors are used to suppress noise caused by the length of cable

used to power the Sensor Board.

6.4.5.2. Bidirectional Voltage Shifters

 A pair of bidirectional voltage shifters (BDVS) are needed to shift the voltage levels

between the Sensor Board microcontroller and the HC-SR04 ultrasonic sensor. The ultrasonic is

91

controlled by 5 V levels but, as mentioned in the previous section, the MSP430G2553

microcontroller operates at 3.3 V. The BDVS serves to raise and lower the voltage levels of the

TRIG and ECHO lines, respectively. A schematic of the BDVS, courtesy of [56], is shown

below in Figure 61.

Figure 61: Bidirectional voltage shifter schematic [56]

The BSS138 is an N-channel MOSFET that isolates the two voltage levels, in this case

LV is 3.3 V and HV is 5 V. The voltage shifting occurs in three different cases.

The first case is when the LV1 is not being pulled low by a device, and is thus pulled to

3.3 V via the pullup resistor. Since the BSS138’s gate and source are both at 3.3 V, the MOSFET

is not conducting, allowing the pullup resistor on HV1 to pull the line to 5 V [57].

The second case is when LV1 is pulled low by a device, causing the source to be low.

The voltage differential between the gate and source allows the BSS138 to become conducting.

Thus, HV1 is pulled low by LV1 [57].

The third case is when HV1 is pulled low by a device. The drain-substrate diode pulls

LV1 low enough to cause the BSS138’s gate and source to have a voltage differential. This

allows the MOSFET to become conducting and thus pulls LV1 low to match HV1 [57].

92

6.4.5.3. MSP430G2553 Interface

The MSP430G2553 microcontroller controls the entirety of the Sensor Board’s

operations and thus has several connections. The microcontroller uses two separate I2C buses,

one for the tinyLiDARs and another for the MITM. Control of the ultrasonic is passed through

the BDVS. And finally, a programming interface is included. Figure 62 shows the full schematic

of the LCAS Sensor Board, including the MSP430G2553 interface. Table XI provides a

summary of the pin mapping for the microcontroller as shown in the figure.

Figure 62: LCAS Sensor Board schematic

93

Table XI: Sensor Board MSP430G2553 pin mapping

Pin Description

Vcc 3.3V supply

P1.0 – P1.5 unused

P1.6 MITM SCL

P1.7 MITM SDA

P2.0 tinyLiDAR SDA

P2.1 tinyLiDAR SCL

P2.2 unused

P2.3 Ultrasonic TRIG via BDVS

P2.4 Ultrasonic ECHO via BDVS

P2.5 – P2.7 unused

RST Reset (programming)

TEST Testing mode enable (programming)

GND Ground

6.5. MITM

The Monkey-in-the-Middle (MITM) of the LCAS is the system’s main processing unit

and controls all functions of the system. Implementation of the MITM places it between a

UAV’s RC receiver and flight controller. In this location the MITM intercepts the SBUS signals

being output by the receiver. The MITM decodes, modifies, and encodes the signals before

passing the signals onto the flight controller. The advantage of this arrangement is that the flight

controller is not aware of the MITM’s modifications to the receiver’s output. In other words, the

flight controller sees the MITM’s output as the output of the RC receiver, essentially rendering

the MITM as an invisible middle step, hence the name. Figure 63 shows the layout of a

quadcopter control system and where the MITM would be placed.

Figure 63: Location of the MITM in the layout of a quadcopter control system

flight controller ESC motor

RC receiver MITM placement

94

There have been two versions of the MITM. The first version (Section 6.5.2) made use of

a MSP430G2553 microcontroller for SBUS decoding and encoding, alongside control of a single

HC-SR04 ultrasonic range finder. Due to challenges associated with using a low power

microcontroller, such as data logging and processing power, a second version of the MITM was

developed. The second and current version (Section 6.5.3) of the MITM utilizes a Raspberry Pi,

which is significantly more powerful than the previous version’s MSP430G2553.

6.5.1. Operational Concepts

Since the MITM is the center of processing in the LCAS, it is responsible for the

following: capturing and decoding SBUS frames, control of the Sensor Boards, feedback control

based on distance measurements, encoding and transmitting SBUS frames, and logging of all

critical data.

For SBUS communications, the MITM intercepts the SBUS frames being passed from

the RC receiver to the flight controller. Once a full SBUS frame is captured, the MITM decodes

the frame into individual channels using the method described in Section 3.2.1.

Control of the Sensor Boards is accomplished by communication over an I2C bus (see

Appendix A). The second version of the MITM is capable of identifying the number of Sensor

Boards available and iteratively controlling each board. From each board, the MITM requests a

value that corresponds to the distance from the board to a possible obstacle.

The distance values are filtered using a 10-point SMA (simple moving average) and then

compared to a desired position. The error between the two and the RX SBUS channels are input

into the Phase II controller algorithm, Equation (50). Using the current and previous inputs, the

controller calculates new channel values that over time will drive the Canary to the desired

position. If the measured position is determined to be in the controller’s activation window and

95

the relevant SBUS channel is either greater than or lower than the SBUS neutral, depending on

the direction, then the MITM will replace the relevant SBUS channel values with the new

channel values. At the time of writing, the controller is only designed to operate in the forward

direction, so the SBUS channel will be greater than the SBUS neutral.

Having completed modification of the SBUS channels, the MITM encodes the channels

into a new frame using the method described in Section 3.2.2. The frame is then transmitted to

the flight controller.

The final operation of the MITM is the logging of data used during the other operations.

This includes the SBUS channel values from both the receive and transmit operations, as well as

the distance values reported by the Sensor Boards.

6.5.2. MSP430G2553 Version

The first version of the MITM used a Texas Instruments MSP430G2553 microcontroller

(specifications detailed in Section 6.4.3). The microcontroller was used since it was readily

available and a familiar platform. Operating at approximately 16 MHz, the microcontroller was

fully capable of receiving and transmitting SBUS signals. Before being replaced, control of a

single ultrasonic was added to the MSP430G2553’s programming algorithm.

Figure 64 shows the first version of the MITM using a MSP430G2553 for SBUS

communications and control of an ultrasonic.

96

Figure 64: MSP430G2553 version of the MITM on the SBUS-to-PWM Rover

6.5.2.1. SBUS Communications

 The MSP430G2553 version of the MITM served as the main platform for developing the

algorithm needed for decoding and encoding SBUS signals. Since the SBUS protocol is based on

UART (see Appendix A), the MSP43G2553 was able to make use of its built-in serial

communication interface. However, the SBUS signal out of the RC receiver uses inverted

voltage levels that cannot be interpreted by the MSP430G2553. Therefore, the signal was

inverted using the inverter circuit shown in Figure 14.

 Since SBUS uses a non-standard baud rate of 100 kilobits per second, a time difference

constant had to be calculated so that the microcontroller could synchronize with the SBUS

timing. The constant was determined by using two of the built-in timers on the MSP430G2553.

One timer counted the clock cycles of the microcontroller’s internal oscillator, while the other

timer counted the clock cycles of an external 32-kHz crystal oscillator. A time difference

between the two counts was calculated and then stored in the MSP430G2553’s flash storage.

Every time the SBUS communications are initialized the time difference is loaded from the flash

storage and used to offset the microcontroller’s clock, synchronizing with the SBUS timing.

97

 With the time difference constant and non-standard baud rate set, the MSP430G2553

reads in a single SBUS frame. The frame is decoded into individual channels and then

immediately encoded back into a new SBUS frame that is then transmitted to the servo

controller.

6.5.2.2. Ultrasonic Control

Before development of the Sensor Board, another MSP430G2553 version of the MITM

was developed to test how communications with the Sensor Board should be done in the second

version of the MITM. An ultrasonic was used because it is the slower of the two sensors used in

the final Sensor Board design. Since the ultrasonic operates in two stages, TRIG and ECHO (see

Section 6.4.4.2 for detailed ultrasonic operation), it was decided that the MITM would trigger the

ultrasonic on the first loop and then conduct SBUS communications. At some point during the

SBUS signal processing the ultrasonic reports the time duration for the ECHO, which the

microcontroller stores as a clock cycle count. On the second loop, the microcontroller converts

the count to a distance value. After a new SBUS frame is received and decoded the distance

value is compared to a pair of distance thresholds. If the distance value is between 250 mm and

500 mm, then the channel value related to the forward motion of the rover is scaled down, using

Equation (61). If the distance value is 250 mm or less, then the same channel value is set to the

SBUS neutral value, preventing the rover from moving forward.

6.5.2.3. Reasons for Replacement

As the complexity of the MITM increased, the MSP430G2553 became limited in

function and had to be replaced for the second version of the MITM. The MSP430G2553 is only

capable of conducting one task at a time, thus multiple tasks have to be done in series. The

second version of the MITM introduced new features that were best suited for a faster processor.

98

The most significant feature introduced in the second version was the ability of the

MITM to log all of the data relevant to its operations, such as both RX and TX SBUS frames and

distance values captured from the Sensor Boards. The MSP430G2553 does not natively support

data logging and implementing it would have required using even more of the microcontroller’s

clock cycles.

Another complication introduced by the second version of the MITM, was the need for

more processing power. The second version incorporated communication with multiple Sensor

Boards and the processing of the boards’ data. With the Sensor Board data available, the MITM

would then begin to use a feedback control algorithm for each direction that had a Sensor Board.

By adding more tasks and need for processing power, it was obvious that the MSP430G2553

would not suffice as the main processing unit of the MITM.

6.5.3. Raspberry Pi Version

A Raspberry Pi 3 Model B (Pi for short) was chosen as the MSP430G2553’s successor in

the second version of the MITM due to the significant increase in processing power and

available coding libraries. The Pi features a quad-core 1.2-GHz Broadcom BCM2837 64-bit

ARM-based processor supplemented with 1 GB of RAM [58].

There are a variety of connectivity methods on the Pi, such as a 40-pin general-purpose

input/output (GPIO) and built-in Wi-Fi. Figure 65 shows an example of the Pi with major

components labeled. Figure 66 shows the pinout for the Pi’s 40-pin GPIO.

99

Figure 65: Raspberry Pi 3 Model B [59]

Figure 66: Raspberry Pi GPIO pinout [60]

6.5.3.1. SBUS Communications & Logging

The receiving and transmitting of SBUS signals on the Pi version of the MITM uses

similar methodology as the MSP430G2553 version used (Section 6.5.2.1). Unlike the

100

MSP430G2553, the Pi is capable of using custom baud rates in serial communication without

external calibration. Therefore, the UART bus (GPIO 14 and 15 in Figure 66) is initiated at

100k baud and set to read a data packet with a length of eight bits, even parity, and two stop bits.

Incoming SBUS signals are first passed through a voltage level inverter (Figure 14). With

the SBUS signals modified to simulate UART, the MITM captures 50 packets of data (length of

two SBUS frames). Since a SBUS frame’s start and end bytes are known, the MITM checks for

an end byte, starting with the last received byte and working backwards. Once an end byte is

found, the MITM checks for a start byte that is 24 bytes before the detected end byte. Now that

the start and end bytes are found, the MITM separates out the 25 bytes from the captured SBUS

signals.

Decoding of the SBUS frame is done via the method described in Section 3.2.1. With the

individual channels decoded, the MITM uses distance values reported by the Sensor Boards in a

feedback control loop to determine if the channel values need to be altered. Once alterations, if

any, are made to the channels the MITM encodes the channels back into a SBUS frame.

Transmission of the SBUS frame generated by the MITM is done by re-encoding

(Section 3.2.2) and then outputting the frame over the UART bus. The output on the UART bus

is passed through another voltage level inverter (Figure 14), inverting the signal and raising the

voltage level to 5 V from 3.3 V.

After the generated frame is transmitted, the MITM logs the individual channel values

used in control of the Canary from both the RX and TX SBUS frames in a CSV (Comma

Separated Values) file.

101

6.5.3.2. Sensor Board Control & Logging

Besides data logging, the other main feature added in the second version of the MITM

was the control of up to six Sensor Boards. As discussed in Section 6.4.4, the LCAS Sensor

Boards are communicated with over an I2C bus. The MITM features a built-in I2C bus that is

connected to via the serial pins in the 40-pin GPIO (see Figure 66).

Initialization of the Sensor Board communications begins with the MITM scanning the

I2C bus for available devices. The Sensor Boards have predetermined I2C addresses that identify

the board to the MITM when the board’s address is detected. Table XII lists the identifiers, I2C

addresses, and locations of the Sensor Boards.

Table XII: Sensor Board identifiers. I2C addresses, and locations

Identifier I2C Address Location

F 0x12 Front

B 0x24 Back

L 0x36 Left

R 0x48 Right

U 0x5A Up

D 0x6C Down

Since the MITM controls each Sensor Board iteratively, and for simplicity, the following

explanation of how the MITM controls the Sensor Boards is limited to a single board.

To initialize the Sensor Board, the MITM sends a 0x45 command and a distance value in

millimeters. The 0x45 command sets the Sensor Board’s error threshold based on the distance

value sent with the command.

Once initialization of the Sensor Board is completed the MITM begins SBUS

communications. After an RX SBUS frame is decoded, the MITM checks the sbEN channel (see

Table IV) to determine if the communication with the Sensor Board is enabled.

Communication with the Sensor Boards occurs in three stages that alternate on each loop

of the MITM’s code. The reasons for the three alternating stages are the slow measuring speed of

102

the ultrasonic sensors, the requirement that the MITM must be transmitting a SBUS frame every

15 to 20 ms, and the desire for the MITM to have a distance measurement for each loop of its

code.

The first stage begins with the MITM sending the ultrasonic trigger command, 0x55.

Next the 0x54 command is issued, which has the Sensor Board request a minimum distance

measurement from only the tinyLiDARs. After the first iteration of the Sensor Board stages, the

first stage outputs the same distance measurement reported during stage three.

The second stage of the Sensor Board communications occurs on the next loop of the

MITM’s code. First, the MITM requests the distance value reported by the tinyLiDARs under

the 0x54 command in the first stage. Second, the MITM sends a 0x56 command. This command

has the Sensor Board trigger its tinyLiDARs, convert the ultrasonic echo time to a distance

measurement, and determine the minimum distance between all three of its sensors.

For the third stage the MITM, requests the minimum distance value found using the 0x56

command in the second stage.

The distance values reported during the second and third stages are error-checked and

filtered by the MITM. If the distance values are 0xFFFF or 0xBBBB, then the MITM replaces

the value with the last known distance value and changes the sensor identifier to X or E,

respectively. A third identifier, R, is used when the Sensor Board communications are in the first

stage after the first iteration of communications. After error-checking, the MITM passes the

distance value through a 10-point SMA filter to reduce measurement noise. Also, for each loop

of its code, the MITM logs the Sensor Board distance values in a CSV file.

103

6.5.3.3. Feedback Control

The feedback control of the MITM uses the distance measurements reported by the

Sensor Boards and the channel values from the RX SBUS frame to determine if the controller

needs to adjust channel values to avoid possible collisions. When the LCAS is enabled the

MITM uses the Sensor Board identifiers from the initialization of the Sensor Boards to determine

which direction the feedback controller needs to be working in.

To start off, the controller checks if the user is not actively avoiding the detected obstacle

and if the distance measured is within the activation window for the controller. For example, the

controller will only start modifying channel values if the distance measured is within 250 mm of

the minimum distance. If it is in the activation window, the controller finds the difference

between the measured distance and the desired minimum distance. The value is passed into the

Phase II controller, Equation (52). Next the controller output, 𝑓𝑐, is converted into a SBUS value

using the following equation:

 𝑆𝐵𝑈𝑆𝑛𝑒𝑤 = 𝑓𝑐(1811 − 992) + 992 (64)

The new SBUS value then replaces the channel value that is associated with the direction in

which the LCAS is attempting to avoid an obstacle.

 As of this writing the only feedback controller designed is for the forward direction.

Therefore, the controller is modifying the Ele channel (see Table IV) when it is greater than

SBUS neutral.

6.5.4. Raspberry Pi with GPS & Accelerometer Version

A GPS and Accelerometer (GPSA) version of the MITM was developed for use in

modeling the Canary quadcopter. The Pi remained as the main processor of the MITM and still

conducted SBUS communications in the same manner, albeit with a few modifications. The

104

Sensor Board communications and feedback controller were disabled, and replaced with the

logging of position and acceleration data from a GPS module and an accelerometer, respectively.

6.5.4.1. Modification to SBUS Communications & Logging

The GPSA version of the MITM maintained the same procedure for receiving and

transmitting SBUS signals that was used in other versions of the MITM. The only changes made

were how the MITM labeled and handled certain channel values. The sbEN channel was

renamed to vEN and used to trigger a step in the forward direction of motion. Another channel,

VEL, was added that controlled the magnitude of the step. For more details on the channel names

refer to Table IV.

When the vEN was triggered, the MITM would use the value from VEL to replace the Ele

channel and set the magnitude of the step. However, Ele can only range from SBUS neutral to

SBUS maximum values when the Canary is in forward motion. Therefore, the value of VEL had

to be scaled to be in the same range, using the following linear regression:

 𝐸𝑙𝑒′ =
1

2
𝑉𝐸𝐿 + 986 (65)

where 𝐸𝑙𝑒′ is the new value of Ele.

 The procedure for logging the RX and TX SBUS frames was only modified to change the

name of sbEN to vEN and to add VEL.

6.5.4.2. GPS Control & Logging

To record the GPS position (latitude, longitude, and altitude) of the Canary, the GPSA

made use of a 3D Robotics uBlox GPS with Compass module. Using the gps3 Python library, the

MITM could communicate with the module over UART. Since the MITM’s built-in UART bus

was being used for SBUS communications, a USB-to-TTL adapter was used to create the GPS

module’s UART bus. Figure 67 shows the GPS module and its connection to the MITM.

105

Figure 67: 3DR GPS module & its connection to the MITM

 The capturing of GPS data was done using the built-in functions of the gps3 library. Any

time the GPS module had a new data packet available it would send the packet over the UART

connection to the MITM, where it would be stored in a buffer. When logging was enabled, the

MITM would check the buffer for a new packet each time after transmitting an SBUS frame. If

there was a new packet available, the MITM parsed the packet for latitude, longitude, and

altitude data. The data were then logged in a CSV file.

6.5.4.3. Accelerometer Control & Logging

The second sensor used in the GPSA version of the MITM was a BMA280 accelerometer

from Bosch Sensortec. The BMA280 is a triaxial, low-g acceleration sensor controlled over I2C

[61]. This accelerometer was chosen since it was readily available. The BMA280 and its

interfacing board are shown in Figure 68.

Figure 68: BMA280 accelerometer & interfacing board

106

 Initialization of the sensor involved setting the measurement sensitivity at 2g and the

measurement bandwidth at 62.5 Hz—approximately a 125-Hz sample rate. Next compensation

values are calculated using the BMA280’s built-in “fast compensation” method. The method

captures 16 consecutive acceleration values and uses the average to find the offset from the

target value [61]; this was done for the x-, y-, and z-axes, with target values of 0g, 0g, and +1g,

respectively. The calculated offsets are then stored by the sensor in its registers, which are read

and logged by the MITM.

Much like the logging of GPS values, the MITM requested and logged acceleration

values from the BMA280 in a CSV file after transmitting a SBUS frame. Since accelerometers

are known to record noisy measurements [46], the MITM used a 10-point SMA filter on each

axis to improve sample accuracy.

6.5.5. PCB Design

In order to keep the MITM modular, a PCB was designed. Known as the Docking Board,

the MITM’s PCB allows multiple Sensor Boards to connect to the Pi’s I2C bus on the GPIO

pins, along with containing RX and TX SBUS signal inverters. An additional, but unrealized,

feature of the board is the inclusion of an inertial measurement unit (IMU).

The Docking Board measures 65 mm by 30 mm and contains the following components

listed in Table XII. Figure 69 shows the Docking Board with the major components labelled, in

accordance with Table XII.

107

Table XIII: LCAS MITM Docking Board components

Label Component Amount

U1 40-pin female pinheader 1

U2 BMX055 IMU 1

U3 2N7002 MOSFET 2

U4 10-kΩ resistor 2

U5 0-Ω resistor 2

U6 4.7-kΩ resistor 2

U7 3-pin pinheader 2

U8 4-pin Grove female connectors 1-10

Figure 69: LCAS MITM Docking Board

The PCB layout of the MITM Docking Board can be found in Appendix B.

6.5.5.1. I2C Bus

The Docking Board’s I2C bus uses a maximum of 10 Grove 4-pin female connectors to

connect the Sensor Boards and other I2C devices, such as the BMA280 accelerometer, to the

SDA (GPIO 2) and SCL (GPIO 3) pins shown in Figure 66. The Grove connectors were chosen

for the compact size and reliable connection. To ensure that the voltage levels of the SDA and

SCL signals were 3.3 V, a 4.7-kΩ pullup resistor was used on each line. Figure 70 shows the

schematic for the Docking Board’s I2C bus.

U5

U5
U1

U2

U3
U3

U4

U4

U6 U6

U7
U7

U8

U8

U8

U8 U8
U8

U8

U8

108

Figure 70: MITM Docking Board I2C bus schematic

6.5.5.2. SBUS Input, Output, & Inverters

The Docking Board’s SBUS communication bus uses a pair of SBUS signal inverters

(Figure 14) to process RX and TX SBUS signals. The respective inverters are connected to the

UART pins of the Pi’s GPIO (Figure 66). Figure 71 shows a schematic of the Docking Board’s

SBUS communication bus.

Figure 71: MITM Docking Board SBUS communication bus schematic

109

6.5.5.3. IMU

The MITM Docking Board’s IMU is a BMX055 module from Bosch Sensortec. The

module is a compact sensor that features a gyroscope, accelerometer, and magnetometer. By

combining the three sensors, the BMX055 detects motion on nine axes. The BMX055 was

chosen for its small size and accurate measurements. However, as of the writing of this

document, the IMU is not implemented on the MITM.

6.5.5.4. Raspberry Pi Interface

The MITM Docking Board connects to the Pi by the 40-pin GPIO pins. This connects the

I2C and SBUS communication buses to the respective pins on the Pi, and provides the Pi power

from the flight controller or an external power source. Figure 72 shows the full schematic of the

MITM Docking Board, including the Pi interface.

Figure 72: LCAS MITM Docking Board schematic

110

6.6. Final Prototype Design/Layout

Due to the small size of the Canary quadcopter platform, the layout and mounting of the

LCAS was a challenge. With the top of the Canary’s frame occupied by the flight controller, and

the underside needed for mounting the battery, a custom mounting plate had to be designed to

hold the components of the LCAS. Four 35-mm standoffs were used to raise the custom plate

above the top of the Canary’s frame and out of the way of the Canary’s propellers. The custom

plate was designed using the computer-aided design (CAD) software Autodesk Inventor. The

CAD model of the LCAS-Canary mounting plate is shown below in Figure 73. For a technical

drawing of the custom plate refer to Appendix C.

Figure 73: LCAS-Canary mounting plate

An additional mounting bracket was designed for the Sensor Boards. This bracket was

designed to be removeable from the mounting plate and interchangeable between any of the

Sensor Boards. Figure 74 shows the CAD model of the LCAS Sensor Board mounting bracket.

For a technical drawing of the bracket refer to Appendix C.

111

Figure 74: LCAS Sensor Board mounting bracket

The Sensor Board, with accompanying ultrasonic, was placed centrally with the

tinyLiDARs flanking on either side. This arrangement ensured that all three sensors would be

evenly spaced and centered on the axis that the Sensor Board would be operating on.

The final prototype layout of the LCAS on the Canary resulted in an off-centered MITM,

allowing for the mounting space for other non-Sensor Board sensors, such as the GPS module

and accelerometer from the GPSA version. The Sensor Boards’ and respective mounting

brackets were arranged in a plus shape with the front and back Sensor Boards further apart than

the left and right boards. This was done to allow space for the MITM and other sensors. As of

the writing of this document only four Sensor Board mounting brackets have been incorporated

into the layout of the LCAS on the Canary. Figure 75 shows the final prototype layout of the

LCAS on the Canary quadcopter platform.

112

1. Raspberry Pi 3 Model B 2. MITM Docking Board

3. Back Sensor Board 4. Front Sensor Board

Figure 75: LCAS prototype layout on the Canary

Front

1

2

3

4

113

7. Prototype Testing

7.1. Methodology

Testing of the prototype LCAS proved to be a significant challenge. There were many

variables that could not easily be held constant. For instance, any wind in the environment would

cause disturbances in the Canary’s flight that would be up to a pilot to correct for. To limit the

number of variables in the testing environment a testing methodology was developed.

The first component of the methodology was to use a single Sensor Board in the LCAS.

The Sensor Board was implemented to detect and measure distances to obstacles in the forward

direction, matching the testing parameters used when deriving the Canary’s model (Section 4)

and designing the forward feedback controller (Section 5).

The second component of the methodology dealt with the forward direction SBUS input

Ele (see Table IV). The maximum value of Ele was limited to only 1200 to match the input used

in the Scenario 1 simulations from the feedback controller design. Furthermore, the 1200 limit

was intended to simulate how a pilot would handle the UAV in an indoor environment.

The third methodology component was the setting of the desired minimum distance from

obstacles to 500 mm and the controller activation distance to 1000 mm from obstacles. The

desired minimum distance was carried over from the feedback controller design. The 1000-mm

activation distance was chosen to provide more time for the LCAS to react.

The fourth and final component of the methodology focused on minimizing the impact of

environmental variables on the Canary. Minimization of wind was accomplished by choosing a

testing sight that was partially shielded from wind gusts. Since it was not possible to prevent all

wind disturbances, the Canary was orientated with its forward direction orthogonal to the wind’s

114

direction. To ensure valid distance readings from the Sensor Board the testing perimeter was

limited to 4 m from the wall.

The environment used for testing the LCAS prototype was the grassy area between Main

Hall and the Museum Building on Montana Tech’s campus. A picture of the testing area is

shown in Figure 76.

Figure 76: LCAS prototype testing area

7.2. Results

A total of five tests were conducted on the LCAS over the course of one flight using the

methodology described in the previous section. The position of and the input to the Canary for

the full flight are shown in Figures 77 and 78, respectively.

115

Figure 77: Canary position during LCAS testing flight

Figure 78: Canary input during LCAS testing flight

To better interpret the data the five individual test results were separated out. The first

test results are shown in Figure 79.

116

Figure 79: Prototype LCAS Test 1 results

Looking at Figure 79, the LCAS failed to respond to the activation distance and did not

modify the Ele channel. Instead the pilot prevented the Canary from colliding with the wall.

Test 2 results are shown in Figure 80.

Figure 80: Prototype LCAS Test 2 results

117

The LCAS displayed a better response during the second test. Even though the pilot was

sending the Canary the SBUS neutral value, akin to Scenario 3 from the controller design

(Section 5.3.3), the LCAS was able to prevent the Canary from colliding with the wall. However,

the LCAS could not get the Canary to maintain the desired minimum distance from the wall.

The LCAS continued to show promise in Test 3. These results can be seen in Figure 81.

Figure 81: Prototype LCAS Test 3 results

During Test 3, the LCAS operated as intended but did have some delay. While the system

did respond to the activation distance, it did not significantly alter the Canary’s input until the

desired minimum distance was detected. However, despite the delayed response, the LCAS was

able to maintain the desired minimum distance.

The results for the fourth and final test are shown in Figure 82.

118

Figure 82: Prototype LCAS Test 4 results

The LCAS’s response to Test 4 appeared to combine the responses of Tests 2 and 3. The

system was able to prevent the Canary from colliding with the wall but struggled to maintain the

desired minimum distance, akin to Test 2. The struggle to maintain the minimum desired

distance can be attributed to a delay in the system’s operation, a behavior seen in Test 3.

119

8. Conclusions

A methodology for modeling a UAV in a single direction of motion was developed and

validated. The response of the Canary to a series of step inputs in the forward direction was

comprised of position and acceleration measurements from a GPS module and an accelerometer,

respectively. Using a position estimate aided by a Kalman filter, the Canary’s step responses

were curve-fitted to produce a model of Canary. This model was then validated by subjecting it

to the same step inputs used in the Canary step response testing.

Once validated, the Canary model was used to design the LCAS’s feedback controller.

The control design was done in two phases. Phase I focused on tuning a PID controller using

time domain analysis and a trial-and-error approach. Phase II took a different approach by using

the root locus technique to focus on system stability. In simulations the Phase I controller was

able to drive the Canary model to the desired position but an oscillatory behavior led to a

concern of system stability if the controller was used in the LCAS. Noise resiliency testing

proved the validity of this concern. The Phase II controller improved significantly upon the

Phase I design in simulations, by reducing oscillations and achieving a steady state at the desired

position. Noise resiliency proved to be a challenge for the Phase II controller but the addition of

a 10-point SMA filter lessened the effect of noise on the system. Results from the Phase II

controller simulations showed promise for the feasibility of the LCAS.

The overall goal of this work was to produce a proof of concept and test the feasibility of

a custom, low-cost collision avoidance system that could be implemented on UAVs in indoor

environments. A single-direction prototype of the LCAS was developed, tested, and showed

promising results as a proof of concept. In addition, the prototype was designed with modularity

in mind. The final version of the MITM used in this work was capable of communicating with up

120

to six Sensor Boards, with the potential for more. As for feasibility, there are two observations

from the prototype testing to consider before a final assessment can be made.

The first observation is the inconsistency of the prototyped LCAS. While the LCAS

performed admirably during the four reported tests, what was not shown were previous failed

tests and flights. These results were not included for a variety of reasons, most notably a failure

in logging (more on that later). For example, two additional tests were conducted during the

flight that produced results for the five tests. During the first additional test, which occurred after

Test 1, the LCAS failed to operate when it did not properly detect the activation distance. The

second additional test was made between Tests 3 and 4. The LCAS’s response to this test, simply

known as Test 3.5, was the best representation of the system’s inconsistency. The results of this

test are shown in Figure 83.

Figure 83: Prototype LCAS Test 3.5 results

Looking at the figure, it appears that the LCAS struggled to remain active once the

activation distance was detected. As a result, the Canary failed to maintain the desired minimum

121

distance from the wall, getting as close as 200 mm. While not shown in the position

measurements, the Canary collided with the wall around the 74-second mark. The Canary did not

crash but rather ground its propellers against the wall. Looking at the plot of the Canary’s input it

is seen that the LCAS failed to even alter the input when the Canary was against the wall. The

LCAS was only able to operate properly again after the pilot landed the Canary and reset for the

next test.

The second observation is the glitchy-ness of the LCAS’s programming algorithm. The

LCAS was subject to as many as 20 flights over the course of several weeks. The first half of

flights served as a means to troubleshoot and tune the LCAS’s feedback controller algorithm. For

the next three flights the tuned LCAS algorithm showed promise, with the system displaying the

ability to prevent the Canary from colliding with the wall. However, when reviewing the logs

from those flights it was observed that the Sensor Board was reporting large variations between

distance measurements. The variations were attributed to the tinyLiDARs providing nonsense

measurements that passed the Sensor Board’s error-checking when the distance to the wall was

greater than 1000 mm. The nonsensical measurements were dealt with by limiting the testing

perimeter to 4 m in the testing methodology. Only the seventh and last flight provided the viable

results seen in Section 7.2. The other six flights experienced one type of failure or another. Two

of the flights had logging failures, while four others experienced a complete failure of the LCAS

controller algorithm. The failure of the controller algorithm is the most notable, because when

the controller failed the Canary either collided with the wall or the pilot lost control in the

forward and backward directions.

Combining all aspects of this work, the single-direction UAV model, the Phase II

controller design, and the prototype LCAS, the feasibility of developing a collision avoidance

122

system using low-cost range finding sensors looks promising. The Canary model proved to be

adequate enough to design a viable feedback controller in the Phase II controller. When

implemented in the prototype LCAS, the controller was able to prevent the Canary from

colliding with a wall in the forward direction of motion during a couple of the prototype test

flights. However, based on the observations from the prototype testing, further refinement is

needed before the LCAS can be fully realized.

123

9. Future Work

A significant limitation of this work was in the methodology used to derive the Canary

model. While the methodology produced an adequate and valid model, there proved to be too

many variables introduced by the testing environment that inversely impacted the performance of

the Canary and the quality of the captured step responses. A suggestion is to use a different

testing area that offers better protection from the impact of wind and air density, such as a large

indoor space. Furthermore, the number of step inputs used should be increased to provide more

data points.

Another future consideration is the development of a Phase III controller. The Phase II

controller performed admirably in the prototype testing but its slow response to the activation

distance is a concern, especially if the Canary had been allowed to operate at higher speeds, as

seen in Test 1. A suggestion for the Phase III controller is to incorporate an improved control law

that accounts for the amount of change in distance from sample to sample. Alternatively, an

obstacle threat zoning methodology, like that used in [29], could be used to determine the

strength of the reaction needed to avoid an obstacle.

Once the modeling methodology is improved, a Phase III controller has been designed,

and both validated, the next suggested step would be to start developing models and controllers

for the remaining five directions of motion. At that point all six controllers would need to be

tested and tuned to work with each other. Since the LCAS is intended to be implemented on a

UAV operating in restrictive environments it is important to consider how the controllers will

react when coming into conflict with each other. For example, if the UAV is flying in a narrow

tunnel and the LCAS is sensing obstacles in both the right and left directions, then the respective

124

controllers have to compromise on the modification to the relevant SBUS channel so that the

UAV does not collide with either wall.

Further software development is needed to improve the reliability of the LCAS

programming algorithm. As discussed in the observations from the prototype testing, the LCAS

suffered from inconsistencies when it came to measuring distances, determining when to activate

the feedback controller, and logging data. The LCAS could greatly benefit from its algorithm

being separated into multiple parallel operations. By utilizing parallel operations, the SBUS and

Sensor Board communications could be separated, thus eliminating the need for different

operating states when sending commands and receiving data from a Sensor Board.

As discussed throughout the development and testing of the LCAS hardware and

software, the Sensor Board proved to be the most difficult component to realize. By being

constrained to using low-cost, hobbyist-grade range finding sensors, the Sensor Board suffered

from measurement inaccuracy and needed multiple stages of error-checking. While the

measurement inaccuracy from the ultrasonic was addressed by using a linear regression, the

tinyLiDARs’ tendency to report nonsensical distance measurements when obstacles were not in

range was not able to be properly addressed in software. A suggestion for improving

measurement accuracy is to implement the IMU that was incorporated into the design of the

MITM Docking Board. The data from the IMU could be used to improve upon the position

estimates; a method used in [9].

125

References

[1] Hardis Group, "Eyesee Drone Inventory," 16 February 2017. [Online Video]. Available:

https://www.youtube.com/watch?v=Bb7tIr_-r7w&feature=youtu.be.

[Accessed 9 June 2020].

[2] E. A. Russell, "UAV-based geotechnical modeling and mapping of an inaccessible

underground site,"M.S. thesis, Montana Technological Univ., Butte, MT, USA, 2018.

[3] R. Becker, "Development of a methodology for the evaluation of UAV-based

photogrammetry: Implementation at an underground mine," M.S. thesis, Montana

Technological Univ., Butte, MT, USA, 2019.

[4] H. Pham, S. A. Smolka, S. D. Stoller, D. Phan and J. Yang, "A survey of unmanned

aerial vehicle collision avoidance systems," 2015. [Online]. Available:

https://arxiv.org/ftp/arxiv/papers/1508/1508.07723.pdf. [Accessed 1 April 2020].

[5] D. Atkinson, "DJI Mavic 2 in depth series - part 2 - aircraft safety," HELIGUY.com,

20 September 2018. [Online]. Available: https://www.heliguy.com/blog/2018/09/20/

dji-mavic-2-in-depth-series-part-2-aircraft-safety/. [Accessed 23 July 2020].

[6] R. Santos, "Complete guide for ultrasonic sensor HC-SR04 with Arduino," Random Nerd

Tutorials, November 2013. [Online]. Available: https://randomnerdtutorials.com/

complete-guide-for-ultrasonic-sensor-hc-sr04/. [Accessed 29 Janurary 2020].

[7] F. Corrigan, "12 top collision avoidance drones and obstacle detection explained,"

DoneZon, 9 March 2020. [Online]. Available: https://www.dronezon.com/

learn-about-drones-quadcopters/top-drones-with-obstacle-detection-collision-avoidance-

sensors-explained/. [Accessed 1 April 2020].

126

[8] ELEC Freaks, "Ultrasonic ranging module HC-SR04," [Online]. Available:

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf.

[Accessed 4 October 2019].

[9] N. Gageik, P. Benz and S. Montenegro, "Obstacle detection and collision avoidance for a

UAV with complementary low-cost sensors," IEEE Access, vol. 3, pp. 599-609,

12 May 2015.

[10] F. Corrigan, "12 top lidar sensors for UAVs, lidar drones and so many great uses,"

DroneZon, 31 December 2019. [Online]. Available: https://www.dronezon.com/learn-

about-drones-quadcopters/best-lidar-sensors-for-drones-great-uses-for-lidar-sensors/.

[Accessed 4 May 2020].

[11] J. Pei, "11 myths about LiDAR technology," Electronic Design, 7 February 2019.

[Online]. Available: https://www.electronicdesign.com/markets/automotive/article/

21807556/11-myths-about-lidar-technology. [Accessed 4 May 2020].

[12] D. Kohanbash, "LIDAR (laser scanner) fundamentals," Robots for Roboticists,

5 May 2014. [Online]. Available: http://robotsforroboticists.com/lidar-fundamentals/.

[Accessed 4 May 2020].

[13] Velodyne Lidar, "Puck," Velodyne Lidar, 2020. [Online]. Available:

https://velodynelidar.com/products/puck/. [Accessed 1 July 2020].

[14] air-supplyaerial, "Velodyne LiDAR Puck VLP-16," eBay, 2020. [Online]. Available:

https://www.ebay.com/itm/Velodyne-LiDAR-Puck-VLP-16/123792318465?

hash=item1cd298e001%3Ag%3A%7EhwAAOSw5i5arF3K&LH_ItemCondition=3.

[Accessed 1 July 2020].

127

[15] MicroElectronicDesign, "tinyLiDAR reference manual," 2018. [Online]. Available:

https://www.robotshop.com/media/files/pdf/tinylidar-tof-range-finder-sensor-

datasheet.pdf. [Accessed 4 October 2019].

[16] MicroElectronicDesign, "tinyLiDAR ToF Range Finder Sensor," RobotShop, 2020.

[Online]. Available: https://www.robotshop.com/en/tinylidar-tof-range-finder-

sensor.html. [Accessed 1 July 2020].

[17] "Ultrasonic distance sensor - HC-SR04," SparkFun Electronics, 2020. [Online]. Available:

https://www.sparkfun.com/products/15569. [Accessed 23 July 2020].

[18] J. Llorens, E. Gil, J. Llop and A. Escola, "Ultrasonic and LIDAR sensors for electronic

canopy characterization in vineyards: Advances to improve pesticide application

methods," Sensors, vol. 11, no. 2, pp. 2177-2194, 15 February 2011.

[19] F. Corrigan, "DJI Mavic Air 2 review of features, specs and FAQs answered," DroneZon,

17 May 2020. [Online]. Available: https://www.dronezon.com/drone-reviews/dji-mavic-

air-2-review-includes-features-specs-faqs/. [Accessed 19 May 2020].

[20] DJI, "Mavic Air 2," April 2020. [Online]. Available: https://www.dji.com/mavic-air-

2/specs. [Accessed 19 May 2020].

[21] F. Corrigan, "DJI Mavic 2 Pro and zoom review includes features, specs with FAQS,"

DroneZon, 20 April 2020. [Online]. Available: https://www.dronezon.com/drone-

reviews/dji-mavic-2-pro-zoom-review-of-features-specifications-with-faqs/.

[Accessed 19 May 2020].

[22] DJI, "Mavic 2," 23 August 2018. [Online]. Available: https://www.dji.com/mavic-2.

[Accessed 19 May 2020].

128

[23] F. Corrigan, "Skydio 2 drone review including features, specs, follow technology and

FAQs," DroneZon, 17 April 2020. [Online]. Available: https://www.dronezon.com/drone-

reviews/skydio-2-drone-review-of-features-specs-faqs/. [Accessed 20 May 2020].

[24] Skydio, "Skydio 2," 1 October 2019. [Online]. Available: https://www.skydio.com/

#overview. [Accessed 20 May 2020].

[25] Skydio, "How does Skydio 2 work?," 2019. [Online]. Available:

https://support.skydio.com/hc/en-us/articles/360036116834-How-does-Skydio-2-work-.

[Accessed 20 May 2020].

[26] R. He, R. Wei and Q. Zhang, "UAV autonomous collision avoidance approach,"

 Automatika, vol. 58, no. 2, pp. 195-204, 9 November 2017.

[27] X. Yu and Y. Zhang, "Sense and avoid technologies with applications to unmanned

aircraft systems: Review and prospects," Progress in Aerospace, vol. 74, no. 0376-0421,

pp. 152-166, April 2015.

[28] B. N. Chand, P. Mahalakshmi and V. P. S. Naidu, "Sense and avoid technology in

unmanned aerial vehicles: A review," in International Conference on Electrical,

Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT),

Mysuru, India, 15-17 December 2017.

[29] A. Stulgis, L. Ambroziak and M. Kondratiuk, "Obstacle detection and avoidance system

for unmanned multirotors," in 23rd International Conference on Methods & Models in

Automation & Robotics (MMAR), Miedzyzdroje, Poland, 27-30 August 2018.

[30] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: Part I," IEEE

Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, June 2006.

129

[31] J. Zhang, C. Hu, R. G. Chadha and S. Singh, "Maximum likelihood path planning for fast

 aerial maneuvers and collision avoidance," in 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), Macau, China, 2019.

[32] Aptiv, "What is sensor fusion?," 3 March 2020. [Online]. Available:

https://www.aptiv.com/newsroom/article/what-is-sensor-fusion#:~:text=Sensor%20fusion

%20is%20the%20ability,strengths%20of%20the%20different%20sensors.

[Accessed 28 July 2020].

[33] J. Villbrandt, "The quadrotor's coming of age," Illumin, vol. XII, no. II, 1 July 2010.

[34] G. Hoffmann, "Schematic of reaction torques on each motor of a quadrotor aircraft, due

to spinning rotors," 15 January 2007. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Quadrotor_yaw_torque.png.

[Accessed 13 January 2020].

[35] S. Bouabdallah, P. Murrier and R. Siegwart, "Design and control of an indoor micro

quadrotor," in IEEE International Conference on Robotics and Automation, New

Orleans, LA, USA, 2004.

[36] M. Faessler, "SBUS protocol," GitHub, 20 March 2018. [Online]. Available:

https://github.com/uzh-rpg/rpg_quadrotor_control/wiki/SBUS-Protocol.

[Accessed 12 December 2019].

[37] AutoQad Forum, "S-BUS protocol," [Online]. Available: http://forum.autoquad.org/

download/file.php?id=2319. [Accessed 12 December 2019].

[38] U. Gartmann, "Futaba S-BUS controlled by mbed," Arm Limited, 9 March 2012.

130

[Online]. Available: https://os.mbed.com/users/Digixx/notebook/futaba-s-bus-controlled-

by-mbed/. [Accessed 12 December 2019].

[39] R. E. Kalman, "A aew approach to linear filtering," Journal of Basic Engineering,

vol. 82, no. 1, pp. 35-45, March 1960.

[40] Y. Kim and H. Bang, "Introduction to Kalman filter and its applications," in Kalman

Filter, London, IntechOpen, 2018, pp. 1-6.

[41] N. S. Nise, Control Systems Engineering, Sixth, Ed., Delhi: John Wiley & Sons Inc.,

2011.

[42] G. M. Hoffman, H. Huang, S. L. Waslander and C. J. Tomlin, "Quadrotor helicopter

flight dynamics and control: Theory and control," in AIAA Guidance, Navigation, and

Control Conference and Exhibit, Hilton Head, South Carolina, 2007.

[43] W. Dong, G.-Y. Gu, X. Zhu and H. Ding, "Modeling and control of a quadrotor UAV

with aerodynamic concepts," World Academy of Science, Engineering and Technology,

vol. 7, no. 5, pp. 901-906, 2013.

[44] Google, "Montana Tech," [Online]. Available: https://www.google.com/maps/place/

Montana+Tech/@46.0113454,-112.5556061,216m/data=!3m1!1e3!4m5!3m4!

1s0x535b09d196ddbe55:0x1920f7f5381536bd!8m2!3d46.0116149!4d112.5569969?

hl=en. [Accessed 6 April 2020].

[45] whuber, "Understandng terms in length of degree formula?," Stackexchange,

25 October 2013. [Online]. Available: https://gis.stackexchange.com/questions/75528/

understanding-terms-in-length-of-degree-formula. [Accessed 7 April 2020].

[46] RF Wireless World, "Advantages of accelerometer | disadvantages of accelerometer,"

131

2012. [Online]. Available: https://www.rfwireless-world.com/Terminology/Advantages-

and-Disadvantages-of-Accelerometer.html. [Accessed 8 April 2020].

[47] M. Haghighat, M. Abdel-Mottaleb, and W. Alhalabi, "Discriminant correlation analysis:

Real-time," IEEE Transactions on Information Forensics and Security, vol. 11, no. 9,

pp. 1984-1996, September 2016.

[48] GetFPV, "Matek F722-SE AIO Flight Controller," GetFPV LLC, 2019. [Online].

Available: https://www.getfpv.com/matek-f722-se-aio-flight-controller.html.

[Accessed 28 January 2020].

[49] GetFPV, "Spedix ES30 HV 3-6s BLHeLi_S 30A ESC," 2019. [Online]. Available:

https://www.getfpv.com/spedix-es30-hv-3-6s-blheli-s-30a-esc.html.

[Accessed 28 January 2020].

[50] FrSky, "X8R," 2019. [Online]. Available: https://www.frsky-rc.com/product/x8r/.

[Accessed 31 March 2020].

[51] FrSky, "Taranis Q X7," 2019. [Online]. Available: https://www.frsky-rc.com/product/

taranis-q-x7-2/. [Accessed 31 March 2020].

[52] D. Bhatia, "tinyLiDAR: The maker-friendly laser sensor," Indiegogo, 2017. [Online].

Available: https://www.indiegogo.com/projects/tinylidar-the-maker-friendly-laser-

sensor#/. [Accessed 5 February 2020].

[53] STMicroelectronics, "VL53LOX," April 2018. [Online]. Available:

https://www.st.com/resource/en/datasheet/vl53l0x.pdf. [Accessed 4 February 2020].

[54] Texas Instruments, "MSP430G2x53, MSP430G2x13 mixed signal microcontroller

datasheet," May 2013. [Online]. Available: http://www.ti.com/lit/ds/symlink/

132

msp430g2553.pdf. [Accessed 4 February 2020].

[55] Diodes Incorporated, "AP2210," June 2016. [Online]. Available:

https://www.diodes.com/assets/Datasheets/AP2210.pdf. [Accessed 26 February 2020].

[56] SparkFun Electronics, "Bi-directional logic level converter hookup guide," [Online].

Available: https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-

hookup-guide/all. [Accessed 26 February 2020].

[57] Phillips Semiconductors, "Bi-directional level shifter for I2C-bus and other systems,"

4 August 1997. [Online]. Available: http://cdn.sparkfun.com/tutorialimages/

BD-LogicLevelConverter/an97055.pdf. [Accessed 26 February 2020].

[58] Raspberry Pi Foundation, "Raspberry Pi 3 Model B," 2016. [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. [Accessed 23 March

2020].

[59] J.-L. Aufrance, "Raspberry Pi 3 board is powered by Broadcom BCM2837 Cortex A53

processor, sells for $35," CNX Software, 29 February 2016. [Online]. Available:

https://www.cnx-software.com/2016/02/29/raspberry-pi-3-board-is-powered-by-

broadcom-bcm2827-cortex-a53-processor-sells-for-35/. [Accessed 19 June 2020].

[60] Raspberry Pi Foundation, "GPIO," [Online]. Available: https://www.raspberrypi.org/

documentation/usage/gpio/. [Accessed 23 March 2020].

[61] Bosch Sensortec, "BMA280," August 2019. [Online]. Available:

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/

bst-bma280-ds000.pdf. [Accessed 30 March 2020].

133

[62] SparkFun Electronics, "Serial Communication," SparkFun Electronics, 18 December

2012. [Online]. Available: https://learn.sparkfun.com/tutorials/serial-communication/all.

[Accessed 11 December 2019].

[63] SparkFun Electronics, "I2C," SparkFun Electronics, 8 July 2013. [Online]. Available:

https://learn.sparkfun.com/tutorials/i2c. [Accessed 11 Decmber 2019].

134

Appendix A: Standard Communication Protocols

UART

Universal Asynchronous Receiver/Transmitter (UART) is a direct connection between

two devices that implements a serial connection without the need for a clock signal. Instead

UART uses two data lines: transmit (TX) and receive (RX).

 A UART signal is generated by raising and lowering voltage levels on a device’s TX line.

A receiving device will interpret the changing voltage levels in binary, with high voltage being a

one and a low voltage being a zero. Figure 84 shows the general structure of a UART signal.

Figure 84: General structure of a UART signal [62]

I2C

The Inter-integrated Circuit (I2C) is a serial communication protocol intended to allow

multiple slave devices to connect to a single master device. All devices share the same serial

clock (SCL) and serial data (SDA) lines. A basic I2C connection showing the SCL and SDA

lines is shown in Figure 85.

135

Figure 85: I2C bus adapted from [63]

In order to communicate with a specific slave, the master will call the slave’s unique

address. Once the slave acknowledges that it’s address has been called, the master will begin

either writing or reading data from the slave. The general structure of an I2C is shown in Figure

86.

Figure 86: Overview of I2C protocol structure [63]

136

Appendix B: PCB Layouts

Sensor Board top layer

Sensor Board bottom layer

137

MITM Docking Board top layer

MITM Docking Board bottom layer

138

Appendix C: Technical Drawings

LCAS Sensor Board mounting brackets

139

LCAS MITM mounting plate

140

Canary flight controller mount

141

Canary landing gear

142

Appendix D: MATLAB Scripts

Ultrasonic linear regression

close all;

y = [50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000];

x = [762 1319 1981 2496 3195 3646 4030 4408 4985 5836 6467 6938 7576 8221 8748 9323

9894 10437 10965 11255];

[r,m,b] = regression(x,y);

dist = m*x + b;

figure

scatter(x,y,'+')

hold on

plot(x,dist)

ylabel('Distance (mm)'); xlabel('Clock cycles');

grid

legend('Raw data','Calculated linear regression','location','southeast')

GPS & accelerometer data processing

% data_manipulation_v2.m

% Created: Feb 28, 2020

% Modified: Mar 9, 2020

% Author: THolliday

% This script uses logged Sbus (tx), GPS, and Accel data to aid in

% developing the CCAS model.

% NOTE: import data and remove NaN values before running script

close all; format long;

%% Clear Variables

clearvars -except Tsbus vEN Ail Ele ... % imported sbus values

 Tgps lat long alt ... % imported gps values

 Taccel Xaccel Yaccel Zaccel % imported accel values

%% Parameters

saveFlag = 0;

filename = '2020_7_3_F3.mat';

rsFlag = 1; % resampling and Kalman enable

eThres = 1500; % sec, sample error threshold

Ts = 0.02; % sec, sampling period

Fs = 1/Ts; % Hz, sampling period

%% Sbus data

% separate tx values

vEN_tx = vEN(2:2:end); % step enable

Tsbus_tx = Tsbus(2:2:end); % sbus tx time

Ele_tx = Ele(2:2:end); % elevator

Ail_tx = Ail(2:2:end); % aileron

t_sbus_or = Tsbus_tx - Tsbus_tx(1); % set time zero

% check for sample time errors

ndx = find(t_sbus_or>=eThres); % find time values greater than

error threshold

if isempty(ndx) ~= 1

143

 err = t_sbus_or(ndx(1)) - t_sbus_or(ndx(1)-1); % calculate time error

 t_sbus_or(ndx) = t_sbus_or(ndx) - err; % remove time error

end

% resampling?

if rsFlag == 1

 [Ele_tx,t_sbus] = resample(Ele_tx,t_sbus_or,Fs);

 [Ail_tx,t_sbus] = resample(Ail_tx,t_sbus_or,Fs);

 [vEN_tx,t_sbus] = resample(vEN_tx,t_sbus_or,Fs);

else

 t_sbus = t_sbus_or;

end

%% GPS data

% adjust time data

t_gps_or = Tgps-Tgps(1); % set time zero

% check for sample time errors

ndx = find(t_gps_or>=eThres); % find time values greater than

error threshold

if isempty(ndx) ~= 1

 err = t_gps_or(ndx(1)) - t_gps_or(ndx(1)-1); % calculate time error

 t_gps_or(ndx) = t_gps_or(ndx) - err; % remove time error

end

% convert to meters

lat_m = 111132.92 - 559.82*cos(2*lat(1)) + 1.175*cos(4*lat(1)) - 0.0023*cos(6*lat(1));

% m/degree

long_m = 111412.84*cos(lat(1)) - 93.5*cos(3*lat(1)) + 0.118*cos(5*lat(1));

% m/degree

y_gps = (lat-lat(1))*lat_m; % meters, first value set to origin

x_gps = (long-long(1))*long_m*-1; % meters, first value set to origin, invert for

proper direction

% resampling?

if rsFlag == 1

 [x_gps,t_gps] = resample(x_gps,t_gps_or,Fs);

 [y_gps,t_gps] = resample(y_gps,t_gps_or,Fs);

else

 t_gps = t_gps_or;

end

%% Accel data

% convert from g's to m/s^2

g = 9.80746; % m/s^2, gravity in Butte, MT

x_accel = Xaccel*g; % x-acceleration

y_accel = Yaccel*g; % y-acceleration

z_accel = (Zaccel*g)-g; % z-acceleration

t_accel_or = Taccel-Taccel(1); % set time zero

% check for sample time errors

ndx = find(t_accel_or>=eThres); % find time values greater

than error threshold

if isempty(ndx) ~= 1

 err = t_accel_or(ndx(1)) - t_accel_or(ndx(1)-1); % calculate time error

 t_accel_or(ndx) = t_accel_or(ndx) - err; % remove time error

end

% resampling?

if rsFlag == 1

 [x_accel,t_accel] = resample(x_accel,t_accel_or,Fs);

 [y_accel,t_accel] = resample(y_accel,t_accel_or,Fs);

 [z_accel,t_accel] = resample(z_accel,t_accel_or,Fs);

144

else

 t_accel = t_accel_or;

end

%% Kalman Filter

if rsFlag == 1

 % shorten data

 q = 1e-5; % uncertainty for process covariance

 cutoff = length(t_gps); % length of resampled gps data

 x_accel_Kal = x_accel(1:cutoff); % shorten x accel data

 y_accel_Kal = y_accel(1:cutoff); % shorten y accel data

 % run Kalman filter

 [x_Kal,y_Kal] = kalman(Ts,x_gps,y_gps,x_accel_Kal,y_accel_Kal,q);

 % plotting

 figure

 plot(x_gps,y_gps,x_Kal,y_Kal)

 xlabel('x-position (m)'); ylabel('y-position (m)');

 title('Position estimates')

 legend('GPS only position','Kalman position','location','northwest')

 grid; axis equal;

 figure

 plot(t_gps,x_Kal,t_gps,y_Kal,t_gps,x_gps,t_gps,y_gps)

 xlabel('Time (sec)'); ylabel('Position (m)');

% title('Position estimates vs. time');

 legend('Kalman x','Kalman y','GPS x','GPS y','location','northwest'); grid;

 figure

 yyaxis left

 plot(t_gps,x_Kal,t_gps,y_Kal)

 ylabel('Position (m)');

 yyaxis right

% plot(t_sbus,Ele_tx,t_sbus,vEN_tx);

 plot(t_sbus,vEN_tx);

 ylabel('SBUS');

 xlabel('Time (sec)');

% title('Kalman position & SBUS vs. Time');

 grid;

% legend('Kalman x','Kalman y','forward/back (Ele)','enable

(vEN)','location','northwest');

 legend('x','y','step enable','location','northwest','orientation','horizontal');

end

%% Separate out step responses

% find time position of steps

step_ctrl = find(vEN_tx >= 400);

% separate steps

cc = 1;

sct = 0;

for rr = 2:length(step_ctrl)

 t_step(rr-1-sct,cc) = t_gps(step_ctrl(rr-1)); % step time

 x_Kal_step(rr-1-sct,cc) = x_Kal(step_ctrl(rr-1)); % x-position during step

 y_Kal_step(rr-1-sct,cc) = y_Kal(step_ctrl(rr-1)); % y-position during step

 ele_step(rr-1-sct,cc) = floor(Ele_tx(step_ctrl(rr-1))); % sbus forward during step

 if step_ctrl(rr)-step_ctrl(rr-1) ~= 1 % check for new step

interval

 cc = cc + 1; % increase column count

 sct = rr - 1; % reset row count

 end

145

end

% normalize

[numR,numC] = size(t_step);

t_step_end = zeros(1,numC);

for kk = 1:numC

 t_step(:,kk) = t_step(:,kk) - t_step(1,kk); % time zero point

 x_Kal_step(:,kk) = x_Kal_step(:,kk) - x_Kal_step(1,kk); % x-position zero point

 y_Kal_step(:,kk) = y_Kal_step(:,kk) - y_Kal_step(1,kk); % y-position zero point

 r_Kal_step(:,kk) = sqrt(x_Kal_step(:,kk).^2 + y_Kal_step(:,kk).^2);

 temp = find(t_step(:,kk)<0); % find end of step

 if isempty(temp) ~= 1

 t_step_end(kk) = temp(1)-1; % step end point

 else

 [t_step_end(kk),b] = size(t_step(:,kk)); % first step end point

 end

end

% plotting

pndx = 100+numC*10; % setup subplot index for 1 row, numC columns

figure

for kk = 1:numC

 subplot (pndx+kk)

% plot(t_step((1:t_step_end(kk)),kk),x_Kal_step((1:t_step_end(kk)),kk),...

% t_step((1:t_step_end(kk)),kk),y_Kal_step((1:t_step_end(kk)),kk))

 plot(t_step((1:t_step_end(kk)),kk),r_Kal_step((1:t_step_end(kk)),kk))

 grid

 xlabel('Time (sec)'); ylabel('Position (m)');

 title(['Sbus step: ',num2str(ele_step(42,kk))])

end

%% Export Results

if saveFlag

 sbus_step_val = ele_step(42,:);

 save(filename,'t_step','x_Kal_step','y_Kal_step','t_step_end','sbus_step_val',...

 't_sbus','Ele_tx','vEN_tx','x_Kal','y_Kal');

End

Kalman filter

% kalman.m

% Created: Mar 3, 2020

% Modified: Mar 11, 2020

% Author: THolliday

% This script runs a Kalman filter to create position estimates given GPS &

% accel data.

function [x_Kal,y_Kal] = kalman(Ts,gpsx,gpsy,ax,ay,q)

%% Parameters

fs = 1/Ts; % sampling frequency

N = length(gpsx); % number of data points

%% Build Model

% initialize matrices for Kalman

xhat = zeros(6,N); % estimated state vector

yk = [gpsx,gpsy,ax,ay]'; % output vector

Pk = zeros(6,6);

146

x_Kal = zeros(1,N); % Kalman x-postion

y_Kal = zeros(1,N); % Kalman y-postion

% build state matrix A

Ak = eye(6);

for ii = 1:4

 Ak(ii,ii+2) = Ts;

end

% build output matrix

Ck = [1,0,0,0,0,0;0,1,0,0,0,0;0,0,0,0,1,0;0,0,0,0,0,1];

% build process noise covariance matrix Q

Q = zeros(6,6);

% q = 1e-8; % set uncertainty

Q(5,5) = q; % fill in acceleration uncertainty

Q(6,6) = q;

% build measurement noise covariance matrix R

R = zeros(4,4);

L = 8; % number of segments

M = floor(N/L); % length of window

for ii = 1:length(R)

 S = pwelch(yk(ii,:),M,[],[],fs,'twosided'); % find PSD of each data set

 S_trim = S(50:end-50); % only use "noise" content

 Rac = ifft(S_trim); % inv FFT to find autocorrelation

 R(ii,ii) = abs(Rac(1)); % store magnitude of R(0)

end

%% Run Kalman filter

for k = 2:N

 % Extrapolation

 xhatm = Ak*xhat(:,k-1);

 Pm = Ak*Pk*Ak' + Q;

 % Update

 K = (Pm*Ck')/(Ck*Pm*Ck'+R);

 Pk = (eye(6)-K*Ck)*Pm;

 xhat(:,k) = xhatm+K*(yk(:,k)-Ck*xhatm);

 % separate position data

 x_Kal(k) = xhat(1,k);

 y_Kal(k) = xhat(2,k);

end

end

Canary model derivation

% lcas_model_derivation_v2.m

% Created: Mar 10, 2020

% Modified: Mar 26, 2020

% Author: THolliday

% This script uses step responses found via GPS, sbus, and accel data to

% derive an equivalent model equation.

clear; close all; format long;

addpath('data');

%% Load Variables

filename = '2020_7_3_F3';

147

load(filename);

%% Select Step

time_end = 10; % sec, response cutoff

sbus_max = 1811; % maximum value of sbus

sbus_mid = 992; % mid value of sbus

%% Normalize Input

F = (sbus_step_val-sbus_mid)./(sbus_max-sbus_mid); % input scaled to 0-1

%%

pndx = 100+length(F)*10; % setup subplot index

for ii = 1:length(F)

 %% Build Parameters

 ndx = (t_step(:,ii)<=time_end)&(t_step(:,ii)>0);

 t = t_step(ndx,ii);

 x_step = x_Kal_step(1:length(t),ii); % adjust x-pos vector

 y_step = y_Kal_step(1:length(t),ii); % adjust y-pos vector

 x = sqrt(x_step.^2 + y_step.^2); % find resultant position for accuracy

 %% Find Model

 % no initial values are zero

 A_pva = F(ii)*[ones(size(t)),t,t.^2];

 R_pva = A_pva\x;

 xhat_pva = A_pva*R_pva;

 % initial position is zero

 A_va = F(ii)*[t,t.^2];

 R_va = A_va\x;

 xhat_va = A_va*R_va;

 % initial position & velocity are zero

 A_a = F(ii)*((t.^2));

 R_a = A_a\x;

 xhat_a = A_a*R_a;

 % plotting

 subplot(pndx+ii)

 plot(t,x,t,xhat_a)

 xlabel('Time (sec)'); ylabel('Position (m)');

 title([num2str(sbus_step_val(ii)),' Step',]); grid;

 legend('actual','estimate','location','northwest')

end

Canary model testing & validation

% lcas_model_testing_v4.m

% Created: Apr 20, 2020

% Author: THolliday

% This script simulates the LCAS model using captured sbus data and

% compares the results to the actual position found via GPS & accel data.

clear; close all; format long;

addpath('data');

%% Load Variables

filename = '2020_7_3_F1';

% filename = '2020_7_3_F3';

load(filename);

148

%% Parameters

R = 1.6270;

% R = 1.2489;

step_ndx = 1; % step selector

Ts = 0.02; % sec, sampling period

time_end = 15; % sec, response cutoff

sbus_max = 1811; % maximum value of sbus

sbus_mid = 992; % mid value of sbus

%% Normalize Input

F = (sbus_step_val-sbus_mid)./(sbus_max-sbus_mid); % input scaled to 0-1

%% Simulate Model

pndx = 100+length(F)*10; % setup subplot index

for ii = 1:length(F)

 % build parameters

 ndx = (t_step(:,ii)<=time_end)&(t_step(:,ii)>0);

 t = t_step(ndx,ii);

 x_step = x_Kal_step(1:length(t),ii); % adjust x-pos vector

 y_step = y_Kal_step(1:length(t),ii); % adjust y-pos vector

 x = sqrt(x_step.^2 + y_step.^2); % find resultant position for accuracy

 % simulate model

 xsim = F(ii)*(R*t.^2); % estimate position via system model

 % plotting

 subplot(pndx+ii)

 plot(t,x,t,xsim)

 xlabel('Time (sec)'); ylabel('Position (m)');

 title([num2str(sbus_step_val(ii)),' Step',]); grid;

 legend('actual','model','location','northwest')

end

tinyLiDAR standard deviation

% sensor_noise_testing_v1.m

% Created: May 14, 2020

% Author: THolliday

% This script takes a look at the type and distribution of the measurement

% noise in the LCAS sensor board. This info will then be used to tune the

% Phase II controller.

clear; close all;

%% Import Data

load('sb_noise_data.mat');

%% Parameters

Ts = 0.02; % sec, sampling period

Fs = 1/Ts; % Hz, sampling frequency

%% Adjust time vectors

ttl = ttl - ttl(1);

tus = tus - tus(1);

%% Calculate raw std

tl_std = std(tldist);

us_std = std(usdist);

149

%% Histograms

% separate noise

% tln = tldist - mean(tldist);

% usn = usdist - mean(usdist);

tln = tldist - 150;

usn = usdist - 150;

figure

histogram(tln)

xlabel('mm off 150'); ylabel('Number of samples');

title('TL noise distribution'); grid;

figure

histogram(usn)

title('US noise distribution'); grid;

xlabel('mm off 150'); ylabel('Number of samples');

%% Resample

[tldistr,ttlr] = resample(tldist,ttl,Fs);

[usdistr,tusr] = resample(usdist,tus,Fs);

%% TL PSD

L = 8; % number of segments

M = floor(length(tldistr)/L); % length of window

[Stl,ftl] = pwelch(tldistr,M,[],[],Fs,'twosided'); % find PSD

figure

plot(ftl,Stl)

xlabel('Frequency (Hz)'); ylabel('Magnitude');

title('PSD of TL distance data'); grid;

%% US PSD

L = 8; % number of segments

M = floor(length(usdistr)/L); % length of window

[Sus,fus] = pwelch(usdistr,M,[],[],Fs,'twosided'); % find PSD

figure

plot(fus,Sus)

xlabel('Frequency (Hz)'); ylabel('Magnitude');

title('PSD of US distance data'); grid;

Phase I controller design

% lcas_controller_design_v5.m

% Created: Mar 26, 2020

% Modified: July 30, 2020

% Author: THolliday

% This script simulates, in discrete time, the LCAS model with the

% controller designed in the time domain (Phase 1).

% Note:

% The "desired position" is an arbitrary distance away from a theoretical

% wall at 1 meter.

% Scenarios:

% 1) user/stick input is high constant, as if user keeps flying towards

% the desired position

% 2) same values as scenario 1, but the user intervenes to avoid desired

% position and uses a lower input after first reaction

% 3) user/stick input is low constant, as if the drone is drifting

% towards the desired position on its own accord

% 4) same as scenario 3, but the user intervenes to avoid desired

150

% position

clear; close all; format long;

%% Parameters

runs = 4; % number of scenarios to run

x_act = 0.25; % m, distance from desired to activate controller

x_des = 0.5; % m, desired position away from obstacle

R = 1.6270; % model coefficient

Ts = 0.02; % sec, sampling period

rng(256); % set rng seed

% nmag = 0; % magnitude of added noise (ideal case)

nmag = 0.0036821; % magnitude of added noise (std of TL measurements)

% nmag = 0.1; % magnitude of added noise (extreme case)

%% Initialize

t = (0:Ts:30)'; % sec, time vector

N = length(t); % number of samples

x = zeros(N,runs); % linear position vector

f = zeros(N,runs); % linear input vector

x_diff = zeros(N,runs); % linear difference vector

cact = zeros(N,runs); % controller enable vector

x_ns = zeros(N,runs); % measurement noise vector

%% Gains

Kp = 1.2; % proportional gain

Ki = 0.1; % integral gain

Kd = 5; % derivative gain

%% Build System TF

s = tf('s'); % create TF variable

sys_c = 2*R/s^2; % build continuous time model

sys_d = c2d(sys_c,Ts); % discretize

% extract coefficients of the TF

[num,den] = tfdata(sys_d);

num = num{1}'; % change to vector

den = den{1}'; % change to vector

n = length(num); % number of coefficients

%% Simulate Controller

for cc = 1:runs % run scenarios

 reactflag = 0;

 for kk = 3:N % iterate through samples

 % ----- user input ---- %

 fusr = scenario_input(cc,x(kk-1,cc),reactflag);

 % ---- control law ---- %

 if (x(kk-1,cc)<(x_des-x_act)) || (fusr<=0)

 % not in activation window or user is correcting

 f(kk,cc) = fusr;

 if fusr <= 0

 reactflag = 1;

 end

 else

 % in activation window and controller has control

 cact(kk,cc) = 1;

 f(kk,cc) = Kp*x_diff(kk-1,cc) + Ki*(x_diff(kk-1,cc)+x_diff(kk-2,cc))...

 + Kd*(x_diff(kk-1,cc)-x_diff(kk-2,cc));

 end

 % ---- saturation check ---- %

 if f(kk,cc) > 1

 f(kk,cc) = 1;

151

 elseif f(kk,cc) < -1

 f(kk,cc) = -1;

 end

 % ---- estimate response ---- %

 x(kk,cc) = sum(-flipud(den(2:end)).*x(kk-n+1:kk-1,cc))...

 + sum(flipud(num).*f(kk-n+1:kk,cc));

 % ---- find distance error ---- %

 x_ns(kk,cc) = x(kk,cc) + nmag*randn(1,1);

 x_diff(kk,cc) = x_des - x_ns(kk,cc);

 end

 % Plotting

 figure

 subplot 311

 plot(t,x(:,cc));

 ylabel('Position (m)'); grid;

 title('Actual model position')

 subplot 312

 plot(t,x_ns(:,cc));

 ylabel('Position (m)'); grid;

 title('Model position as seen by controller');

 subplot 313

 plot(t,f(:,cc))

 ylabel('normalized SBUS'); xlabel('Time (sec)'); grid;

 title('Input to the model')

 sgtitle(['CCAS forward controller under scenario ',num2str(cc)]);

end

Root locus for Phase II controller design

% root_locus_design.m

% Created: Apr 2, 2020

% Modified: July 30, 2020

% Author: THolliday

% This script builds the CCAS model equation and inputs it into the Root

% Locus Design Tool, so that the PID controller can be tuned.

clear; close all; format long;

%% Build Plant TF

R = 1.6270; % plant coefficient

s = tf('s'); % create TF variable

sys_c = 2*R/s^2; % build continuous time model

%% Build Controller TF

zc = [0,-0.2685]; % zeros

pc = [0,-2.292]; % poles

kc = 2.2435; % gain

Cs = zpk(zc,pc,kc); % build continuous time TF

%% Root Locus

rltool(sys_c) % plant-only (used for designing controller)

% rltool(sys_c,Cs) % plant + controller

152

Phase II controller design

% lcas_pid_controller_sim_v1.m

% Created: Apr 2, 2020

% Modified: July 31, 2020

% Author: THolliday

% This script simulates, in discrete time, the LCAS model and PID

% controller designed via Root Locus (root_locus_design.m).

% Note:

% The "desired position" is an arbitrary distance away from a theoretical

% wall at 1 meter.

% Scenarios:

% 1) user/stick input is a constant 1200, as if user keeps flying

% towards the desired position

% 2) same as scenario 1, but the user reacts to the approach of

% the desired position and uses a lower input after first reaction

% 3) user/stick input is a constant 1000, as if the drone is drifting

% towards the desired position on its own accord

% 4) same as scenario 3, but the user reacts to the approach of

% the desired position

clear; close all; format long;

%% Simulation Parameters

runs = 4; % number of scenarios to run

SMAflag = 1;

x_act = 0.25; % m, activation threshold

x_des = 0.5; % m, desired position

R = 1.6270; % model coefficient

numRead = 10; % SMA window

Ts = 0.02; % sec, sampling period

rng(256); % set rng seed

% nmag = 0; % magnitude of added noise (ideal case)

% nmag = 0.0036821; % magnitude of added noise (std of TL measurements)

nmag = 0.1; % magnitude of added noise (extreme case)

%% Initialize

t = (0:Ts:30)'; % sec, time vector

N = length(t); % number of samples

x = zeros(N,runs); % linear position vector

f = zeros(N,runs); % input vector

fc = zeros(N,runs); % controller output vector

e = zeros(N,runs); % error vector

cact = zeros(N,runs); % controller enable vector

x_ns = zeros(N,runs); % measurement noise vector

runSum = zeros(1,runs); % running sum of SMA

readBuff = zeros(numRead,runs); % buffer for SMA

fcrunSum = zeros(1,runs); % running sum of SMA

fcBuff = zeros(numRead,runs); % buffer for SMA

des = ones(length(t),1)*0.5; % desired position vector

%% Build System TF

s = tf('s'); % create TF variable

Gs = 2*R/s^2; % build continuous time model

Gz = c2d(Gs,Ts); % discretize

% extract coefficients of the TF

[num,den] = tfdata(Gz);

Gnum = num{1}'; % change to vector

Gden = den{1}'; % change to vector

153

Gn = length(Gnum); % number of coefficients

%% Build Controller TF

zc = -0.2685; % zeros

pc = -2.292; % poles

% zc = [0,-0.2685]; % zeros

% pc = [0,-2.292]; % poles

% kc = 1.1225; % gain

kc = 2.2435; % gain

Cs = zpk(zc,pc,kc); % build continuous time TF

Cz = c2d(Cs,Ts); % discretize

% extract coefficients

[num,den] = tfdata(Cz);

Cnum = num{1}'; % change to vector

Cden = den{1}'; % change to vector

Cn = length(Cnum); % number of coefficients

%% Simulate

for cc = 1:runs

 reactflag = 0;

 readNdx = 1;

 fcreadNdx = 1;

 for kk = 3:N % iterate through samples

 % ----- user input ---- %

 fusr = scenario_input(cc,x(kk-1,cc),reactflag);

 % ---- control law ---- %

 if (x(kk-1,cc)<(x_des-x_act)) || (fusr<=0)

 % not in activation window or user

 f(kk,cc) = fusr;

 if fusr <= 0 % first reaction?

 reactflag = 1;

 end

 else

 % in activation window and controller has control

 f(kk,cc) = fc(kk-1,cc);

 cact(kk,cc) = 1;

 end

 % ---- saturation check ---- %

 if f(kk,cc) > 1

 f(kk,cc) = 1;

 elseif f(kk,cc) < -1

 f(kk,cc) = -1;

 end

 % ---- estimate response ---- %

 x(kk,cc) = sum(-flipud(Gden(2:end)).*x(kk-Gn+1:kk-1,cc))...

 + sum(flipud(Gnum).*f(kk-Gn+1:kk,cc));

 % ---- add measurement noise ---- %

 x_ns(kk,cc) = x(kk,cc) + nmag*randn(1,1);

 % ---- moving average ---- %

 if SMAflag==1

 temp = x_ns(kk,cc);

 temp = temp/numRead;

 runSum(cc) = runSum(cc) + temp;

 temp = readBuff(readNdx,cc);

 temp = temp/numRead;

 runSum(cc) = runSum(cc) - temp;

 readBuff(readNdx,cc) = x_ns(kk,cc);

 x_ns(kk,cc) = runSum(cc);

154

 if readNdx ~= numRead

 readNdx = readNdx + 1;

 else

 readNdx = 1;

 end

 end

 % ---- find distance error ---- %

 e(kk,cc) = x_des - x_ns(kk,cc);

 % ---- run controller ---- %

 fc(kk,cc) = sum(-flipud(Cden(2:end)).*fc(kk-Cn+1:kk-1,cc))...

 + sum(flipud(Cnum).*e(kk-Cn+1:kk,cc));

 end

 % convert f back to SBUS

 f(:,cc) = f(:,cc)*(1811-992)+992;

 % Plotting

 figure

 subplot 311

 plot(t,x(:,cc),t,des);

 ylabel('Position (m)'); grid;

 title('Actual model position')

 subplot 312

 plot(t,x_ns(:,cc),t,des);

 ylabel('Position (m)'); grid;

 title('Model position as seen by controller');

 subplot 313

 plot(t,f(:,cc))

 ylabel('normalized SBUS'); xlabel('Time (sec)'); grid;

 title('Input to the model')

 sgtitle(['LCAS forward controller under scenario ',num2str(cc)]);

end

%% Save data

if nmag == 0

 x_p2_id = x;

 cact_p2_id = cact;

 f_p2_id = f;

 x_ns_p2_id = x_ns;

 if SMAflag==0

 save('P2_results_ideal.mat','x_p2_id','cact_p2_id','f_p2_id','x_ns_p2_id');

 else

save('P2_sma_results_ideal.mat','x_p2_id','cact_p2_id','f_p2_id','x_ns_p2_id');

 end

elseif nmag==0.0036821

 x_p2_tl = x;

 cact_p2_tl = cact;

 f_p2_tl = f;

 x_ns_p2_tl = x_ns;

 if SMAflag==0

 save('P2_results_tlstd.mat','x_p2_tl','cact_p2_tl','f_p2_tl','x_ns_p2_tl');

 else

save('P2_sma_results_tlstd.mat','x_p2_tl','cact_p2_tl','f_p2_tl','x_ns_p2_tl');

 end

elseif nmag==0.1

 x_p2_ext = x;

 cact_p2_ext = cact;

 f_p2_ext = f;

155

 x_ns_p2_ext = x_ns;

 if SMAflag==0

save('P2_results_extreme.mat','x_p2_ext','cact_p2_ext','f_p2_ext','x_ns_p2_ext');

 else

save('P2_sma_results_extreme.mat','x_p2_ext','cact_p2_ext','f_p2_ext','x_ns_p2_ext');

 end

end

Scenario input generation function (used in both Phase I & II testing)

function fnorm = scenario_input(scenario,x,reactflag)

% scenario_input.m

% Created: Mar 26, 2020

% Modified: May 14, 2020

% Author: THolliday

% Function to generate the input for the LCAS controller simulation of

% flying towards a wall at 1 meter, starting from 0 meter.

% Inputs:

% scenario scenario number

% x distance measure from model

% reactflag denotes if user has reacted once (only used for Phase 1)

% Outputs:

% fnorm normalized SBUS value used as input to model

%% Parameters

sbus_mid = 992;

sbus_max = 1811;

%% Scenarios

if scenario==1

 % user/stick input is a constant 1200, as if user keeps flying towards

 % the desired position

 fsbus = 1200;

% fsbus = sbus_max;

elseif scenario==2

 % same as scenario 1, but the user reacts to the approach of the

 % desired position and uses a lower input after first reaction

 if reactflag == 1 && x<0.45

 fsbus = 1050;

 elseif x >= 0.45

 fsbus = 785;

 else

 fsbus = 1200;

 end

elseif scenario==3

 % user/stick input is a constant 1000, as if the drone is drifting

 % towards the desired position on its own accord

 fsbus = 1000;

elseif scenario==4

 % same as scenario 3, but the user reacts to the approach of the

 % desired position and then uses a neutral input after first reaction

 if reactflag == 1 && x<0.45

156

 fsbus = 1000;

 elseif x >= 0.45

 fsbus = 825;

 else

 fsbus = 1000;

 end

end

%% Normalize SBUS

fnorm = (fsbus-sbus_mid)/(sbus_max-sbus_mid); % sets to within [-1,1] range

end

Comparing Phase I & Phase II

% ctrl_result_plotting.m

% Created: May 28, 2020

% Modified: July 31, 2020

% Author: THolliday

% Script for plotting CCAS results

clear; close all;

%% Import Resutls

load('ctrl_case_results_v4.mat')

%% Variables

[rr,cc] = size(x_p1_id);

Ts = 0.02; % sec, sampling period

t = (0:Ts:30)'; % sec, time vector

des = ones(length(t),1)*0.5; % desired position vector

%% Ideal case plotting

for ii = 1:cc

 figure

 plot(t,x_p1_id(:,ii),t,x_p2_id(:,ii),t,des,'k--');

 xlabel('Time (sec)'); ylabel('Position (m)'); grid;

 title(['Simulated LCAS under scenario ',num2str(ii)]);

 legend('Phase I','Phase II','desired position','location','southeast')

end

%% Noise resiliency - TL std case

% Phase I

figure

subplot 211

yyaxis left

hold on

plot(t,x_ns_p1_tl(:,1))

plot(t,x_p1_tl(:,1),'m-')

hold off

ylabel('Position (m)')

yyaxis right

plot(t,cact_p1_tl(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('position seen by controller','model position','controller enable',...

 'location','south','orientation','horizontal')

subplot 212

yyaxis left

plot(t,f_p1_tl(:,1))

ylabel('SBUS value')

157

yyaxis right

plot(t,cact_p1_tl(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('model input','controller

enable','location','south','orientation','horizontal')

sgtitle('Phase I noise resiliency (TL std case)')

% Phase II

figure

subplot 211

yyaxis left

hold on

plot(t,x_ns_p2_tl(:,1))

plot(t,x_p2_tl(:,1),'m-')

hold off

ylabel('Position (m)')

yyaxis right

plot(t,cact_p2_tl(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('position seen by controller','model position','controller enable',...

 'location','south','orientation','horizontal')

subplot 212

yyaxis left

plot(t,f_p2_tl(:,1))

ylabel('SBUS value')

yyaxis right

plot(t,cact_p2_tl(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('model input','controller

enable','location','south','orientation','horizontal')

sgtitle('Phase II noise resiliency (TL std case)')

%% Noise resiliency - extreme case

% Phase I

figure

subplot 211

yyaxis left

hold on

plot(t,x_ns_p1_ext(:,1))

plot(t,x_p1_ext(:,1),'m-','linewidth',1)

hold off

ylabel('Position (m)')

yyaxis right

plot(t,cact_p1_ext(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('position seen by controller','model position','controller enable',...

 'location','south','orientation','horizontal')

subplot 212

yyaxis left

plot(t,f_p1_ext(:,1))

ylabel('SBUS value')

yyaxis right

plot(t,cact_p1_ext(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('model input','controller

enable','location','south','orientation','horizontal')

sgtitle('Phase I noise resiliency (extreme case)')

% Phase II

figure

subplot 211

yyaxis left

158

hold on

plot(t,x_ns_p2_ext(:,1))

plot(t,x_p2_ext(:,1),'m-','linewidth',1)

hold off

ylabel('Position (m)')

yyaxis right

plot(t,cact_p2_ext(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('position seen by controller','model position','controller enable',...

 'location','south','orientation','horizontal')

subplot 212

yyaxis left

plot(t,f_p2_ext(:,1))

ylabel('SBUS value')

yyaxis right

plot(t,cact_p2_ext(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('model input','controller

enable','location','south','orientation','horizontal')

sgtitle('Phase II noise resiliency (extreme case)')

Phase II SMA results plotting

% P2_SMA_results_plotting.m

% Created: June 5, 2020

% Modified: July 31, 2020

% Author: THolliday

% Script for plotting LCAS results

clear; close all;

%% Import Resutls

load('P2_SMA_results_v2.mat')

%% Variables

[rr,cc] = size(x_p2_id);

Ts = 0.02; % sec, sampling period

t = (0:Ts:30)'; % sec, time vector

%% Case 1 - TL std

% Phase II

figure

subplot 211

yyaxis left

hold on

plot(t,x_ns_p2_tl(:,1))

plot(t,x_p2_tl(:,1),'m-')

hold off

ylabel('Position (m)')

yyaxis right

plot(t,cact_p2_tl(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('position seen by controller','model position','controller enable',...

 'location','south','orientation','horizontal')

subplot 212

yyaxis left

plot(t,f_p2_tl(:,1))

ylabel('SBUS value')

159

yyaxis right

plot(t,cact_p2_tl(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('model input','controller

enable','location','south','orientation','horizontal')

sgtitle('Phase II with SMA noise resiliency (TL std case)')

%% Case 2 - extreme

% Phase II

figure

subplot 211

yyaxis left

hold on

plot(t,x_ns_p2_ext(:,1))

plot(t,x_p2_ext(:,1),'m-','linewidth',1)

hold off

ylabel('Position (m)')

yyaxis right

plot(t,cact_p2_ext(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('position seen by controller','model position','controller enable',...

 'location','south','orientation','horizontal')

subplot 212

yyaxis left

plot(t,f_p2_ext(:,1))

ylabel('SBUS value')

yyaxis right

plot(t,cact_p2_ext(:,1)); ylim([0 1.05])

xlabel('Time (sec)'); grid;

legend('model input','controller

enable','location','south','orientation','horizontal')

sgtitle('Phase II with SMA noise resiliency (extreme case)')

Prototype LCAS testing data processing

% canary_lcas_testing_06152020.m

% Created: June 16, 2020

% Author: THolliday

% This script plots the results of the Canary testing with the LCAS.

clear; close all; format long;

%% Import data

% filename = 'canary_lcas_06152020_T2_F1.mat'; manflag = 'F1';

% filename = 'canary_lcas_06152020_T2_F2.mat'; manflag = 'F2'; % barely goes below

1000 mm

% filename = 'canary_lcas_06152020_T2_F3.mat'; manflag = 'F3'; % logging failure

% filename = 'canary_lcas_06152020_T2_F4.mat'; manflag = 'F4'; % logging failure

% filename = 'canary_lcas_06152020_T2_F5.mat'; manflag = 'F5'; % controller

failure?

% filename = 'canary_lcas_06152020_T2_F6.mat'; manflag = 'F6'; % ctrl failure

filename = 'canary_lcas_06152020_T2_F7.mat'; manflag = 'F7';

load(filename);

%% SBUS data

Tsbus_tx = Tsbus(2:2:end); % sbus tx time

Tsbus_rx = Tsbus(1:2:end); % sbus rx time

Ele_tx = Ele(2:2:end); % elevator tx

Ele_rx = Ele(1:2:end); % elevator rx

160

ctrl_tx = Ctrl(2:2:end); % ctrl enable

arm_tx = ARM(2:2:end); % system arming

tsbus_tx = Tsbus_tx-Tsbus_tx(1); % set zero point for sbus time

tsbus_rx = Tsbus_rx-Tsbus_rx(1); % set zero point for sbus time

%% SB data

tsb = Tsb-Tsb(1); % set zero point for sensor board time

%% Plot full flight

figure

yyaxis left

plot(tsb,Dist)

ylabel('Position (mm)');

yyaxis right

plot(tsb,ctrlEN)

ylim([-0.01 1.01])

xlabel('Time (sec)'); grid;

title('Canary position during full flight');

legend('Canary position','LCAS enable','location','southwest');

figure

yyaxis left

plot(tsbus_tx,Ele_tx,tsbus_rx,Ele_rx,'k--')

ylabel('SBUS')

yyaxis right

plot(tsb,ctrlEN)

ylim([-0.01 1.01])

xlabel('Time (sec)'); grid

title('Canary input during full flight')

legend('TX forward (Ele) channel','RX forward (Ele) channel','LCAS

enable','location','southwest')

%% Plot sections where LCAS was active

if strcmp(manflag,'F1') % F1

 tndx = [62,68];

elseif strcmp(manflag,'F5') % F5

 tndx = [12,15];

elseif strcmp(manflag,'F7') % F7

 tndx = [23.5,26.5;57.5,65;66,69;86.5,90;71,75];

end

[rr,cc] = size(tndx);

for ii = 1:rr

 sbndx = tsb>=tndx(ii,1) & tsb<=tndx(ii,2);

 tsb_lcas = tsb(sbndx);

 ctrlEN_lcas = ctrlEN(sbndx);

 Dist_lcas = Dist(sbndx);

 sbusndx_tx = tsbus_tx>=tndx(ii,1) & tsbus_tx<=tndx(ii,2);

 tsbus_tx_lcas = tsbus_tx(sbusndx_tx);

 Ele_tx_lcas = Ele_tx(sbusndx_tx);

 sbusndx_rx = tsbus_rx>=tndx(ii,1) & tsbus_rx<=tndx(ii,2);

 tsbus_rx_lcas = tsbus_rx(sbusndx_rx);

 Ele_rx_lcas = Ele_rx(sbusndx_rx);

 figure

 subplot 211

 yyaxis left

 plot(tsb_lcas,Dist_lcas)

 ylabel('Position (mm)')

 yyaxis right

 plot(tsb_lcas,ctrlEN_lcas)

 ylim([-0.01 1.01]);

 xlabel('Time (sec)'); grid;

161

 title(['Canary position when LCAS active, Test 3.5'])%',num2str(ii)]);

 legend('Canary position','LCAS enable','location','north');

 subplot 212

 yyaxis left

 plot(tsbus_tx_lcas,Ele_tx_lcas,tsbus_rx_lcas,Ele_rx_lcas,'k--')

 ylabel('SBUS');ylim([min(Ele_tx_lcas) 1225])

 yyaxis right

 plot(tsb_lcas,ctrlEN_lcas)

 ylim([-0.01 1.01]);

 xlabel('Time (sec)'); grid

 title(['Canary input when LCAS active, Test 3.5'])%',num2str(ii)])

 legend('TX forward (Ele) channel','RX forward (Ele) channel','LCAS

enable','location','southwest')

end

162

Appendix E: Sensor Board Code

Main script

/* UAV i2c sensor board control v5
 *
 * main()
 *
 * Created on: Feb 14, 2020
 * Modified: May 13, 2020
 * Author: THolliday
 *
 * controls two tinyLiDARs and one ultrasonic based on
 * commands received from an i2c master
 *
 * this board also communicates as an i2c master to the
 * tinyLiDAR slaves
 *
 * Commands
 *
 * sensor board tinyLiDAR description
 * ------------ --------- -----------
 * 0x45, 'E' set error threshold
 * 0x54, 'T' 0x##, 0x44, 'D' trigger only tinyLiDARs
 * 0x55, 'U' trigger ultrasonic
 * 0x56, 'V' 0x##, 0x44, 'D' capture ultrasonic distance, trigger tinyLiDARs,
 * find min distance between all three sensors
 *
 * Fault codes
 *
 * device variable code description
 * ------ -------- ---- -----------
 * ultrasonic distUS 0xFFFF global failure or timeout on echo
 * 0xBBBB distance value below error threshold
 * tinyLiDAR distIR[1] 0xFFFF i2c communication failure
 * 0xEEEE invalid command or global failure
 * 0xBBBB distance value below error threshold
 * sensor board dist[1] 0xFFFF all three sensors failed
 * 0xEEEE invalid command
 *
 */

// Inclusions
#include <msp430.h>
#include "i2c_slave_handler.h"
#include "tinyLiDAR_handler.h"
#include "ultrasonic_handler.h"

// Defines
#define slavAdd 0x12 // front, 7-bit i2c address (8-bit = 0x24)
//#define slavAdd 0x24 // back, 7-bit i2c address (8-bit = 0x48)
//#define slavAdd 0x36 // left, 7-bit i2c address (8-bit = 0x6C)
//#define slavAdd 0x48 // right, 7-bit i2c address (8-bit = 0x90)
//#define slavAdd 0x5A // up, 7-bit i2c address (8-bit = 0xB4)
//#define slavAdd 0x6C // down, 7-bit i2c address (8-bit = 0xD8)

// start main()
int main(void)
{

163

 // MSP430 Initialization
 WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer
 BCSCTL1 = CALBC1_16MHZ; // Set DCO
 DCOCTL = CALDCO_16MHZ;

 // i2c slave initialization
 i2c_slave_init(slavAdd);

 // tinyLiDAR initialization
 tinyLiDAR_init();

 // ultrasonic initialization
 ultrasonic_init();

 // Variables
 unsigned int dist[2], distIR[2], distUS, distbyte1, distbyte2, devID;
 const int tl_us_offset = 20; // mm, forward distance between ultrasonic and tinyLiDARs
 int error_threshold; // mm, threshold for checking for valid distance values

 while (1){
 if(UCB0STAT&UCSTPIFG){ // check for i2c RX stop flag
 if (i2cRXflag>0){

 /* run sensors based on mode command */
 switch (i2cRXData[0]){
 case 'E':
 /* set error threshold */
 error_threshold = i2cRXData[1];
 break;

 case 'T':
 /* trigger only the tinyLiDARs */
 trigger_tinyLiDAR(distIR,0,error_threshold); // outputs minimum distance
between tinyLiDARs
 dist[1] = distIR[1];
 dist[0] = 1;
 devID = distIR[0];
 break;

 case 'U':
 /* trigger ultrasonic */
 trigger_ultrasonic(); // trigger ultrasonic
 break;

 case 'V':
 /* capture ultrasonic distance */
 ultrasonic_dist_capture(&distUS); // capture ultrasonic distance
 distUS += tl_us_offset;

 /* trigger tinyLiDARs */
// trigger_tinyLiDAR(distIR,0,error_threshold); // trigger tinyLiDARs,
output min distance

 /* select smallest distance */
 if ((distIR[1]<=distUS)||(distUS<error_threshold)){ // IR distance
smallest?
 dist[1] = distIR[1];
 dist[0] = 1;
 devID = distIR[0];
 }else{ // US distance smallest?
 dist[1] = distUS;

164

 dist[0] = 1;
 devID = 'U';
 }
 break;

 default:
 /* invalid operator/command */
 dist[0] = 0;
 dist[1] = 0xEEEE;
 break;
 }

 /* prepare i2c TX */
 if ((i2cRXData[0]=='V')||(i2cRXData[0]=='T')){
 if ((dist[0]==0)||(dist[1]==0xFFFF)){
 i2cTXData[0] = 'F'; // 'fail', failed to capture
distance
 i2cTXData[1] = 0xFF; // return dummy error values
 i2cTXData[2] = 0xFF;
 i2cTXData[3] = 'X';
 }else{
 distbyte1 = dist[1] & 0xFF00; // separate bytes for i2c 8-bit
transfer
 distbyte1 >>= 8;
 distbyte2 = dist[1] & 0x00FF;

 i2cTXData[0] = 'P'; // 'pass', captured distance
 i2cTXData[1] = distbyte1; // return first byte
 i2cTXData[2] = distbyte2; // return second byte
 i2cTXData[3] = devID; // min dist device
 }

 /* reset RX flag */
 i2cRXflag = 0;

 /* clear values */
 dist[0] = 0;
 dist[1] = 0;
 distbyte1 = 0;
 distbyte2 = 0;
 devID = 0;
 }
 }
 }
 }// end while

}// end main()

165

tinyLiDAR handler

/*
 * tinyLiDAR_handler.c
 *
 * Created on: Apr 15, 2019
 * Modified: Oct 11, 2019
 * Author: tholliday
 */

// Inclusions
#include <msp430.h>
#include <math.h>
#include "i2c_handler.h"

// Defines
#define duinoAdd1 0x20 // 8-bit address (7-bit = 0x10)
#define duinoAdd2 0xA0 // 8-bit address (7-bit = 0x50)

// Global Variables
char tinyLidar_1w[2], tinyLidar_2w[2], tinyLidar_1r[3], tinyLidar_2r[3];

void tinyLiDAR_init(void){
 // initializes bitbang communication with 2 tinyLiDARs on an i2c bus

 /* i2c initialization */
 i2c_bb_init();

 /* initialize i2c vectors */
 // first slave
 tinyLidar_1w[0] = duinoAdd1; // tinyLiDAR slave address, write mode
 tinyLidar_1w[1] = 0x44; // tx data, distance capture command
 tinyLidar_1r[0] = duinoAdd1+1; // tinyLiDAR slave address, read mode
 tinyLidar_1r[1] = 0x00; // rx data, first distance byte
 tinyLidar_1r[2] = 0x00; // rx data, second distance byte

 // second slave
 tinyLidar_2w[0] = duinoAdd2; // tinyLiDAR slave address, write mode
 tinyLidar_2w[1] = 0x44; // tx data, distance capture command
 tinyLidar_2r[0] = duinoAdd2+1; // tinyLiDAR slave address, read mode
 tinyLidar_2r[1] = 0x00; // rx data, first distance byte
 tinyLidar_2r[2] = 0x00; // rx data, second distance byte

}// end tinyLiDAR_init()

void trigger_tinyLiDAR(unsigned int *output, int lidarNdx, int threshold){
 /* triggers both tinyLiDARs over the i2c bus and outputs a distance value
 * based on value in lidarNdx
 *
 * lidarNdx command
 * -------- -------
 * 0 compare distances from both tinyLiDARs and output smallest
 * 1 output distance from tinyLiDAR 1
 * 2 output distance from tinyLiDAR 2
 */

166

 // Variables
 volatile unsigned int i;
 unsigned int distOut1, distOut2;

 /* reset i2c rx vectors */
 for (i=1;i<3;i++){
 tinyLidar_1r[i] = 0x00;
 tinyLidar_2r[i] = 0x00;
 }

 /* trigger first LiDAR */
 i2c_bb_rxtx(tinyLidar_1w,2,0); // write mode
 __delay_cycles(1000); // delay to allow IR capture

 if (i2c_bb_rxtx(tinyLidar_1r,1,2)==1){ // successful read, ACK; read mode
 // distance capture
 distOut1 = tinyLidar_1r[1];
 distOut1 = (distOut1<<8) | tinyLidar_1r[2]; // combine returned bytes to make dist
value
 if (distOut1<threshold)
 distOut1 = 0xBBBB; // error/timeout check
 }else{ // unsuccessful read, no ACK
 distOut1 = 0xFFFF;
 }

 /* trigger second LiDAR */
 i2c_bb_rxtx(tinyLidar_2w,2,0); // write mode
 __delay_cycles(1000); // delay to allow IR capture

 if (i2c_bb_rxtx(tinyLidar_2r,1,2)==1){ // successful read, ACK; read mode
 // record distance
 distOut2 = tinyLidar_2r[1];
 distOut2 = (distOut2<<8) | tinyLidar_2r[2]; // combine returned bytes to make dist
value
 if (distOut2<threshold)
 distOut2 = 0xBBBB; // error/timeout check
 }else{ // unsuccessful read, no ACK
 distOut2 = 0xFFFF;
 }

 /* output distance based on lidarNdx */
 switch (lidarNdx){
 case 0: // compare distances from both tinyLiDARs and output smallest
 if (distOut1<=distOut2){
 output[0] = 1; // LiDAR indicator
 output[1] = distOut1; // first LiDAR distance smallest
 }else{
 output[0] = 2; // LiDAR indicator
 output[1] = distOut2; // second LiDAR distance smallest
 }
 break;

 case 1: // output distance from tinyLiDAR 1
 output[0] = 1; // LiDAR indicator
 output[1] = distOut1; // output tinyLiDAR 1 distance
 break;

 case 2: // output distance from tinyLiDAR 2
 output[0] = 2; // LiDAR indicator
 output[1] = distOut2; // output tinyLiDAR 2 distance

167

 break;

 default: // invalid Ndx or global failure
 output[0] = 0; // LiDAR indicator
 output[1] = 0xEEEE; // output error distance
 break;
 }

}// end trigger_tinyLiDARs

/*
 * tiny_LiDAR_handler.h
 *
 * Created on: Apr 18, 2019
 * Modified: Oct 11, 2019
 * Author: tholliday
 */

#ifndef TINYLIDAR_HANDLER_H_
#define TINYLIDAR_HANDLER_H_

void tinyLiDAR_init(void);
void trigger_tinyLiDAR(unsigned int *, int, int);

#endif /* TINYLIDAR_HANDLER_H_ */

Ultrasonic handler

/*
 * ultrasonic_handler.c
 *
 * Created on: Feb 19, 2019
 * Modified: Oct 16, 2019
 * Author: tholliday
 *
 */

// Inclusions
#include <msp430.h>
#include <math.h>

// Defines
#define TRIG BIT3
#define ECHO BIT4
#define TRIG_DIR P2DIR
#define TRIG_OUT P2OUT
#define ECHO_DIR P2DIR
#define ECHO_IE P2IE
#define ECHO_IES P2IES
#define ECHO_IFG P2IFG

// Global variables
unsigned int Distclicks;
int UPCOUNTSTATE;

168

/* UPCOUNTSTATE VALUES
 * 0 - system ready/not running
 * 1 - trigger signal sent, waiting for trigger timing
 * 2 - end trigger timing, initialize echo receiving, waiting for echo
 * 3 - echo received and time value acquired
 * 4 - (or greater) timeout has occurred.
 */

void ultrasonic_init(void){

 // Initialize TRIG
 TRIG_DIR |= TRIG; // Set pin 2.3 as a trigger for the ultrasonic sensor
 TRIG_OUT &=~ TRIG; // Initialize 2.3 as low for the trigger (trigger is high)

 // Initialize ECHO
 ECHO_IES &=~ ECHO; // set echo hardware interrupt to lo/high edge
 ECHO_IE |= ECHO; // set pin 2.4 as echo hardware interrupt

 // Enable timer and hardware interrupts
 _BIS_SR(GIE); // Enable interrupts for the Port Triggering
 TA1CTL = (TASSEL_2 + ID_3 + MC_2); // configure interrupt timer
 TA1CCR0 = 42000;

 // Initialize ultrasonic state
 UPCOUNTSTATE = 0;

}// end ultrasonic_init()

void trigger_ultrasonic(void){

 /* state: system ready */
 if (UPCOUNTSTATE==0){
 UPCOUNTSTATE = 1; // set state to "signal sent"
 TRIG_OUT |= TRIG; // Trigger the output to start the signal
 ECHO_IES &=~ ECHO; // set lo/hi edge on echo interrupt
 __delay_cycles(160); // approximately 10us wait
 TRIG_OUT &=~ TRIG; // End the trigger sequence
 }

 if (UPCOUNTSTATE>3){
 TA1CCTL0 &=~ CCIE; // disable timer interrupt
 }

}// end trigger_ultrasonic()

void ultrasonic_dist_capture(unsigned int *dist){

 /* state: echo received & recorded */
 if (UPCOUNTSTATE==3){
// TA1CCTL0 &=~ CCIE; // disable timer interrupt
 UPCOUNTSTATE = 0; // reset state
 dist[0] = 0.0884*Distclicks - 16; // convert and output the value as a distance
// dist[0] = Distclicks;
 }

169

 /* state: timeout or global failure */
 if (UPCOUNTSTATE>=4){
 TA1CCTL0 &=~ CCIE; // disable timer interrupt
 UPCOUNTSTATE = 0; // reset state
 dist[0] = 0xFFFF; // output error value
 }

}// end ultrasonic_dist_capture()

// ECHO hardware interrupt
#pragma vector=PORT2_VECTOR
__interrupt void Port_2(void)
{
 // when the echo is captured the value is outputed in Distclicks
 if (UPCOUNTSTATE<4){
 if (ECHO_IES & ECHO){ // End of echo time
 ECHO_IES &=~ ECHO; // Set lo/hi edge trigger
 Distclicks = TA1R; // store value in Distclicks
 UPCOUNTSTATE = 3; // set state to "time value acquired"
 TA1CCTL0 &=~ CCIE; // disable timer interrupt
 }else{ // Beginning of echo time
 ECHO_IES |= ECHO; // set hi/lo edge trigger
 TA1R = 0; // clear distance register
 UPCOUNTSTATE = 2; // set state to "waiting"
 TA1CCTL0 = CCIE; // enable timer interrupt
 }
 }
 ECHO_IFG &=~ ECHO; // reset echo interrupt flag

}// end echo received interrupt

// ECHO rx timeout interrupt
#pragma vector=TIMER1_A0_VECTOR
__interrupt void TIMERA1_ISR (void)
{
 // timer that ends echo receiving if it is taking too long
 if (UPCOUNTSTATE==2){ // Timeout has occurred
 UPCOUNTSTATE = 4; // set state to "timeout"
 }else{
 UPCOUNTSTATE++;
 }

}// end timer interrupt

/*
 * ultrasonic_header.h
 *
 * Created on: Feb 19, 2019
 * Modified: Sept 11, 2019
 * Author: tholliday
 */

#ifndef ULTRASONIC_HANDLER_H_
#define ULTRASONIC_HANDLER_H_

170

extern unsigned int UPCOUNTSTATE;

void ultrasonic_init(void);
void trigger_ultrasonic(void);
void ultrasonic_dist_capture(unsigned int *);

#endif /* ULTRASONIC_HANDLER_H_ */

I2C bitbang handler for tinyLiDARs

/*
 * i2c_handler.c
 *
 * Created on: Feb 23, 2019
 * Modified: April 25, 2019
 * Author: tholliday
 *
 *https://www.embeddedrelated.com/showcode/334.php
 *
 */

// Inclusions
#include <msp430.h>

// Defines
#define SDA BIT0
#define SCL BIT1
#define SDA_DIR P2DIR
#define SDA_OUT P2OUT
#define SCL_DIR P2DIR
#define SCL_OUT P2OUT
#define SDA_IN P2IN
#define i2cDelay 500

void i2c_bb_init(void){
 // i2c pin initialization

 SDA_DIR |= SDA; // set data output
 SCL_DIR |= SCL; // set clk output
 SDA_OUT |= SDA; // data high
 SCL_OUT |= SCL; // clk high

}// end i2c_bb_init()

void i2c_bb_start(void){
 // i2c start: DATA low when CLK high

 SCL_OUT |= SCL; // clk high
 SDA_DIR |= SDA; // set data output
 SDA_OUT &=~ SDA; // data low
 __delay_cycles(i2cDelay);
 SCL_OUT &=~ SCL; // clk low

171

 __delay_cycles(2);

}// end i2c_bb_start()

void i2c_bb_stop(void){
 // i2c stop: CLK high when DATA low

 __delay_cycles(i2cDelay);
 SCL_OUT &=~ SCL; // clk low
 SDA_DIR |= SDA; // set data output
 SDA_OUT &=~ SDA; // data low
 __delay_cycles(i2cDelay);
 SCL_OUT |= SCL; // clk high
 __delay_cycles(i2cDelay);
 SDA_OUT |= SDA; // data high

}// end i2c_bb_stop()

int i2c_bb_rxtx(char *i2cData, int numTX, int numRX){
 /* master read and write to slave
 *
 * *i2cData = pointer to i2c buffer data
 * numTX = number of 8-bit writes
 * numRX = number of 8-bit reads
 *
 * returns 0 if unsuccessful (failed ACK)
 * returns 1 if successful
 */

 // Variables
 volatile unsigned int i,k,temp;

 /* Start condition */
 i2c_bb_start();

 /* start i2c TX */
 for (i=0;i<numTX;i++){
 temp = i2cData[i]; // store i-th buffer value

 /* start 8-bit tx */
 for (k=0;k<8;k++){
 __delay_cycles(i2cDelay);
 if ((temp & 0x80)==0x80){
 SDA_OUT |= SDA; // data high
 }else{
 SDA_OUT &=~ SDA; // data low
 }
 SCL_OUT |= SCL; // clk high
 __delay_cycles(i2cDelay);
 temp <<= 1;
 SCL_OUT &=~ SCL; // clk low
 }
 /* end 8-bit tx */

 /* start tx acknowledge check */
 SDA_DIR &=~ SDA; // set data input
 __delay_cycles(i2cDelay);
 SCL_OUT |= SCL; // clk high

172

 __delay_cycles(i2cDelay);
 if (SDA_IN & SDA){ // ACK missed
 SDA_DIR |= SDA; // set data output
 SDA_OUT &=~ SDA; // data low
 SCL_OUT &=~ SCL; // clk low
 __delay_cycles(i2cDelay);
 SCL_OUT |= SCL; // clk high
 __delay_cycles(i2cDelay);
 SDA_OUT |= SDA; // data high
 return 0;
 }
 SCL_OUT &=~ SCL; // clk low
 SDA_DIR |= SDA; // set data output
 __delay_cycles(i2cDelay);
 SDA_OUT &=~ SDA; // data low
 /* end tx acknowledge check */
 }
 /* end i2c TX */

 SDA_DIR &=~ SDA; // set data input
 SDA_OUT &=~ SDA; // data low
 if (numRX==-1)
 numRX = 100;

 /* start i2c RX */
 for (i=numTX;i<(numTX+numRX);i++){
 temp = 0x00; // reset temp value
 SDA_DIR &=~ SDA; // set data input

 /* begin 8-bit rx */
 for (k=0;k<8;k++){
 temp <<= 1; // bitshift temp by 1
 __delay_cycles(i2cDelay);
 SCL_OUT |= SCL; // clk high
 __delay_cycles(i2cDelay);
 if ((SDA_IN & SDA)==SDA){
 temp |= 0x01; // set temp to hex 1
 }else{
 temp &=~ 0x01;
 }
 SCL_OUT &=~ SCL; // clk low
 SDA_OUT |= SDA; // data high
 }
 /* end 8-bit rx */

 /* start rx acknowledge check */
 SDA_DIR |= SDA; // set data output
 if (i==(numTX+numRX-1)){ // master send NACK
 SDA_OUT |= SDA; // data high
 }else{ // master send ACK
 SDA_OUT &=~ SDA; // data low
 __delay_cycles(i2cDelay);
 }
 /* end rx acknowledge check */

 if (i==numTX){
 if (numRX==100)
 numRX = temp;
 }

 i2cData[i] = temp;

173

 __delay_cycles(i2cDelay);
 SCL_OUT |= SCL; // clk high
 __delay_cycles(i2cDelay*3);
 SCL_OUT &=~ SCL; // clk low
 __delay_cycles(i2cDelay);
 SDA_OUT &=~ SDA; // data low
 SDA_DIR &=~ SDA; // set data output
 }
 /* end i2c RX */

 /* Stop condition */
 i2c_bb_stop();
 return 1;

}// end i2c_bb_rxtx()/*
 * i2c_handler.h
 *
 * Created on: March 4, 2019
 * Author: tholliday
 */

#ifndef I2C_HANDLER_H_
#define I2C_HANDLER_H_

void i2c_bb_init(void);
void i2c_bb_start(void);
void i2c_bb_stop(void);
int i2c_bb_rxtx(char *,int,int);

#endif /* I2C_HANDLER_H_ */

I2C slave handler

/*
 * i2c_slave_handler.c
 *
 * Created on: April 17, 2019
 * Author: tholliday
 */

// Inclusions
#include <msp430.h>

// Defines
#define i2c_max 12
#define SEL P1SEL
#define SEL2 P1SEL2
#define PINS (BIT6|BIT7)

// Global Variables
unsigned char i2cTXData[i2c_max], i2cRXData[i2c_max];
unsigned int txDataPtr = 0, rxDataPtr = 0;
unsigned int i2cRXflag = 0;
unsigned int i2cmodeflag = 0;
// 0 slave <-- master mode (TX)
// 1 slave --> master mode (RX)

174

void i2c_slave_init(int slavAdd){
 // initializes i2c slave using USCI_B0 timers

 // initialize pins
 SEL |= PINS; // Assign I2C pins to USCI_B0
 SEL2 |= PINS; // Assign I2C pins to USCI_B0

 UCB0CTL1 |= UCSWRST; // Enable SW reset
 UCB0CTL0 = (UCMODE_3|UCSYNC); // I2C Slave, synchronous mode
 UCB0I2COA = slavAdd; // set slave address
 UCB0CTL1 &=~ UCSWRST; // Clear SW reset, resume operation
 UCB0I2CIE |= UCSTTIE; // Enable STT interrupt
 IE2 |= (UCB0TXIE|UCB0RXIE); // enable TX interrupt

 i2cmodeflag = 0; // set to i2c TX slave mode

}// end i2c_slave_init()

// i2c TX interrupt
#pragma vector = USCIAB0TX_VECTOR
__interrupt void USCIAB0TX_ISR(void)
{
 unsigned int i;

 if (i2cmodeflag==1){ // i2c TX slave mode?
 UCB0TXBUF = i2cTXData[txDataPtr]; // place TX data in buffer
 txDataPtr++; // increment TX pointer

 }else{ // i2c RX slave mode?
 i2cRXData[rxDataPtr] = UCB0RXBUF; // capture RX data
 rxDataPtr++; // increment RX pointer
 i2cRXflag++; // increment RX flag
 }
}// end i2c TX interrupt

// i2c RX interrupt
#pragma vector = USCIAB0RX_VECTOR
__interrupt void USCIAB0RX_ISR(void)
{

 /* Slave --> master mode (TX) */
 if (IFG2&UCB0TXIFG){ // check TX flags for beginning of i2c RX
slave mode
 i2cmodeflag = 1; // set to i2c RX slave mode
 if (UCB0STAT&UCSTTIFG){
 UCB0STAT &=~ (UCSTPIFG|UCSTTIFG); // clear i2c interrupt flags
 txDataPtr = 0; // reset TX pointer
 }
 }

 /* Slave <-- master mode (RX) */
 if (IFG2&UCB0RXIFG){ // check RX flags for beginning of i2c TX
slave mode
 i2cmodeflag = 0; // set to i2c TX slave mode
 if (UCB0STAT&UCSTTIFG){
 UCB0STAT &=~ (UCSTPIFG|UCSTTIFG); // clear i2c interrupt flags
 rxDataPtr = 0; // reset RX pointer

175

 }
 }
}// end i2c RX interrupt

/*
 * i2c_slave_handler.h
 *
 * Created on: Apr 17, 2019
 * Author: tholliday
 */

#ifndef I2C_SLAVE_HANDLER_H_
#define I2C_SLAVE_HANDLER_H_

extern unsigned char i2cTXData[24], i2cRXData[24];
extern unsigned int i2cRXflag;

void i2c_slave_init(int);

#endif /* I2C_SLAVE_HANDLER_H_ */

176

Appendix F: MITM Code – Raspberry Pi Version

Main script

rpi_mitm_v5.py

Created: June 10, 2020
Modified: June 15, 2020
Author: THolliday

This script runs the prototype MITM, including:
sbus comms
sensor board control
feedback control on forward direction (Ele)
data logging

RPi Setup
#!/usr/bin/python3

Imports
import serial
import time
import csv
import pigpio

Handler functions
from sbusRX_handler import * # sbus RX
__all__ = ["SBUS_RX"]

from sbusTX_handler import * # sbus TX
__all__ = ["SBUS_TX"]

from sbusDL_handler import * # sbus data logging
__all__ = ["SBUS_DL"]

from multi_sb_handler_v2 import * # multi sensor board comms
__all__ = ["multi_sb_ctrl"]

from fb_ctrl_handler_v2 import * # feedback control
__all__ = ["mitm_fb_ctrl"]

main loop
if __name__ == '__main__':

 # Constants
 sbusMIN = 172 # min sbus value
 sbusMID = 992 # neutral sbus value
 sbusMAX = 1811 # max sbus value

 # flags
 logFlag = 0 # flag for start of logging
 armFlag = 0 # flag for system arming
 sbFlag = 0 # flag for sb connected
 distflag = 0 # flag for dist capture
 fbFlag = 0 # flag for start of feedback control

 # states
 sbState = 0 # sensor board states:

177

 # 0, trigger ultrasonic & tinyLiDARs
 # 1, request min dist from tinyLiDARs, & compare dist from all sensors
 # 2, request min dist between all sensors

 # sb error threshold (mm)
 eThres = 100;

 # capture start of logging session
 log_timestr = time.strftime('%d%m%Y-%H%M%S')

 # initialize handlers
 sbusRX = SBUS_RX('/dev/ttyAMA0')
 sbusTX = SBUS_TX('/dev/ttyAMA0')
 sbusDL = SBUS_DL(log_timestr)
 sboard = multi_sb_ctrl(eThres,log_timestr)

 # set activation and desired distances
 desDist = [500,500]
 actDist = [1000,1000]

 # ask for activation and desired distances
 #desDist = [0 for i in range(sboard.sb_count)]
 #for kk in range(sboard.sb_count):
 # usrMes = 'Minimum desired distance (mm) for ' + sboard.sb_IDs[kk] + ' sensor board: '
 # desDist[kk] = int(input(usrMes))

 # initialize feedback controller if sb connected
 if not sboard.sb_count == 0:
 fbCtrl = mitm_fb_ctrl(sboard.sb_count)
 distBuff = [0 for ii in range(sboard.sb_count)]
 sbFlag = 1 # set flag

 while True:
 # simulate time between sbus frames (~15 ms)
 time.sleep(0.008)

 # reset TX buffer
 TXbuff = [0 for ii in range(len(sbusRX.sbusChannels))]

 # sbus RX
 sbusRX.sbus_read()

 # sbus frame received?
 if sbusRX.isReady:
 rxTime = time.time() # save rx timestamp

 # system armed?
 if not sbusRX.sbusChannels[4]==sbusMAX:
 if armFlag == 0: # notify disarmed state
 print('System disarmed')
 armFlag = 1 # set flag
 else:
 if armFlag == 1: # notify armed state
 print('System armed')
 armFlag = 0 # reset flag

 # cap Ele value for fb ctrl testing
 if sbusRX.sbusChannels[2]>1200:
 sbusRX.sbusChannels[2] = 1200

 # read min dist from sensor boards?

178

 if sbusRX.sbusChannels[7]==sbusMAX and sbFlag==1:
 # trigger ultrasonics & tinyLiDARs
 if sbState==0:
 sboard.sb_ultrasonic_trig() # trigger ultrasonics
 sboard.sb_tinyLiDAR_trig() # trigger tinyLiDARs & find min dist
 sbState += 1 # update state
 if distflag==1:
 for ii in range(len(sboard.SBdist)):
 sboard.devID[ii] = 'R'
 sboard.SBdist[ii] = sboard.distBuff[ii]
 stext = 'S0' # update state for log

 # request dist value from TLs & call for comparison between all sensors
 elif sbState==1:
 sboard.sb_dist_capture() # request TL dist value
 sboard.sb_full_trig() # call for min dist between all sensors
 sbState += 1 # update state
 distflag = 1 # set flag
 stext = 'S1' # update state for log

 # request min dist between all sensors
 elif sbState==2:
 sboard.sb_dist_capture() # request dist value
 sbState = 0 # reset flag
 stext = 'S2' # update state for log

 else:
 sbState = 0 # reset state
 distflag = 0 # reset flag

 # run feedback control?
 if sbusRX.sbusChannels[7]==sbusMAX and sbusRX.sbusChannels[9]==sbusMAX and
distflag==1:
 TXbuff =
fbCtrl.fb_ctrl(actDist,desDist,sbusRX.sbusChannels,sboard.sb_IDs,sboard.SBdist)
 if fbFlag == 0: # notify controller enable
 print('Controller enabled')
 fbFlag = 1 # set flag
 else:
 for ii in range(len(sbusRX.sbusChannels)): # fill TX buffer
 TXbuff[ii] = sbusRX.sbusChannels[ii]
 if fbFlag == 1: # notify controller disable
 print('Controller disabled')
 for ii in range(3): # reset controller buffers
 fbCtrl.front_err_buff[ii] = 0
 fbCtrl.front_fc_buff[ii] = 0
 fbFlag = 0 # reset flag

 # sbus TX
 for ii in range(len(TXbuff)):
 sbusTX.sbusChannels[ii] = TXbuff[ii] # fill TX sbus channels
 sbusTX.sbus_write()
 txTime = time.time() # save tx timestamp

 # log data
 if sbusRX.sbusChannels[6]==sbusMAX:
 sbusDL.sbus_data_log(sbusRX.sbusChannels,sbusTX.sbusChannels,rxTime,txTime)
 if distflag == 1: # log sensor board values
 sboard.sb_logging(stext,fbCtrl.ctrlEnable)
 if logFlag == 0: # notify logging start
 print('Logging started')

179

 logFlag = 1 # set flag
 else:
 if logFlag == 1: # notify logging end
 print('Logging ended')
 logFlag = 0 # reset flag

LCAS feedback controller handler

"""
fb_ctrl_handler_v2.py

Created: Apr 3, 2020
Modified: June 2, 2020
Author: THolliday

Script for running feedback control on the MITM. Currently
limited to only the forward (Ele) direction.
"""

class mitm_fb_ctrl():
 def __init__(self,numSB):
 # initialization

 # Class Variables
 self.front_err_buff = [0,0,0]
 self.front_fc_buff = [0,0,0]
 self.ctrlEnable = 0

 def fb_ctrl(self,actDist,desDist,channelsIn,sbIDs,sbDist):
 # feedback controller

 # Constants
 numSB = len(sbIDs) # number of sensor boards
 sbusMIN = 172
 sbusMID = 992
 sbusMAX = 1811

 # Variables
 modChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
 for ii in range(len(channelsIn)): # set initial output to input
 modChannels[ii] = channelsIn[ii]

 # run controller
 for kk in range(numSB):

 ## Front (Ele 992-1811) ##
 if sbIDs[kk]=='F':
 # controller coefficients
 a = [1,-1.9552,0.9552] # denominator
 b = [2.2435,-4.4752,2.2317] # numerator

 # calculate error to des dist & convert to meters
 self.front_err_buff[0] = (sbDist[kk]-desDist[kk])/1000

 # controller

180

 self.front_fc_buff[0] = (-a[2]*self.front_fc_buff[2] -
a[1]*self.front_fc_buff[1]) + \
 (b[2]*self.front_err_buff[2] + b[1]*self.front_err_buff[1] +
b[0]*self.front_err_buff[0])

 # saturation check
 if self.front_fc_buff[0] > 1:
 self.front_fc_buff[0] = 1
 elif self.front_fc_buff[0] < -1:
 self.front_fc_buff[0] = -1

 # check if in activation window
 if (sbDist[kk]<=actDist[kk]) and (channelsIn[2]>=sbusMID):
 # modify Ele sbus value
 modChannels[2] = int(self.front_fc_buff[0]*(sbusMAX-sbusMID) + sbusMID)
scale back to sbus from normalized
 self.ctrlEnable = 1
 else:
 self.ctrlEnable = 0

 # store error values for next iteration
 self.front_err_buff[2] = self.front_err_buff[1]
 self.front_err_buff[1] = self.front_err_buff[0]
 self.front_err_buff[0] = 0

 # store controller outputs for next iteration
 self.front_fc_buff[2] = self.front_fc_buff[1]
 self.front_fc_buff[1] = self.front_fc_buff[0]
 self.front_fc_buff[0] = 0

 ## Back (Ele 172-992) ##
 if sbIDs[kk]=='B':
 pass

 ## Left (Ail 172-992) ##
 if sbIDs[kk]=='L':
 pass

 ## Right (Ail 992-1811) ##
 if sbIDs[kk]=='R':
 pass

 ## Up (Thr 992-1811) ##
 if sbIDs[kk]=='U':
 pass

 ## Down (Thr 172-992) ##
 if sbIDs[kk]=='D':
 pass

 # return modified channels
 return modChannels

181

Sensor board communications handler

"""
multi_sb_handler_v2.py

Created: Feb 25, 2020
Modified: June 15, 2020
Author: THolliday

Script for controlling and logging multiple
sensor boards
"""

RPi Setup
#!/usr/bin/env python3

Imports
import time
import pigpio
import csv

class multi_sb_ctrl():
 def __init__(self,err,timestr):
 # sensor board comms initialization

 ## Constants
 BUS = 1
 errThres = err
 max_numSB = 10

 ## Variables
 i2c_count = 0
 self.sb_count = 0

 ## scan for sensor boards
 i2cScan = i2c_scan()
 sb_addresses = i2cScan.i2c_scanner(BUS,max_numSB) # find sb addresses
 for jj in range(len(sb_addresses)): # check for non-zero addresses
 if not sb_addresses[jj] == 0:
 i2c_count += 1

 self.sb_handles = [0 for i in range(i2c_count)] # initialize handle list
 self.sb_IDs = [0 for i in range(i2c_count)] # initialize ID list

 ## Initialize sensor board i2c
 self.i2c = pigpio.pi()

 ## initialize sensor boards
 SBcommand = 0x45 # error threshold set command
 for kk in range(i2c_count):
 try:
 # attempt to setup board at given address
 self.sb_handles[kk] = self.i2c.i2c_open(BUS,sb_addresses[kk]) # open
comms with sb
 self.i2c.i2c_write_device(self.sb_handles[kk],[SBcommand,errThres]) # send
threshold
 self.sb_count += 1

 # identify board

182

 if sb_addresses[kk] == 0x12: # front SB
 self.sb_IDs[kk] = 'F'
 if sb_addresses[kk] == 0x24: # back SB
 self.sb_IDs[kk] = 'B'
 if sb_addresses[kk] == 0x36: # left SB
 self.sb_IDs[kk] = 'L'
 if sb_addresses[kk] == 0x48: # right SB
 self.sb_IDs[kk] = 'R'
 if sb_addresses[kk] == 0x5A: # up SB
 self.sb_IDs[kk] = 'U'
 if sb_addresses[kk] == 0x6C: # down SB
 self.sb_IDs[kk] = 'D'

 except:
 print('Non-sensor board or no response: ',hex(sb_addresses[kk]))

 ## inform boards identified
 print('Identified sensor boards:',self.sb_IDs)

 ## Class Variables
 self.distBuff = [0 for i in range(self.sb_count)] # initialize dist buffer
 self.numRead = 10 # number of readings in SMA window
 self.readNdx = 0 # readings index
 self.runSum = [0 for i in range(self.sb_count)] # running sum for SMA
 self.distReadings = [[0 for i in range(self.sb_count)] for j in range(self.numRead)]
SMA readings buffer

 ## Initialize log
 self.sb_timestr = timestr
 # create/open log csv file (with time in file name)
 with open('/home/pi/data_logs/SB_log_' + str(self.sb_timestr) + '.csv','w') as
csvfile:
 # initialize csv
 sblog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)
 # list available sensor boards
 sblog.writerow(['Sensor_boards:',self.sb_IDs])
 # write column titles
 sblog.writerow(['State','Board','Status','Device','Dist','Ctrl','Tsb'])

 def sb_ultrasonic_trig(self):
 # sends ultrasonic trigger command

 SBcommand = 0x55 # 'U',85; trigger ultrasonic command
 for kk in range(self.sb_count):
 self.i2c.i2c_write_byte(self.sb_handles[kk],SBcommand) # write to SB

 def sb_tinyLiDAR_trig(self):
 # sends only tinyLiDAR trigger command and requests measured dist

 SBcommand = 0x54 # 'T',84; trigger only tinyLiDARs
 for kk in range(self.sb_count):
 self.i2c.i2c_write_byte(self.sb_handles[kk],SBcommand) # write to SB

 def sb_full_trig(self):
 # sends command to trigger tinyLiDARs and compare dists measured by all three sensors

 SBcommand = 0x56 # 'V'; trigger TLs and capture ultrasonic dist

183

 for kk in range(self.sb_count):
 self.i2c.i2c_write_byte(self.sb_handles[kk],SBcommand) # write to SB

 def sb_dist_capture(self):
 # requests min dist from each sensor board

 RX_BYTES = 4
 buffFlag = 0
 self.SBdist = [0 for i in range(self.sb_count)] # reset dist list
 self.devID = [0 for i in range(self.sb_count)] # reset ID list
 self.sb_sample_time = [0 for i in range(self.sb_count)] # reset sample time list

 for kk in range(self.sb_count):
 (count,data) = self.i2c.i2c_read_device(self.sb_handles[kk],RX_BYTES) # read min
dist
 minDist = list(data) # convert
tuple
 self.SBdist[kk] = (minDist[1]<<8) | minDist[2] # combine
dist bytes
 self.devID[kk] = minDist[3] # save
sensor ID
 self.sb_sample_time[kk] = time.time() # save
sample time

 # error check distance values or if in first state
 if self.SBdist[kk]==0xffff:
 self.devID[kk] = 'X' # measurement failure
 self.SBdist[kk] = self.distBuff[kk] # replace error with previous value

 elif self.SBdist[kk]==0xbbbb:
 self.devID[kk] = 'E' # error in tinyLiDAR measurement
 self.SBdist[kk] = self.distBuff[kk] # replace error with previous value

 #elif (self.SBdist[kk]<1000)and(self.distBuff[kk]-self.SBdist[kk])>=1000:
 # self.devID[kk] = 'Z' # significant drop in measurements
 # self.SBdist[kk] = self.distBuff[kk] # replace error with previous value

 else:
 buffFlag = 1 # set flag to update buffer after SMA

 # filter using 10-point SMA
 temp = self.SBdist[kk] # bring in new sample
 temp /= self.numRead # divide by length of window
 self.runSum[kk] += temp # add new sample to running sum
 temp = self.distReadings[self.readNdx][kk] # find older sample that is out of
window
 temp /= self.numRead # divide by length of window
 self.runSum[kk] -= temp # subtract old sample from running sum
 self.distReadings[self.readNdx][kk] = self.SBdist[kk] # store new sample in SMA
buffer
 self.SBdist[kk] = round(self.runSum[kk]) # replace with filtered value

 # SMA index check
 if not (self.readNdx >= self.numRead - 1):
 self.readNdx += 1 # increase readings count
 else: # reached end of window
 self.readNdx = 0 # reset count

 # update buffer
 if buffFlag==1:

184

 self.distBuff[kk] = self.SBdist[kk] # update buffer
 buffFlag = 0

 def sb_logging(self,stext,ctrlEN):
 # logs sb dist values

 with open('/home/pi/data_logs/SB_log_' + str(self.sb_timestr) + '.csv','a') as
csvfile:
 # initialize csv
 sblog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)

 # write sb dists and timestamp data
 for kk in range(self.sb_count):
 if self.devID[kk]==85: # change ultrasonic ID to ASCII character
 self.devID[kk] = 'U'

sblog.writerow([stext,self.sb_IDs[kk],str(self.devID[kk]),str(self.SBdist[kk]), \
 str(ctrlEN),str(self.sb_sample_time[kk])])

class i2c_scan():
 def __init__(self):
 # initialization

 # initialize i2c
 self.i2c = pigpio.pi()

 def close_handles(self):
 # closes all open i2c handles

 ## close all i2c handles
 h = self.i2c.i2c_open(1,118) # open i2c handle
 self.i2c.i2c_close(h) # close i2c handle
 if h > 30: # check for max number of handles
 x = h - 1
 while x >= 0: # close all open handles
 self.i2c.i2c_close(x)
 x = x - 1
 print(str(h),'pigpio handles closed')

 def i2c_scanner(self,BUS,num):
 # scans i2c bus for number of slaves

 # Variables
 i2cDevs = [0 for j in range(num)] # vector for i2c devices
 count = 0

 # close handles
 self.close_handles() # close if max number of i2c handles

 # begin scan
 for device in range(128):
 h = self.i2c.i2c_open(BUS,device) # open i2c comms at address

 try: # check for device at address

185

 self.i2c.i2c_write_byte(h,0xFA)
 i2cDevs[count] = device # save detected device address
 count += 1 # update count

 except: # no device detected at address
 pass

 self.i2c.i2c_close(h) # close i2c comms at address

 self.i2c.stop # end i2c comms

 return i2cDevs

SBUS RX handler

sbusRX_handler.py

Created on: Nov 4, 2019
Modified: July 31, 2020
Author: THolliday

derived from:
sbusPythonDriver by Donald Simonet on Framagit
https://framagit.org/dsimonet/sbusPythonDriver

sbus_ultrasonic_v5 by THolliday
sbus_handler.c by BHill & THolliday

This script captures sbus frames and decodes them into individual channels.
An sbus frame is made up of 25 bytes, with 16 channels spread out over
22 of the bytes.

Imports
import serial
import time

class SBUS_RX():
 def __init__(self, _uart_port = '/dev/ttyAMA0'):
 # sbus comms initialization

 # RPi uart initialization
 self.ser = serial.Serial(
 port = _uart_port, # indicate UART port
 baudrate = 100000, # sbus runs at 100k baud
 parity = serial.PARITY_EVEN, # set even parity
 stopbits = serial.STOPBITS_TWO, # set two stopbits
 bytesize = serial.EIGHTBITS, # set byte size to 8 bits
 timeout = 0 # disable UART timeout
)

 # set sbus constants
 self.START_BYTE = 0x0F # startbyte
 self.END_BYTE = 0x00 # endbyte
 self.SBUS_FRAME_LEN = 25 # full frame length is 25 bytes
 self.SBUS_CHAN_LEN = 16 # 16 individual channels
 self.SBUS_BITS = 11 # number of bits per channel

186

 # variable initialization
 self.isReady = True # RX flag
 self.sbusFrameIn = [0,0] # captured
sbus RX frame
 self.sbusFrame = [0,0] # endian-
swapped sbus RX frame
 self.sbusChanIn = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # RX channels
 self.sbusChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # RX endian-
swapped channels

 def chan_endian_swap(self):
 # swaps the bit order of the sbus channel values

 for i in range(0,(len(self.sbusChanIn))):
 temp = 0
 bmask = 0x8000
 for j in range(0,16):
 if j<8:
 temp |= (self.sbusChanIn[i]&int(bmask))>>(15-(j*2)) # first byte
 else:
 temp |= (self.sbusChanIn[i]&int(bmask))<<((j*2)-15) # second byte
 bmask /= 2 # adjust mask
 temp >>= (16-self.SBUS_BITS) # account for number of
bits per packet
 self.sbusChannels[i] = temp # store channel value

 def frame_endian_swap(self):
 # swaps the bit order of the full sbus frame

 for i in range(0,len(self.sbusFrameIn)):
 temp = 0
 bmask = 0x80
 for j in range(0,8):
 if j<4:
 temp |= ((self.sbusFrameIn[i])&int(bmask))>>(7-(j*2)) # first nibble
 else:
 temp |= ((self.sbusFrameIn[i])&int(bmask))<<((j*2)-7) # second nibble
 bmask /= 2 # adjust mask
 self.sbusFrame[i] = temp # store frame values

 def sbus_read(self):
 # reads sbus values over the serial port on the RPi

 if self.ser.inWaiting() >= self.SBUS_FRAME_LEN*2: # load at least two full frames
 self.isReady = False # processing frames
 rxBuff = self.ser.read(self.ser.inWaiting()) # capture sbus bytes
 self.numBytes = len(rxBuff) # save number of received bytes
 # parse full frame
 for rr in range(0,self.SBUS_FRAME_LEN): # step through bytes
 # look for end byte, working backwards
 if rxBuff[len(rxBuff)-1-rr] == self.END_BYTE:
 # based on end byte, find start byte
 if rxBuff[len(rxBuff)-rr-self.SBUS_FRAME_LEN] == self.START_BYTE:
 # frame is fully mapped and parity checked due to 8E2 format
 # only need to remap the frame if it is different than the last
 newFrame = rxBuff[len(rxBuff)-rr-self.SBUS_FRAME_LEN:len(rxBuff)-1-rr]

187

 if not self.sbusFrameIn == newFrame: # check if new frame is diff
than previous frame (save CPU cycles)
 self.sbusFrameIn = newFrame # store new frame
 self.sbus_decode() # decode new frame

 # sbus frame succesfully captured and checked for changes
 self.isReady = True # RX frame is ready
 break

 def sbus_decode(self):
 # decodes an sbus frame into 16 individual channels

 # Conversion parameters
 # chan number [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16]
 byte_num = [0, 1, 3, 4, 5, 7, 8, 9, 11,
12, 14, 15, 16, 18, 19, 20]
 lowBS = [5, 2, 7, 4, 1, 6, 3, 0, 5,
2, 7, 4, 1, 6, 3, 0]
 lowbitmask = [0xE0, 0xFC, 0x80, 0xF0, 0xFE, 0xC0, 0xF8, 0xFF, 0xE0,
0xFC, 0x80, 0xF0, 0xFE, 0xC0, 0xF8, 0xFF]
 midBS = [3, 6, 1, 4, 7, 2, 5, 8, 3,
6, 1, 4, 7, 2, 5, 8]
 midbitmask = [0xFF, 0x1F, 0xFF, 0x7F, 0x0F, 0xFF, 0x3F, 0x07, 0xFF,
0x1F, 0xFF, 0x7F, 0x0F, 0xFF, 0x3F, 0x07]
 highBS = [0, 0, 9, 0, 0, 10, 0, 0, 0,
0, 9, 0, 0, 10, 0, 0]
 highbitmask = [0x00, 0x00, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00]

 # swap bit order over entire frame (UART reads as LSB, but SBUS is MSB)
 self.frame_endian_swap()

 # decode data bytes
 for i in range(0,self.SBUS_CHAN_LEN):
 self.sbusChanIn[i] = ((self.sbusFrame[byte_num[i]]&highbitmask[i])<<highBS[i]) \
 + ((self.sbusFrame[byte_num[i]+1]&midbitmask[i])<<midBS[i]) \
 + ((self.sbusFrame[byte_num[i]+2]&lowbitmask[i])>>lowBS[i])

 # swap channel bit order (SBUS has channels encoded as LSB)
 self.chan_endian_swap()

SBUS TX handler

sbusTX_handler.py

Created on: Oct 29, 2019
Modified: July 31, 2020
Author: THolliday

derived from:
sbusPythonDriver by Donald Simonet on Framagit
https://framagit.org/dsimonet/sbusPythonDriver

sbus_ultrasonic_v5 by THolliday
sbus_handler.c by BHill & THolliday

This script takes 16 individual channels and encodes them into an sbus frame.

188

An sbus frame is made up of 25 bytes, with the channels spread out over
the bytes.

Imports
import serial
import time

class SBUS_TX():
 def __init__(self, _uart_port = '/dev/ttyAMA0'):
 # sbus comms initialization

 # RPi uart initialization
 self.ser = serial.Serial(
 port = _uart_port, # indicate UART port
 baudrate = 100000, # sbus runs at 100k baud
 parity = serial.PARITY_EVEN, # set even parity
 stopbits = serial.STOPBITS_TWO, # set to two stopbits
 bytesize = serial.EIGHTBITS, # set byte size to 8 bits
 timeout = 0 # disable UART timeout
)

 # set sbus constants
 self.START_BYTE = 0xF0 # first byte
 self.END_BYTE = 0x00 # last byte
 self.sbusNbits = 11 # bits per channel
 self.SBUS_FRAME_LEN = 25 # bytes per frame

 # variable initialization
 self.numBytes = 0 # number of transmitted bytes
 self.sbusChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # RX channels
 self.sbusChanBitSwap = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # RX endian-
swapped channels
 self.sbusBytes = [0,0] # TX frame
 self.sbusFrame = [0,0] # TX endian-
swapped frame

 def chan_endian_swap(self):
 # swaps the bit order of the sbus channels

 for i in range(0,(len(self.sbusChannels))):
 temp = 0
 bmask = 0x8000
 for j in range(0,16):
 if (j<8):
 temp |= (self.sbusChannels[i]&int(bmask))>>(15-(j*2)) # first byte
 else:
 temp |= (self.sbusChannels[i]&int(bmask))<<((j*2)-15) # second byte
 bmask /= 2 # adjust mask
 temp >>= (16-self.sbusNbits) # shift to account for
number of bits per channel
 self.sbusChanBitSwap[i] = temp # store channel

 def frame_endian_swap(self):
 # swaps the bit order of the entire frame

 for i in range(0,self.SBUS_FRAME_LEN):
 temp = 0
 bmask = 0x80

189

 for j in range(0,8):
 if (j<4):
 temp |= (self.sbusBytes[i]&int(bmask))>>(7-(j*2)) # first nibble
 else:
 temp |= (self.sbusBytes[i]&int(bmask))<<((j*2)-7) # second nibble
 bmask /= 2 # adjust mask
 self.sbusFrame[i] = temp # store byte

 def sbus_encode(self):
 # encode 16 channels into single sbus frame

 # Conversion parameters
 # Byte number [1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21
22]
 chan1num = [0, 0, 1, 2, 2, 3, 4, 5, 5,
6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14,
15]
 chan2num = [0, 1, 2, 2, 3, 4, 5, 5, 6,
7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15,
16]
 chan1mask = [0x00, 0xE0, 0xFC, 0x00, 0x80, 0xF0, 0xFE, 0x00, 0xC0,
0xF8, 0xFF, 0x00, 0xE0, 0xFC, 0x00, 0x80, 0xF0, 0xFE, 0x00, 0xc0, 0xF8,
0xFF]
 chan2mask = [0xff, 0x1F, 0x03, 0xFF, 0x7F, 0x0F, 0x01, 0xFF, 0x3F,
0x07, 0x00, 0xFF, 0x1F, 0x03, 0xFF, 0x7F, 0x0F, 0x01, 0xFF, 0x3F, 0x07,
0x00]
 chan1BS = [0, 5, 2, 0, 7, 4, 1, 0, 6,
3, 0, 0, 5, 2, 0, 7, 4, 1, 0, 6, 3,
0]
 chan2BS = [3, 6, 9, 1, 4, 7, 10, 2, 5,
8, 0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8,
0]

 # swap bit order of channels to match SBUS format (reverse of the last step of decode)
 self.chan_endian_swap()

 # add startbyte
 self.sbusBytes[0] = self.START_BYTE

 # add in channels (note that the channels are spread across multiple bytes)
 for rr in range(0,22):
 tempFrame = 0
 tempFrame = (self.sbusChanBitSwap[chan1num[rr]]<<chan1BS[rr]) & chan1mask[rr] #
add in first channel data
 tempFrame |= (self.sbusChanBitSwap[chan2num[rr]]>>chan2BS[rr]) & chan2mask[rr] #
add in second channel data
 self.sbusBytes[rr+1] = tempFrame # store byte

 # add flags & digital
 self.sbusBytes[23] = 0

 # add endbyte
 self.sbusBytes[24] = self.END_BYTE

 # swap bit order of entire SBUS frame (SBUS is read as MSB but UART transmits as LSB)
 self.frame_endian_swap()

 def sbus_write(self):

190

 # transmit the full sbus frame over UART

 # encode sbus frame
 self.sbus_encode()

 # transmit the frame
 self.numBytes = self.ser.write(self.sbusFrame)

SBUS data logging handler

sbusDL_handler.py

Created on: Jan 8, 2020
Modified: May 28, 2020
Author: THolliday

This script holds dedicated functions for logging sbus data
on a Raspberry Pi.

Imports
import time
import csv

class SBUS_DL():
 def __init__(self, timestr):
 # sbus data logging initialization

 # create/open log csv file (with time in file name)
 self.sbus_timestr = timestr
 with open('/home/pi/data_logs/sbus_log_'+str(self.sbus_timestr)+'.csv','w') as
csvfile:
 # initialize csv
 sbuslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)

 # add column titles

#sbuslog.writerow(['RX/TX','Ch0','Ch1','Ch2','Ch3','Ch4','Ch6','Ch7','Ch9','Tsbus'])

sbuslog.writerow(['RX/TX','Thr','Ail','Ele','Rud','ARM','LOG','sbEN','Ctrl','Tsbus'])

 def sbus_data_log(self,rx,tx,rxTime,txTime):
 # logs sbus channel values of RX/TX

 with open('/home/pi/data_logs/sbus_log_'+str(self.sbus_timestr)+'.csv','a') as
csvfile:
 # initialize csv
 sbuslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)

 # log RX channels

sbuslog.writerow(['RX',str(rx[0]),str(rx[1]),str(rx[2]),str(rx[3]),str(rx[4]),str(rx[6]),
 str(rx[7]),str(rx[9]),str(rxTime)])

 # log TX channels

191

sbuslog.writerow(['TX',str(tx[0]),str(tx[1]),str(tx[2]),str(tx[3]),str(tx[4]),str(tx[6]),
 str(tx[7]),str(tx[9]),str(txTime)])

192

Appendix G: MITM Code – GPS & Accelerometer Version

Main script

sbus_gps_accel_v3.py

Created on: Jan 30, 2020
Modified: Mar 6, 2020
Author: THolliday

This script runs and captures data for sbus, gps,
accel logging

RPi Setup
#!/usr/bin/python3

Imports
import serial
import time
import csv
import pigpio
from gps3 import agps3
import os

Handler functions
from sbusRX_handler import * # sbus RX
__all__ = ["SBUS_RX"]

from sbusTX_handler import * # sbus TX
__all__ = ["SBUS_TX"]

from sbusDL_handler import * # sbus data logging
__all__ = ["SBUS_DL"]

from gps_handler import * # GPS logging
__all__ = ["GPS"]

from accel_handler_v2 import * # accel logging
__all__ = ["ACCEL"]

start main()
if __name__ == '__main__':

 # Constants
 sbusMIN = 172
 sbusNEU = 992
 sbusMAX = 1811

 # Flags
 stepFlag = 0 # flag for start of step
 logFlag = 0 # flag for start of logging
 armFlag = 0 # flag for system arming

 # capture start of logging session
 log_timestr = time.strftime('%d%m%Y-%H%M%S')

 # initialize sbus
 sbusRX = SBUS_RX('/dev/ttyAMA0')
 sbusTX = SBUS_TX('/dev/ttyAMA0')

193

 sbusDL = SBUS_DL(log_timestr)

 # initialize gps & accel
 gps = GPS(log_timestr)
 accel = ACCEL(log_timestr)

 while True:
 # simulate time between sbus frames (~15 ms)
 time.sleep(0.01)

 # sbus RX
 sbusRX.sbus_read()

 # check for new RX frame
 if sbusRX.isReady:
 sbusTX.sbusChannels = sbusRX.sbusChannels
 rxTime = time.time()

 # system armed?
 if not sbusTX.sbusChannels[4]==sbusMAX: # set to neutral values
 sbusTX.sbusChannels[1] = sbusNEU # aileron
 sbusTX.sbusChannels[2] = sbusNEU # elevator
 if armFlag == 0: # notify disarmed state
 print('System disarmed')
 armFlag = 1 # set flag
 else:
 if armFlag == 1: # notify armed state
 print('System armed')
 armFlag = 0 # reset flag

 # set forward (Ele) level
 if sbusTX.sbusChannels[7]==sbusMAX:
 sbusTX.sbusChannels[2] = int(0.5*sbusTX.sbusChannels[8] + 906) # convert
level to sbus value on Ele
 if stepFlag == 0: # notify
start of step
 print('Elevator step started with value: ',str(sbusTX.sbusChannels[2]))
 stepFlag = 1 # set flag
 else:
 if stepFlag == 1: # notify
end of step
 print('Elevator step ended')
 stepFlag = 0 # reset
flag

 # sbus TX
 sbusTX.sbus_write()
 txTime = time.time()

 # log data
 if sbusTX.sbusChannels[6]==sbusMAX:
 gps.gps_logging()
 accel.accel_logging()
 sbusDL.sbus_data_log(sbusRX.sbusChannels,sbusTX.sbusChannels,rxTime,txTime)
 if logFlag == 0: # notify logging start
 print('Logging started')
 logFlag = 1 # set flag
 else:
 if logFlag == 1: # notify logging end
 print('Logging ended')

194

 logFlag = 0 # reset flag

GPS handler

gps_handler.py

Created on: Jan 30, 2020
Modified: Mar 2, 2020
Author: THolliday

This script controls a GPS via gps3

#!/usr/bin/python3

Imports
from gps3 import agps3
import time
import csv
import os

class GPS():
 def __init__(self,timestr):

 ## Setup GPS
 #print('Setting up GPS...')
 #os.system('sudo sh ./startup/gps_startup.sh')
 #print('GPS setup')

 ## initialize gps
 self.gps_socket = agps3.GPSDSocket() # set socket to default port
 self.data_stream = agps3.DataStream() # set up data stream

 ## create/open log csv file (with time in file name)
 self.gps_timestr = timestr
 with open('/home/pi/data_logs/gps_log_'+str(self.gps_timestr)+'.csv','w') as csvfile:
 # initialize csv
 gpslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)
 # write column titles
 gpslog.writerow(['lat','long','alt','Tgps'])

 ## start gps comms
 self.gps_socket.connect() # connect to gps module on default port
 self.gps_socket.watch() # begin data monitoring

 def gps_logging(self):
 # check for new data and if so log the data

 for new_data in self.gps_socket:
 if new_data:
 self.data_stream.unpack(new_data) # separate gps data
 timelog = time.time() # capture new sample time

 # log new gps data
 with open('/home/pi/data_logs/gps_log_'+str(self.gps_timestr)+'.csv','a') as
csvfile:
 # initialize csv

195

 gpslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)
 # write lat, long, alt, and timestamp data

gpslog.writerow([str(self.data_stream.lat),str(self.data_stream.lon),str(self.data_stream.alt)
,str(timelog)])

 break

Accelerometer handler

accel_handler_v2.py

Created on: Feb 12, 2020
Modified: Feb 25, 2020
Author: THolliday

This handler allows a RPi to capture and log
data from a BMA280 accelerometer using the PIGPIO
library.

#!/usr/bin/python3

Imports
import time
import pigpio
import csv

class ACCEL():
 def __init__(self,timestr):
 ## Registers
 self.ACCD_X_LSB = 0x02 # LSB of x-accel measurement register
 PMU_RANGE = 0x0F # measurement sensitivity register
 PMU_BW = 0x10 # measurement bandwidth register
 SOFTRESET = 0x14 # reset register
 OFC_SETTING = 0x37 # compensation targets register
 OFC_CTRL = 0x36 # compensation control register
 OFC_OFF_X = 0x38 # x-axis offset register
 OFC_OFF_Y = 0x39 # y-axis offset register
 OFC_OFF_Z = 0x3A # z-axis offset register

 ## Commands
 RANGE_2G = 0x03 # measurement sensitivity
 BW_62_5Hz = 0x0B # measurement bandwidth, 125-Hz sample rate

 ## Slave address
 bma280_address = 0x19

 ## Constants
 BUS = 1 # i2c buss
 self.RX_BYTES = 6 # number of bytes to receive
 self.numRead = 10 # number of readings

 ## Variables
 offsets = [0,0,0] # axes offsets for fast compensation
 fcRes = 7.8125 # mg/LSB, based on min trigger amount
 self.errCount = 0 # read error count
 self.accelBuff = [0,0,0] # accel values [x,y,z]
 self.readNdx = 0 # samples/readings count

196

 self.accel_accum = [0,0,0,0] # running sum for moving average
 self.adxlReadings = [[0 for i in range(3)] for j in range(self.numRead)] #
initialize moving average vector

 ## Initialize log
 self.accel_timestr = timestr
 # create/open log csv file (with time in file name)
 with open('/home/pi/data_logs/accel_log_' + str(self.accel_timestr) + '.csv','w') as
csvfile:
 # initialize csv
 accellog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)
 # write column titles
 accellog.writerow(['Xaccel','Yaccel','Zaccel','Taccel'])

 ## Initialize i2c
 self.i2c = pigpio.pi()
 self.bma280_handle = self.i2c.i2c_open(BUS,bma280_address) # open i2c comms with
BMA280
 time.sleep(0.005)

 ## Setup BMA280
 try:
 self.i2c.i2c_write_byte_data(self.bma280_handle,SOFTRESET,0xB6) # reset sensor
 except:
 print('Accel comms failed. Retrying...')
 time.sleep(0.005)
 self.i2c.i2c_write_byte_data(self.bma280_handle,SOFTRESET,0xB6) # reset sensor

 self.i2c.i2c_write_byte_data(self.bma280_handle,PMU_RANGE,RANGE_2G) # measurement
sensitivity
 time.sleep(0.005)
 self.i2c.i2c_write_byte_data(self.bma280_handle,PMU_BW,BW_62_5Hz) # bandwidth
 time.sleep(0.005)

 ## Run fast compensation
 #if input("Find axes compensations for accelerometer? (y/n) ") == 'y':
 # indicate beginning of process to user
 print('Hold drone level and motionless for compensation')
 time.sleep(2)
 print('Beginning fast compensation...')

 # set compensation targets (0,0,+1) g
 self.i2c.i2c_write_byte_data(self.bma280_handle,OFC_SETTING,(0x20|0x01))

 # x-axis compensation
 self.i2c.i2c_write_byte_data(self.bma280_handle,OFC_CTRL,0x20)
 while not (0x10 & self.i2c.i2c_read_byte_data(self.bma280_handle,OFC_CTRL)):
 pass

 # y-axis compensation
 self.i2c.i2c_write_byte_data(self.bma280_handle,OFC_CTRL,0x40)
 while not (0x10 & self.i2c.i2c_read_byte_data(self.bma280_handle,OFC_CTRL)):
 pass

 # z-axis compensation
 self.i2c.i2c_write_byte_data(self.bma280_handle,OFC_CTRL,0x60)
 while not (0x10 & self.i2c.i2c_read_byte_data(self.bma280_handle,OFC_CTRL)):
 pass

 # save x-offset

197

 (count,data) = self.i2c.i2c_read_i2c_block_data(self.bma280_handle,OFC_OFF_X,2)
 temp = list(data)
 offsets[0] =
int.from_bytes([temp[0],temp[1]],byteorder='little',signed=True)*(fcRes/256)/1000

 # save y-offset
 (count,data) = self.i2c.i2c_read_i2c_block_data(self.bma280_handle,OFC_OFF_Y,2)
 temp = list(data)
 offsets[1] =
int.from_bytes([temp[0],temp[1]],byteorder='little',signed=True)*(fcRes/256)/1000

 # save z-offset
 (count,data) = self.i2c.i2c_read_i2c_block_data(self.bma280_handle,OFC_OFF_Z,2)
 temp = list(data)
 offsets[2] =
int.from_bytes([temp[0],temp[1]],byteorder='little',signed=True)*(fcRes/256)/1000

 # write offsets to log
 with open('/home/pi/data_logs/accel_log_' + str(self.accel_timestr) + '.csv','a') as
csvfile:
 # initialize csv
 accellog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)
 # write accel and timestamp data

accellog.writerow([str(offsets[0]),str(offsets[1]),str(offsets[2]),'mg_offsets'])

 # denote completion of compensation
 print('Compensation finished & offsets recorded. Ready to fly!')

 def accel_logging(self):
 # capture and convert accel values, and run a moving average filter over 10 samples

 # check accel values
 try:
 (count,data) =
self.i2c.i2c_read_i2c_block_data(self.bma280_handle,self.ACCD_X_LSB,self.RX_BYTES)
 except:
 count = 0

 if count == self.RX_BYTES:
 # convert tuple to list
 tempVal = list(data)

 # fill buffer [x,y,z]
 self.accelBuff[0] =
int.from_bytes([tempVal[0],tempVal[1]],byteorder='little',signed=True)
 self.accelBuff[1] =
int.from_bytes([tempVal[2],tempVal[3]],byteorder='little',signed=True)
 self.accelBuff[2] =
int.from_bytes([tempVal[4],tempVal[5]],byteorder='little',signed=True)

 # convert to g's
 self.accelBuff[0] = (self.accelBuff[0]/16384)
 self.accelBuff[1] = (self.accelBuff[1]/16384)
 self.accelBuff[2] = (self.accelBuff[2]/16384)

 # moving average filter
 for k in range(3):

198

 temp = self.accelBuff[k]
 temp /= self.numRead
 self.accel_accum[k+1] += temp
 temp = self.adxlReadings[self.readNdx][k]
 temp /= self.numRead
 self.accel_accum[k+1] -= temp
 self.adxlReadings[self.readNdx][k] = self.accelBuff[k]
 self.accelBuff[k] = self.accel_accum[k+1]

 # index check
 if not (self.readNdx >= self.numRead - 1):
 self.readNdx += 1 # increase readings count
 else:
 self.readNdx = 0 # reset count

 # log accel data
 timelog = time.time()
 with open('/home/pi/data_logs/accel_log_' + str(self.accel_timestr) + '.csv','a')
as csvfile:
 # initialize csv
 accellog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)
 # write accel and timestamp data

accellog.writerow([str(self.accelBuff[0]),str(self.accelBuff[1]),str(self.accelBuff[2]),str(ti
melog)])
 else:
 self.errCount += 1
 print('Total read errors: ',str(self.errCount))

SBUS RX handler (older version than previous)

sbusRX_handler.py

Created on: Nov 4, 2019
Modified: Jan 20, 2020
Author: THolliday

derived from:
sbusPythonDriver by Donald Simonet on Framagit
https://framagit.org/dsimonet/sbusPythonDriver

sbus_ultrasonic_v5 by THolliday
sbus_handler.c by BHill & THolliday

This script captures sbus frames and decodes them into individual channels.
An sbus frame is made up of 25 packets, with the channels spread out over
packets.

Imports
import serial
import time

class SBUS_RX():
 def __init__(self, _uart_port = '/dev/ttyAMA0'):
 # sbus comms initialization

199

 # RPi uart initialization
 self.ser = serial.Serial(
 port = _uart_port, # indicate UART port
 baudrate = 100000, # sbus runs at 100k baud
 parity = serial.PARITY_EVEN, # set even parity
 stopbits = serial.STOPBITS_TWO, # set two stopbits
 bytesize = serial.EIGHTBITS, # set byte size to 8 bits
 timeout = 0 # disable UART timeout
)

 # set sbus constants
 self.START_PACKET = 0x0F
 self.END_PACKET = 0x00
 self.SBUS_FRAME_LEN = 25 # full frame length is 25 packets
 self.SBUS_CHAN_LEN = 16 # 16 individual channels
 self.SBUS_BITS = 11 # number of bits in sbus packet

 # variable initialization
 self.isReady = True # RX flag
 self.lastFrameTime = 0 # new frame time
 self.sbusFrameIn = [0,0] # captured
sbus RX frame
 self.sbusFrame = [0,0] # endian-
swapped sbus RX frame
 self.sbusChanIn = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # RX channels
 self.sbusChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # RX endian-
swapped channels

 def chan_endian_swap(self):
 # swaps the bit order of the sbus channels

 for i in range(0,(len(self.sbusChanIn))):
 temp = 0
 bmask = 0x8000
 for j in range(0,16):
 if j<8:
 temp |= (self.sbusChanIn[i]&int(bmask))>>(15-(j*2)) # first byte
 else:
 temp |= (self.sbusChanIn[i]&int(bmask))<<((j*2)-15) # second byte
 bmask /= 2 # adjust mask
 temp >>= (16-self.SBUS_BITS) # account for number of
bits per packet
 self.sbusChannels[i] = temp # store channel value

 def frame_endian_swap(self):
 # swaps the byte order of the sbus frame

 for i in range(0,len(self.sbusFrameIn)):
 temp = 0
 bmask = 0x80
 for j in range(0,8):
 if j<4:
 temp |= ((self.sbusFrameIn[i])&int(bmask))>>(7-(j*2)) # first nibble
 else:
 temp |= ((self.sbusFrameIn[i])&int(bmask))<<((j*2)-7) # second nibble
 bmask /= 2 # adjust mask
 self.sbusFrame[i] = temp # store frame values

200

 def sbus_read(self):
 # reads sbus values over the serial port on the RPi

 if self.ser.inWaiting() >= self.SBUS_FRAME_LEN*2: # load at least two full frames
 self.isReady = False # processing frames
 rxBuff = self.ser.read(self.ser.inWaiting()) # capture sbus packets
 self.numPackets = len(rxBuff) # save number of received packets

 # parse full frame
 for rr in range(0,self.SBUS_FRAME_LEN): # step through packets
 # look for end packet, working backwards
 #print(rxBuff)
 if rxBuff[len(rxBuff)-1-rr] == self.END_PACKET:
 # based on end packet, find start packet
 if rxBuff[len(rxBuff)-rr-self.SBUS_FRAME_LEN] == self.START_PACKET:
 # frame is fully mapped and parity checked due to 8E2 format
 # only need to remap the frame if it is different than the last
 newFrame = rxBuff[len(rxBuff)-rr-self.SBUS_FRAME_LEN:len(rxBuff)-1-rr]
 if not self.sbusFrameIn == newFrame: # check if new frame is diff
than previous frame (save CPU cycles)
 self.sbusFrameIn = newFrame # store new frame
 self.sbus_decode() # decode new frame

 # sbus frame succesfully captured and checked for changes
 #self.lastFrameTime = time.time() # timestamp of frame capture
 self.isReady = True # RX frame is ready
 break

 def sbus_decode(self):
 # decodes an sbus frame into 16 individual channels

 # Conversion parameters
 # chan number [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16]
 packet_num = [0, 1, 3, 4, 5, 7, 8, 9, 11,
12, 14, 15, 16, 18, 19, 20]
 lowBS = [5, 2, 7, 4, 1, 6, 3, 0, 5,
2, 7, 4, 1, 6, 3, 0]
 lowbitmask = [0xE0, 0xFC, 0x80, 0xF0, 0xFE, 0xC0, 0xF8, 0xFF, 0xE0,
0xFC, 0x80, 0xF0, 0xFE, 0xC0, 0xF8, 0xFF]
 midBS = [3, 6, 1, 4, 7, 2, 5, 8, 3,
6, 1, 4, 7, 2, 5, 8]
 midbitmask = [0xFF, 0x1F, 0xFF, 0x7F, 0x0F, 0xFF, 0x3F, 0x07, 0xFF,
0x1F, 0xFF, 0x7F, 0x0F, 0xFF, 0x3F, 0x07]
 highBS = [0, 0, 9, 0, 0, 10, 0, 0, 0,
0, 9, 0, 0, 10, 0, 0]
 highbitmask = [0x00, 0x00, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00]

 # swap packet (frame bytes) order
 self.frame_endian_swap()

 # decode frames
 for i in range(0,self.SBUS_CHAN_LEN):
 self.sbusChanIn[i] = ((self.sbusFrame[packet_num[i]]&highbitmask[i])<<highBS[i]) \
 + ((self.sbusFrame[packet_num[i]+1]&midbitmask[i])<<midBS[i]) \
 + ((self.sbusFrame[packet_num[i]+2]&lowbitmask[i])>>lowBS[i])

 # swap channel bit order
 self.chan_endian_swap()

201

SBUS TX handler (older version than previous)

sbusTX_handler.py

Created on: Oct 29, 2019
Modified: Jan 20, 2020
Author: THolliday

derived from:
sbusPythonDriver by Donald Simonet on Framagit
https://framagit.org/dsimonet/sbusPythonDriver

sbus_ultrasonic_v5 by THolliday
sbus_handler.c by BHill & THolliday

This script takes 16 individual channels and encodes them into an sbus frame.
An sbus frame is made up of 25 packets, with the channels spread out over
packets.

Imports
import serial
import time

class SBUS_TX():
 def __init__(self, _uart_port = '/dev/ttyAMA0'):
 # sbus comms initialization

 # RPi uart initialization
 self.ser = serial.Serial(
 port = _uart_port, # indicate UART port
 baudrate = 100000, # sbus runs at 100k baud
 parity = serial.PARITY_EVEN, # set even parity
 stopbits = serial.STOPBITS_TWO, # set to two stopbits
 bytesize = serial.EIGHTBITS, # set byte size to 8 bits
 timeout = 0 # disable UART timeout
)

 # set sbus constants
 self.START_PACKET = 0xF0 # first packet
 self.END_PACKET = 0x00 # last packet
 self.sbusNbits = 11 # bits per packet
 self.SBUS_FRAME_LEN = 25 # packets per frame

 # variable initialization
 self.lastFrameTime = 0 # frame time
 self.numPackets = 0 # number of transmitted packets
 self.sbusChannels = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # RX channels
 self.sbusChanBitSwap = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] # RX endian-
swapped channels
 self.sbusPackets = [0,0] # TX packets
 self.sbusFrame = [0,0] # TX endian-
swapped frame

 def chan_endian_swap(self):
 # swaps the bit order of the sbus channels

 for i in range(0,(len(self.sbusChannels)-1)):
 temp = 0

202

 bmask = 0x8000
 for j in range(0,16):
 if (j<8):
 temp |= (self.sbusChannels[i]&int(bmask))>>(15-(j*2)) # first byte
 else:
 temp |= (self.sbusChannels[i]&int(bmask))<<((j*2)-15) # second byte
 bmask /= 2 # adjust mask
 temp >>= (16-self.sbusNbits) # shift to account for
number of bits per packet
 self.sbusChanBitSwap[i] = temp # store channel

 def frame_endian_swap(self):
 # swaps the byte order of the sbus frame

 for i in range(0,self.SBUS_FRAME_LEN):
 temp = 0
 bmask = 0x80
 for j in range(0,8):
 if (j<4):
 temp |= (self.sbusPackets[i]&int(bmask))>>(7-(j*2)) # first nibble
 else:
 temp |= (self.sbusPackets[i]&int(bmask))<<((j*2)-7) # second nibble
 bmask /= 2 # adjust mask
 self.sbusFrame[i] = temp # store frame

 def sbus_encode(self):
 # encode 16 channels into single sbus frame

 # Conversion parameters
 # Frame number [1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21
22]
 chan1num = [0, 0, 1, 2, 2, 3, 4, 5, 5,
6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14,
15]
 chan2num = [0, 1, 2, 2, 3, 4, 5, 5, 6,
7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15,
16]
 chan1mask = [0x00, 0xE0, 0xFC, 0x00, 0x80, 0xF0, 0xFE, 0x00, 0xC0,
0xF8, 0xFF, 0x00, 0xE0, 0xFC, 0x00, 0x80, 0xF0, 0xFE, 0x00, 0xc0, 0xF8,
0xFF]
 chan2mask = [0xff, 0x1F, 0x03, 0xFF, 0x7F, 0x0F, 0x01, 0xFF, 0x3F,
0x07, 0x00, 0xFF, 0x1F, 0x03, 0xFF, 0x7F, 0x0F, 0x01, 0xFF, 0x3F, 0x07,
0x00]
 chan1BS = [0, 5, 2, 0, 7, 4, 1, 0, 6,
3, 0, 0, 5, 2, 0, 7, 4, 1, 0, 6, 3,
0]
 chan2BS = [3, 6, 9, 1, 4, 7, 10, 2, 5,
8, 0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8,
0]

 # swap bit order of channels
 self.chan_endian_swap()

 # add startbyte
 self.sbusPackets[0] = self.START_PACKET

 # add in channels (note that the channels are spread across multiple frames)
 for rr in range(0,22):

203

 tempFrame = 0
 tempFrame = (self.sbusChanBitSwap[chan1num[rr]]<<chan1BS[rr]) & chan1mask[rr] #
add in first channel data
 tempFrame |= (self.sbusChanBitSwap[chan2num[rr]]>>chan2BS[rr]) & chan2mask[rr] #
add in second channel data
 self.sbusPackets[rr+1] = tempFrame # store frame

 # add flags & digital
 self.sbusPackets[23] = 0

 # add endbyte
 self.sbusPackets[24] = self.END_PACKET

 # swap byte order of frames
 self.frame_endian_swap()

 def sbus_write(self):
 # transmit the full sbus frame over UART

 # encode sbus frame
 self.sbus_encode()

 # transmit the frame
 self.numPackets = self.ser.write(self.sbusFrame)
 #self.lastFrameTime = time.time()

SBUS data logging handler (older version than previous)

sbusDL_handler.py

Created on: Jan 8, 2020
Modified: Mar 2, 2020
Author: THolliday

This script holds dedicated functions for logging sbus data
on a Raspberry Pi Zero.

Imports
import time
import csv

class SBUS_DL():
 def __init__(self, timestr):
 # sbus data logging initialization

 # create/open log csv file (with time in file name)
 self.sbus_timestr = timestr
 with open('/home/pi/data_logs/sbus_log_'+str(self.sbus_timestr)+'.csv','w') as
csvfile:
 # initialize csv
 sbuslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)

 # add column titles

#sbuslog.writerow(['RX/TX','Ch0','Ch1','Ch2','Ch3','Ch4','Ch6','Ch7','Ch8','Tsbus'])

204

sbuslog.writerow(['RX/TX','Thr','Ail','Ele','Rud','ARM','LOG','vEN','VEL','Tsbus'])

 def sbus_data_log(self,rx,tx,rxTime,txTime):
 # logs sbus channel values of RX/TX

 with open('/home/pi/data_logs/sbus_log_'+str(self.sbus_timestr)+'.csv','a') as
csvfile:
 # initialize csv
 sbuslog = csv.writer(csvfile,delimiter = ' ',quotechar = '|',quoting =
csv.QUOTE_MINIMAL)

 # log RX channels

sbuslog.writerow(['RX',str(rx[0]),str(rx[1]),str(rx[2]),str(rx[3]),str(rx[4]),str(rx[6]),
 str(rx[7]),str(rx[8]),str(rxTime)])

 # log TX channels

sbuslog.writerow(['TX',str(tx[0]),str(tx[1]),str(tx[2]),str(tx[3]),str(tx[4]),str(tx[6]),
 str(tx[7]),str(tx[8]),str(txTime)])

205

Appendix H: MITM Code – MSP430G2553 & Ultrasonic Version

Main script

/* main.c
 *
 * Created on: Oct 10, 2019
 * Authors: BHill, THolliday
 *
 * SBUS read/write with single ultrasonic
 * for ENGR 5940 presentation
 */

// Inclusions
#include <msp430.h>
#include <math.h>
#include "sbus_handler.h"
#include "ultrasonic_handler.h"

// Defines
void rw_flash(char * , int, int , int);

// Start main.c
int main(void){
 // MSP430 initialization
 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 // Variables
 unsigned int k;
 unsigned int channel_vals[] =
{992,992,992,992,992,992,992,992,992,992,992,992,992,992,992,992,992}; // initialize all
channels to neutral values
 int channel_ret[16],calflash;
 char sbus_buffer[25],rx_sbus_buffer[25],calchar[2];
 unsigned char us_dist_flag = 0, usflag = 0;
 unsigned int us_dist = 0;

 // Initialize ultrasonic
 init_us_trigger();

 // Initialize clock & sbus
 rw_flash(calchar, 0,0,2); // read time value from the flash memory to sync with sbus
protocol rx
 calflash = calchar[0];
 calflash <<= 8;
 calflash += calchar[1];
 sbus_init(calflash);
 sbus_frame_maker(channel_vals, sbus_buffer,0); // create sbus frame

 for (k=0;k<25;k++){
 tx_data_str[k] = 0x3C; // fill sbus transmit frame
 }

 byte_endian_swap(tx_data_str,25); // perform 8-bit endian swap
 tx_data_str[0] = 0xAA; // set values of the first two frames
 tx_data_str[1] = 0xAA;

 while(1){
// if (usflag==0){ // ready to trigger ultrasonic?

206

// trigger_us(); // trigger ultrasonic
// usflag = 1; // set flag
// }else if (usflag==1){ // echo recieved?
// trigger_distance(&us_dist); // capture distance
// us_dist_flag = 1; // set dist flag
// usflag = 0; // reset flag
// }

 if ((eos_flag==1)&&rx_flag>18){ // sbus packet is ready
 byte_endian_swap(rx_data_str,25); // perform 8-bit endian swap
 for (k=0;k<25;k++){
 rx_sbus_buffer[k] = rx_data_str[k]; // store the current rx value in
the sbus buffer
 }
 eos_flag=0; // reset flag
 sbus_frame_reader(channel_ret,rx_sbus_buffer); // read and separate channels from
rx sbus
 for (k=0;k<16;k++){
 channel_vals[k] = channel_ret[k]; // plot out the channel values
returned from the frame reader
 }

 // Ultrasonic collision detection
 if ((channel_vals[6]!=172)&&(us_dist_flag==1)&&(channel_vals[2]>992)){ //
ultrasonic enabled while in motion?

 if ((us_dist<500)&&(us_dist>250)){ // slow forward speed
 channel_vals[2] = channel_vals[2]*2/3;
 }else if (us_dist<=250){ // stop forward motion
 channel_vals[2] = 992;
 }

 // check that new channel value is within sbus bounds
 if ((channel_vals[2]<172)||(channel_vals[2]>1811)){
 channel_vals[2] = 992; // out of bounds, stop
motion
 }
 us_dist_flag = 0; // reset ultrasonic values
// us_dist = 0;
 }
 // end ultrasonic collision check

 // Check for system enable
 if (channel_vals[4] != 1811){ // send neutral values if system is not armed
 channel_vals[2] = 992; // elevator (forward/backward)
 channel_vals[1] = 992; // aileron (left/right)
 }

 sbus_frame_maker(channel_vals, sbus_buffer,0); // create the sbus frame with the
new/same channel values
 for (k=0;k<25;k++){
 tx_data_str[k] = sbus_buffer[k]; // set the tx value to the value
in the sbus buffer
 }
 byte_endian_swap(tx_data_str,25); // perform 8-bit endian swap
 sbus_write_fast_string(0,25);
 rx_flag = 0; // reset flags
 }
 else if (eos_flag==2){ // error in receiving sbus packet

207

 sbus_write_fast_string(0,25); // send out zeros over sbus
 eos_flag = 0; // reset flags
 rx_flag = 0;
 }
 }
}// end main()

void rw_flash(char * data_vec, int mem_mode, int stnum, int lennum){
 /* looks at the timer oscillator on the board
 * and calculates a time difference constant to
 * better synchronize the clocks for reading,
 * writing, and sending sbus protocol
 */

 /* mem_mode = indicates reading (0) or writing (non 0)
 * stnum =
 * lennum = maximum length of the value being read from the
 * flash memory
 *
 */

 // Variables
 char *Flash_ptr; // pointer to value in flash memory
 volatile char temp, k;

 Flash_ptr = (char *) (0x1040+stnum);

 if (mem_mode){ //write to the flash memory
 FCTL1 = FWKEY + ERASE; // Set Erase bit
 FCTL3 = FWKEY; // Clear Lock bit
 *Flash_ptr = 0; // Dummy write to erase Flash segment

 FCTL1 = FWKEY + WRT; // Set WRT bit for write operation
 for (k=0;k<lennum;k++)
 *Flash_ptr++=data_vec[k];
 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY + LOCK; // Set LOCK bit
 }
 else if (mem_mode==0){ // Read from flash memory
 for (k=0;k<lennum;k++)
 data_vec[k]=*Flash_ptr++;
 }
}

Ultrasonic handler (older version than previous)

/*
 * ultrasonic_handler.c
 *
 * Created on: Feb 19, 2019
 * Author: tholliday
 */

// Inclusions
#include <msp430.h>

// Defines

208

#define TRIG0 BIT3
#define ECHO0 BIT4
#define TRIGDIR P2DIR
#define TRIGOUT P2OUT
#define ECHODIR P2DIR
#define ECHOSEL P2SEL
#define ECHOIE P2IE
#define ECHOIES P2IES
#define ECHOIFG P2IFG

// Global variables
unsigned int Distclicks;
int UPCOUNTSTATE;
/* UPCOUNTSTATE VALUES
 * 0 - system ready/not running
 * 1 - trigger signal sent, waiting for trigger timing
 * 2 - end trigger timing, initialize echo receiving, waiting for echo
 * 3 - echo received and time value acquired
 * 4 - (or greater) timeout has occurred.
 */

void init_us_trigger(void){
 // Initialize ultrasonic pins
 TRIGDIR |= TRIG0; // Set pin 2.3 as a trigger for the ultrasonic sensor
 TRIGOUT &=~ TRIG0; // Initialize 2.3 as low for the trigger (trigger is
high)
 ECHOIES &=~ ECHO0; // set echo hardware interrupt to lo/high edge
 ECHOIE |= ECHO0; // set pin 2.4 as echo hardware interrupt

 // Enable timer and interrupt
 _BIS_SR(GIE); // Enable interrupts for the Port Triggering
 TA1CTL = (TASSEL_2 + ID_3 + MC_2); // configure interrupt timer
 TA1CCR0 = 42000;

 // Initialize ultrasonic state
 UPCOUNTSTATE = 0;
}// end init_us_trigger

void trigger_us(void){
 if (UPCOUNTSTATE==0){
 UPCOUNTSTATE = 1; // set state to "signal sent"
 TRIGOUT |= TRIG0; // Trigger the output to start the signal
 ECHOIES &=~ ECHO0; // set lo/hi edge on echo interrupt
 __delay_cycles(160); // approximately 10us wait
 TRIGOUT &=~ TRIG0; // End the trigger sequence
 }
 if (UPCOUNTSTATE>3){
 TA1CCTL0 &=~ CCIE; // disable timer interrupt
 }
}// end trigger_us

void trigger_distance(unsigned int *dist_out){

 if ((UPCOUNTSTATE==3)){ // state: echo received & recorded
 UPCOUNTSTATE = 0; // reset state
 dist_out[0] = (Distclicks/30e5)*343000; // convert and output the value as a
distance
 }

209

 if (UPCOUNTSTATE>=4){ // state: timeout
 UPCOUNTSTATE = 0; // reset state
 TA1CCTL0 &=~ CCIE; // disable timer interrupt
 dist_out[0] = 0xFFFF;
 }
}// end trigger_distance

#pragma vector=PORT2_VECTOR
__interrupt void Port_2(void)
{ // when the echo is captured the value is outputed in Distclicks
 if (UPCOUNTSTATE<4){
 if (ECHOIES & ECHO0){ // End of echo time
 ECHOIES &=~ ECHO0; // Set lo/hi edge trigger
 Distclicks = TA1R; // store value in Distclicks
 UPCOUNTSTATE = 3; // set state to "time value acquired"
 TA1CCTL0 &=~ CCIE; // disable timer interrupt
 }else{ // Beginning of echo time
 ECHOIES |= ECHO0; // set hi/lo edge trigger
 TA1R = 0; // clear distance register
 UPCOUNTSTATE = 2; // set state to "waiting"
 TA1CCTL0 = CCIE; // enable timer interrupt
 }
 }
 ECHOIFG &=~ ECHO0; // reset echo interrupt flag
}// end echo received interrupt

#pragma vector=TIMER1_A0_VECTOR
__interrupt void TIMERA1_ISR (void)
{ // timer that ends echo receiving if it is taking too long
 if (UPCOUNTSTATE==2){ // Timeout has occurred
 UPCOUNTSTATE = 4; // set state to "timeout"
 }else{
 UPCOUNTSTATE++;
 }
}// end timer interrupt

/*
 * ultrasonic_header.h
 *
 * Created on: Feb 19, 2019
 * Author: tholliday
 */

#ifndef ULTRASONIC_HANDLER_H_
#define ULTRASONIC_HANDLER_H_

void init_us_trigger(void);
void trigger_us(void);
void trigger_distance(unsigned int *);

#endif /* ULTRASONIC_HANDLER_H_ */

210

SBUS handler

/*
 * sbus_handler.c
 *
 * Created on: Oct. 1, 2018; modified: Jan. 10, 2019
 * Authors: BHill, THolliday
 */

// Inclusions
#include "msp430.h"

// Defines
#define sbus_max 99

// Global Variables
unsigned int tout_counter = 0;
unsigned char rx_last = 0xff,tx_data_str[sbus_max], rx_data_str[sbus_max], rx_flag = 0,
dec_str[6], eos_flag = 0;
int tx_ptr,e_tx_ptr;

/* Defined Functions
 * endian_swap()
 * byte_endian_swap()
 * sbus_frame_maker()
 * sbus_frame_reader()
 * sbus_init()
 * sbus_write_fast_string()
 * TX & RX sbus timers
 */

void endian_swap(int * valsin,int nbitsswap, int numvals){
 /* takes the inputed 16-bit string and switches
 * the value from little-endian to big-endian
 * format
 */

 // Variables
 int i,n;
 unsigned int tempval;
 unsigned int bmask;

 for (i=0;i<numvals;i++){
 tempval = 0;
 bmask = 0x8000;
 for(n=0;n<16;n++){
 if (n<8){
 tempval |= ((valsin[i]&bmask)>>(15-(n*2)));
 }
 else{
 tempval |= ((valsin[i]&bmask)<<((n*2)-15));
 }
 bmask /= 2;
 }
 tempval >>= (16-nbitsswap);
 valsin[i] = tempval;
 }
}// end endian_swap

211

void byte_endian_swap(char * valsin, int numvals){
 /* takes the inputed byte (8-bits) and switches
 * the value from little-endian to big-endian
 * format
 */

 // Variables
 int i,n;
 char tempval;
 char bmask;

 for (i=0;i<numvals;i++){
 tempval = 0;
 bmask = 0x80;
 for(n=0;n<8;n++){
 if (n<4){
 tempval |= ((valsin[i]&bmask)>>(7-(n*2)));
 }
 else{
 tempval |= ((valsin[i]&bmask)<<((n*2)-7));
 }
 bmask /= 2;
 }
 valsin[i] = tempval;
 }
}// end byte_endian_swap

void sbus_frame_maker(unsigned int * channel_in, char * sbus_frame_out, char sbus_last){
 /* Outlines and creates the 22 frames in sbus protocal
 * as well as setups the placement of the individual
 * channels in the frame
 */

 // Variables
 int i;
 unsigned int tempchar;
 // Frame number {1 2 3 4
 5 6 7 8 9 10
 11 12 13 14 15 16
 17 18 19 20 21 22}
 char channel1_num[] = {0, 0, 1, 2, 2,
 3, 4, 5, 5, 6, 7,
 8, 8, 9, 10, 10, 11,
 12, 13, 13, 14, 15};
 char channel2_num[] = {0, 1, 2, 2, 3,
 4, 5, 5, 6, 7, 8,
 8, 9, 10, 10, 11, 12,
 13, 13, 14, 15, 16};
 char chan1mask[] = {0x00, 0xE0, 0xFC, 0x00, 0x80, 0xF0, 0xFE, 0x00, 0xC0,
 0xF8, 0xFF, 0x00, 0xE0, 0xFC, 0x00, 0x80, 0xF0, 0xFE, 0x00, 0xc0, 0xF8,
 0xFF};
 char chan2mask[] = {0xff, 0x1F, 0x03, 0xFF, 0x7F, 0x0F, 0x01, 0xFF, 0x3F,
 0x07, 0x00, 0xFF, 0x1F, 0x03, 0xFF, 0x7F, 0x0F, 0x01, 0xFF, 0x3F, 0x07,
 0x00};
 char chan1bitshift[] = {0, 5, 2, 0, 7,
 4, 1, 0, 6, 3, 0,
 0, 5, 2, 0, 7, 4,
 1, 0, 6, 3, 0};

212

 char chan2bitshift[] = {3, 6, 9, 1, 4,
 7, 10, 2, 5, 8, 0,
 3, 6, 9, 1, 4, 7,
 10, 2, 5, 8, 0};

 endian_swap(channel_in,11,16); // perform endian swap on the channel values
 sbus_frame_out[0] = 0xF0; // create the sbus output frame
 for (i=0;i<22;i++){
 tempchar = 0;
 tempchar = (channel_in[channel1_num[i]]<<chan1bitshift[i])&chan1mask[i];
 tempchar |= (channel_in[channel2_num[i]]>>chan2bitshift[i])&chan2mask[i];
 sbus_frame_out[i+1] = tempchar;
 }
 sbus_frame_out[23] = sbus_last; // set the last values of the sbus frame
 sbus_frame_out[24] = 0;
 endian_swap(channel_in,11,16); // perform endian swap on entire sbus frame
}// end sbus_frame_maker

int sbus_frame_reader(unsigned int * channel_out, char * sbus_frame_in){
 /* reads in sbus frame and maps out the channels
 * for possible modification based on distance
 * readings
 */

 // Variables
 int i;
 // channel number {1, 2, 3, 4, 5,
 6, 7, 8, 9, 10, 11,
 12, 13, 14, 15, 16}
 char byte_num[16] = {0, 1, 3, 4, 5,
 7, 8, 9, 11, 12, 14,
 15, 16, 18, 19, 20};
 char lowbitshift[16] = {5, 2, 7, 4, 1,
 6, 3, 0, 5, 2, 7,
 4, 1, 6, 3, 0};
 char lowbitmask[16] = {0xE0, 0xFC, 0x80, 0xF0, 0xFE, 0xC0, 0xF8, 0xFF, 0xE0,
 0xFC, 0x80, 0xF0, 0xFE, 0xC0, 0xF8, 0xFF};
 char midbitshift[16] = {3, 6, 1, 4, 7,
 2, 5, 8, 3, 6, 1,
 4, 7, 2, 5, 8};
 char midbitmask[16] = {0xFF, 0x1F, 0xFF, 0x7F, 0x0F, 0xFF, 0x3F, 0x07, 0xFF,
 0x1F, 0xFF, 0x7F, 0x0F, 0xFF, 0x3F, 0x07};
 char highbitshift[16] = {0, 0, 9, 0, 0,
 10, 0, 0, 0, 0, 9,
 0, 0, 10, 0, 0};
 char highbitmask[16] = {0, 0, 0x03, 0, 0,
 0x01, 0, 0, 0, 0, 0x03, 0,
 0, 0x01, 0, 0};

 if(sbus_frame_in[0]!=0xF0){
 return 1; // This frame is not starting with the
correct value
 }
 for(i=0;i<16;i++){
 channel_out[i] =
((sbus_frame_in[byte_num[i]]&highbitmask[i])<<highbitshift[i])+((sbus_frame_in[byte_num[i]+1]&
midbitmask[i])<<midbitshift[i])+((sbus_frame_in[byte_num[i]+2]&lowbitmask[i])>>lowbitshift[i])
;
 }
 endian_swap(channel_out,11,16);

213

 return 0;
}// end sbus_frame_reader

void sbus_init(int calval){
 /* initializes the MSP430 to read in sbus over the serial pins
 * and enables various timers and interrupts for possible use
 */

 // Variables
 volatile int temp=0;
 // Set baud rate to 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400,
460800, 921600
 // use index of 0 1 2 3... corresponding to the rates above
 long cal_temp;

 cal_temp = calval;
 cal_temp *= 118;
 cal_temp /= 1000;
 BCSCTL1 = CALBC1_16MHZ; // Set DCO
 DCOCTL = CALDCO_16MHZ;
 P1SEL |= (BIT1+BIT2); // P3.4,5 = USCI_A0 TXD/RXD
 P1SEL2 |= (BIT1+BIT2);
 DCOCTL = 0; // Select lowest DCOx and MODx settings
 UCA0CTL0 |= UCSPB + UCPEN + UCPAR; // 2 Stop Bits, Enable Parity, Even Parity
 UCA0CTL1 |= UCSSEL_2; // SMCLK
 UCA0BR0 = cal_temp; // 16MHz/160 = 100kbs SBUS baud //115 for MSP1
 128 because of two stop bits Needs to be calibrated to the individual oscillator. can
be between 118 and 136
 UCA0BR1 = 0; // 100kbs
 UCA0MCTL = UCBRS0; // Modulation UCBRSx = 1
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
 IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt
 CCTL0 = CCIE; // CCR0 interrupt enabled
 CCR0 = 50000;
 TACTL = TASSEL_2 + MC_2; // SMCLK, contmode

 __bis_SR_register(GIE); // interrupts enabled
}// end sbus_init

void sbus_write_fast_string(int vals, int vale){
 /* using values from tx_data_str a string
 * is written for the new sbus transmit
 * protocol
 */

 // Variables
 tx_ptr = vals; // vals is starting pointer
 e_tx_ptr = vale; // vale is the ending value

 UCA0TXBUF = tx_data_str[tx_ptr]; // fill sbus buffer with values from tx_data_str
 IE2 |= UCA0TXIE; // Uses interrupts to send out bytes
}// end sbus_write_fast_string

#pragma vector = TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{
 tout_counter++;
 if (tout_counter>11)

214

 tout_counter = 11;
 CCR0 += 50000;
}

#pragma vector = USCIAB0TX_VECTOR
__interrupt void USCI0TX_ISR(void)
{
 if (IE2&UCA0TXIE){
 //portion of sbus_write_fast_string
 tx_ptr++;
 if (tx_ptr<e_tx_ptr)
 UCA0TXBUF = tx_data_str[tx_ptr];
 else{
 IE2 &= ~UCA0TXIE;
 }
 }
}

// Place data in RX-buffer and set flag
#pragma vector = USCIAB0RX_VECTOR
__interrupt void USCI0RX_ISR(void)
{
 volatile char temp;
 if(IFG2 & UCA0RXIFG){ // Receive data on
sbus
 if (tout_counter>10){
 tout_counter = 0;
 rx_flag = 0;
 eos_flag = 1;
 }

 rx_data_str[rx_flag] = UCA0RXBUF;
 rx_flag++;
 if (rx_flag>sbus_max){ // maximum of
characters starts at the beginning again
 rx_flag = 0;
 eos_flag = 2;
 }
 }
}

/*
 * SBUS_handler.h
 *
 * Created on: Jan. 10, 2019
 * Author: BHill, tholliday
 */

#ifndef SBUS_HANDLER_H_
#define SBUS_HANDLER_H_

extern unsigned char tx_data_str[24], rx_data_str[24],rx_flag ,dec_str[7],eos_flag;

void endian_swap(int *,int, int);
void byte_endian_swap(char *, int);
void sbus_frame_maker(unsigned int *, char *,char);
int sbus_frame_reader(unsigned int *, char *);

215

void sbus_init(int);
void sbus_write_fast_string(int,int);

#endif /* SBUS_HANDLER_H_ */

	MODELING AND PROTOTYPING A MODULAR, LOW-COST COLLISION AVOIDANCE SYSTEM FOR UAVS
	tmp.1597163837.pdf.XwtE0

