Montana Tech Library

Digital Commons @ Montana Tech

Silver Bow Creek/Butte Area Superfund Site

Montana Superfund

Summer 6-10-2022

Draft Final Revised Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Pre-Design Investigation (PDI) Evaluation Report

Atlantic Richfield Company

Josh Bryson

Follow this and additional works at: https://digitalcommons.mtech.edu/superfund_silverbowbutte Part of the Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, and the Environmental Monitoring Commons

Atlantic Richfield Company

Josh Bryson

Liability Manager

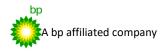
317 Anaconda Road Butte MT 59701 Direct (406) 782-9964 Fax (406) 782-9980

June 10, 2022

Nikia Greene	Erin Agee
Remedial Project Manager	Senior Assistant Regional Counsel
US EPA – Montana Office	US EPA Region 8 Office of Regional Counsel
Baucus Federal Building	CERCLA Enforcement Section
10 West 15th Street, Suite 3200	1595 Wynkoop Street
Helena, Montana 59626	Denver, CO 80202
	Mail Code: 8ORC-C
Devid Devid	Law allow Manager Fran
Daryl Reed	Jonathan Morgan, Esq.

DEQ Project Officer P.O. Box 200901 Helena, Montana 59620-0901 Jonathan Morgan, Esq. DEQ, Legal Counsel P.O. Box 200901 Helena, Montana 59620-0901

RE: Draft Final Revised Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Pre-Design Investigation (PDI) Evaluation Report


Agency Representatives:

I am writing you on behalf of Atlantic Richfield Company to submit the *Draft Final Revised Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Pre-Design Investigation (PDI) Evaluation Report* (PDI Evaluation Report) for your review.

This PDI Evaluation Report summarizes and evaluates the results of sampling and field activities conducted per the *Butte Reduction Works (BRW) Phase I Quality Assurance Project Plan (QAPP)* and the *Butte Reduction Works (BRW) Phase II Quality Assurance Project Plan (QAPP)* and associated request for changes (RFCs). This PDI Evaluation Report has been revised to address Agency comments received on August 31, 2021, and to incorporate additional data collected as part of the Phase II Site Investigation activities.

This PDI Evaluation Report follows requirements listed in the Butte Priority Soils Operable Unit (BPSOU) Statement of Work (Appendix D to the BPSOU Consent Decree) and contains the following components:

- Summary of the work performed.
- Summary of work results.
- Summary of validated data.
- Data validation reports and laboratory data reports.

Atlantic Richfield Company

Josh Bryson

Liability Manager

317 Anaconda Road Butte MT 59701 Direct (406) 782-9964 Fax (406) 782-9980

- Narrative interpretation of data and results.
- Results of statistical and modeling analyses.
- Photographs documenting the work conducted.
- Conclusion and recommendations for the remedial design, including design parameters and criteria.

In addition to the above, the report also includes a discussion on remaining data gaps that have been identified based on the investigation findings to date. Note that additional investigations are planned for the Site to fill the data gaps identified, and Atlantic Richfield will incorporate the results of these investigations, including an updated interpretation of the results, into this PDI Evaluation Report and resubmit to Agencies for review prior to submitting the Intermediate (60%) Remedial Design Report.

The report may be downloaded at the following link:

https://pioneertechnicalservices.sharepoint.com/:f:/s/submitted/EuFeLYz8jfhBuxd85M0HaowBOH DgZ_WzvEQL4LvMMeW1EA.

If you have any questions or comments, please call me at (406) 723-1834.

Sincerely,

Josh Bryson, PE, PMP Liability Manager Remediation Management Services Company An affiliate of **Atlantic Richfield Company**

Cc: Patricia Gallery / Atlantic Richfield - email Chris Greco / Atlantic Richfield - email Mike Mc Anulty / Atlantic Richfield - email Loren Burmeister / Atlantic Richfield - email Dave Griffis / Atlantic Richfield - email Jean Martin / Atlantic Richfield - email Irene Montero / Atlantic Richfield - email David A. Gratson / Environmental Standards / email Mave Gasaway / DGS - email Brianne McClafferty / Holland & Hart - email

Joe Vranka / EPA - email David Shanight / CDM - email Curt Coover / CDM - email James Freeman / DOJ - email John Sither / DOJ - email Dave Bowers / DEQ - email Carolina Balliew / DEQ - email Matthew Dorrington / DEQ - email Jim Ford / NRDP - email Pat Cunneen / NRDP - email Harley Harris / NRDP - email Katherine Hausrath / NRDP - email Meranda Flugge / NRDP - email Ted Duaime / MBMG - email Gary Icopini / MBMG - email Becky Summerville / MR - email Kristen Stevens / UP - email Robert Bylsma / UP - email John Gilmour / Kelley Drye - email Leo Berry / BNSF - email Robert Lowry / BNSF - email Brooke Kuhl / BNSF – email Mark Engdahl / BNSF - email Jeremie Maehr / Kennedy Jenks - email Annika Silverman / Kennedy Jenks - email Matthew Mavrinac / RARUS - email Harrison Roughton / RARUS - email Brad Gordon / RARUS - email Mark Neary / BSB - email Eric Hassler / BSB - email Julia Crain / BSB - email Chad Anderson / BSB - email Brandon Warner / BSB – email Abigail Peltomaa / BSB - email Eileen Joyce / BSB – email Sean Peterson/BSB – email Gordon Hart / BSB – email Jeremy Grotbo / BSB - email Karen Maloughney / BSB – email Josh Vincent / WET - email Craig Deeney / TREC - email Scott Bradshaw / TREC - email Brad Archibald / Pioneer - email Pat Sampson / Pioneer - email Joe McElroy / Pioneer – email Andy Dare / Pioneer – email

Karen Helfrich / Pioneer - email Leesla Jonart / Pioneer - email Randa Colling / Pioneer – email Ian Magruder/ CTEC- email CTEC of Butte / email Scott Juskiewicz / Montana Tech – email

File: MiningSharePoint@bp.com - email BPSOU SharePoint - upload

SILVER BOW CREEK/BUTTE AREA NPL SITE BUTTE PRIORITY SOILS OPERABLE UNIT

Draft Final Revised

Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Pre-Design Investigation (PDI) Evaluation Report

Atlantic Richfield Company

Revision 1 June 2022

RESPONSE TO AGENCY COMMENTS FOR THE BUTTE PRIORITY SOILS OPERABLE UNIT (BPSOU) BUTTE REDUCTION WORKS (BRW) SMELTER AREA MINE WASTE REMEDIATION AND CONTAMINATED GROUNDWATER HYDRAULIC CONTROL SITE PRE-DESIGN INVESTIGATION (PDI) EVALUATION REPORT DATED MAY 14, 2021

PDI Evaluation Report

General Comments:

EPA General Comment 1: The actual metals results data (laboratory and XRF) used for development of the Leapfrog model and the total waste volume could be presented better in the PDI Evaluation Report or associated appendices. Previous EPA Specific Comment 11 requested these tables. Atlantic Richfield Company response to this previous comment indicated that XRF results are shown on lithology logs and in the electronic database, and that ICP data used in Leapfrog model are included in Leapfrog model tables. This response is both inaccurate and not acceptable based on the following:

- a. Table 5 presents some metals results but only for SPLP related samples.
- b. Appendix A, Attachment A and B data summary report tables are appropriately presented with respect to the data validation effort and addition of data quality indicators; however, these tables are not useful for review of data to confirm the waste volume analysis both in their presentational structure and in their content (e.g., ICP-predicted XRF results are not shown). For example, Table 1 in Attachment A of Appendix A to the PDI ER has 15 sub tables presented as A through O and soils results are spread amongst several of these tables rather than all in one place.
- c. Appendix C Leapfrog Model presents the results of the regression analysis and modeling effort, but again, no tables of actual ICP-predicted results are presented nor is there a comprehensive table of all sample intervals and metals results for each sample location. This directly conflicts with the Comment 11 response.
- d. The electronic database is important to include but is not a replacement for report tables. Rather, electronic data is an added part of a deliverable. Furthermore, as a Microsoft Access database, this format has limited utility only to data users that have the program and understand how to use it. Excel tables would be preferred.
- e. In summary, please add a summary table of the final data result and associated qualifier that is used for decisions of classification of waste material in the main PDI ER table set. This table should include all boring, piezometer, and test pit data used in the analysis and modeling. For XRF data, the appropriately adjusted (ICP-predicted) XRF data should be presented in the table. If XRF data is not used, such as that for slag and debris samples, then that should be clearly indicated in some way in the table.

Atlantic Richfield Company Response: A Microsoft Excel table is now included as Attachment 2 to the *Butte Reduction Works (BRW) Phase I and Phase II Investigation*

Leapfrog Model Inputs Technical Memorandum (Model Inputs Technical Memorandum), which is included as Appendix C.3 of the Pre-Design Investigation (PDI) Evaluation Report. The Microsoft Excel table includes the following information requested in this comment (and other comments):

- All boring, piezometer, and test pit data for contaminants of concern (COCs) (i.e., arsenic, cadmium, copper, lead, mercury, and zinc) and hydrocarbon-compounds, including the depth intervals for each sample.
- Data validation qualifiers (U, J, and R qualified results).
- Indication if the sample result is a laboratory or Pioneer X-ray Fluorescence (XRF) sample result.
- For XRF data, the appropriately adjusted (Inductively Coupled Plasma [ICP]-predicted) result.
- Indication if the sample result is used in the Leapfrog Model.

Specific Comments:

EPA Specific Comment 1: <u>Section 2.1:</u> In general, this section provides sufficient detail on the sampling approach and numbers of test pits and boreholes; however, the number of both field (XRF) and laboratory related soil samples is not explained. Please add sufficient detail to explain the numbers of samples collected and for what analyses. According to the Appendix A DSR Section 2.1.1, the total number of samples collected for laboratory analyses should equal 399 samples and the total number of XRF samples should equal 667. If most efficient, the summary of the number of samples for the different sample types (test pit or boring) could be presented as an exhibit or small table embedded in the text.

Atlantic Richfield Company Response: Additional details have been added to the text to detail how many XRF and laboratory samples were collected and generally for what analyses. Additionally, a Microsoft Excel table is now included as Attachment 2 to the Model Inputs Technical Memorandum (Appendix C.3 of the PDI Evaluation Report) which includes all sample results for COCs and hydrocarbon-compounds.

EPA Specific Comment 2: <u>Section 2.1.2, bullets:</u> The bullets reference Tables 3 and 4 as if they contain the detailed information on what samples were submitted to the laboratory or by XRF. Table 3 summarizes the sample investigation points (boring, piezometer, well, or test pit) and their associated detail, but does not indicate what intervals were collected and their analysis. Table 4 just provides a summary of methods and associated QC information. Please revise the text to clarify where this information is detailed (and/or provide a table that details this type of information). A comprehensive table of all metals results as suggested in general comments above may achieve this goal.

Atlantic Richfield Company Response: Additional detail has been added to Tables 3 and 4. Additionally, a Microsoft Excel table is now included as Attachment 2 to the Model Inputs Technical Memorandum (Appendix C.3 of the PDI Evaluation Report) which includes all boring, piezometer, and test pit data for COCs and hydrocarbon-compounds, including the depth intervals for each sample.

EPA Specific Comment 3: <u>Section 2.2, last paragraph</u>: Silver acute aquatic life performance standards are applicable to thesite as are all acute standards. Silver is unusual in that it does not have a chronic aquatic life performance criterion.

Atlantic Richfield Company Response: The following statement has been removed from the text "acute standards are not applicable to this site".

EPA Specific Comment 4: <u>Section 3</u>: Please present data in table and figure format. If this is the site characterization, these are essential data to present.

Atlantic Richfield Company Response: Data collected as part of the Site investigation activities are presented in either a table and/or figure. Additionally, a Microsoft Excel table is now included as Attachment 2 to the Model Inputs Technical Memorandum (Appendix C.3 of the PDI Evaluation Report) which includes all boring, piezometer, and test pit data for COCs and hydrocarbon-compounds, including the depth intervals for each sample. If there are specific data that Agencies would like presented in either a table and/or figure format, please specify which data are being referred to.

EPA Specific Comment 5: <u>Section 3.1.1:</u>

- a. This section lays out the basis and methods for generating the interpreted volume of waste material that exceeds the waste criteria; however, a summary should be provided to link spatially sampling locations (e.g., borings) to the assumed depth of waste estimated in the Leapfrog model. Please provide a summary table of waste depths for each boring, piezometer, well, and test pit. Based on the presentation in Appendix C, it appears this depth should be calculated from the Leapfrog model?
- b. One of the key properties to be presented and assessed/interpreted are the SPLP results. These results should be evaluated spatially throughout the BRW to determine the range/magnitude of COC concentrations and whether certain areas of the site and/or depths have greater or lower leachable concentrations. This assessment is stated in Section 4.1.3 that it will be completed after further data collection; however, initial assessment of Phase 1 data should have been included in this report. Please add an evaluation of the data presented in Table 5.

Atlantic Richfield Company Response:

- a. Table 13 has been added to PDI Evaluation Report which indicates the depth for bottom of waste in each investigation point (as determined in the Leapfrog Model) along with the excavation depth based on current design.
- b. The synthetic Precipitation Leaching Procedure (SPLP) results from Phase I and Phase II Site Investigations have been incorporated into the Leapfrog Model, and the results have been included in Appendix C.2.

EPA Specific Comment 6: <u>Section 5.0, last subsection</u>: Last subsection is labeled 5.1, but it follows section 5.5. Please number this subsection 5.6.

Atlantic Richfield Company Response: The last subsection has been properly numbered.

EPA Specific Comment 7: *Table 3:*

- a. Please add the date of sampling for each location to this table.
- b. Under Analytes Techniques columns, several numbers are presented which correspond referenced to a different document. Please revise accordingly.

Atlantic Richfield Company Response:

- a. The date of sampling for each location has been added to Table 3.
- b. The Analyte Group numbers were defined in Table 4. However, the reference in the column heading on Table 3 was incorrect and created confusion. This reference has been corrected.

EPA Specific Comment 8: <u>*Table 4, Energy Laboratories SPLP:*</u> In the justification cell, please adjust reference to read BRW Phase I QAPP Appendix A Section 2.4.1.

Atlantic Richfield Company Response: The justification column has been removed.

EPA Specific Comment 9: *Table 5:*

- a. Results are presented for 60 samples; however, the DSR indicated 399 samples were collected for laboratory analysis and 667 were collected for XRF analysis. Please explainwhy only a few results were presented in Table 5. See general comment above and revisereport tables accordingly.
- b. The order of this table is unclear, it does not appear to be organized by sample collection type or location ID as presented in the draft submittal of the PDI ER. Please revise the sorting of this table to reflect location ID alphanumerically and then by interval depth(s) within a location.

Atlantic Richfield Company Response:

- a. Table 5 is meant to only present the results from SPLP samples. All SPLP samples were analyzed via ICP prior to the SPLP analysis and those results are included in Table 5 as well. The title of Table 5 has been revised to clarify this. Additionally, a Microsoft Excel table is now included as Attachment 2 to the Model Inputs Technical Memorandum (Appendix C.3 of the PDI Evaluation Report) which includes all boring, piezometer, and test pit data for COCs.
- b. Table 5 is organized first by "Initial Geological Unit Classification" and then by the order the samples were selected for SPLP analysis based on the criteria included in the BRW Phase I Quality Assurance Project Plan (QAPP), included at the bottom of Table 5. A footnote has been added to Table 5 to clarify the organization of the table.

EPA Specific Comment 10: <u>*Table 8, footnote 1:*</u> Please use color highlights to designate the four different outlier groups, as it is difficult to see with the large table and small superscript

numbering.

Atlantic Richfield Company Response: Table 9 (previously Table 8) has been revised to use color highlights to designate the four outlier groups as well as superscripts.

Appendix A: Phase 1 Data Summary Report

Specific Comments:

EPA Specific Comment 1: <u>Executive Summary, last paragraph:</u> Appendix A does not quite meet the format content of the CFRSSI Pilot Data Report Addendum requirements. For example, the detail of what and how sampling was conducted is presented in the PDI ER and not the DSR. Please clarify in the executive summary what content is presented and where and ensure the required content and structure of the Pilot Data Report Addendum is followed as has been completed for many other DSRs for the Site.

Atlantic Richfield Company Response: Appendix A.1 (previously Appendix A) has been edited to ensure the format content of the Clark Fork River Superfund Site Investigations (CFRSSI) Pilot Data Report Addendum is met. A bullet list has been added to the Executive Summary which indicates where the required information is included within Appendix A.1 (previously Appendix A) and/or the main PDI Evaluation Report.

EPA Specific Comment 2: <u>Section 2.1.1.1</u>: Please add language in this section stating that 9 of the collected soil samples were sent to Energy Laboratories and were validated at a Level II as required. It would be good to add a couple of sentences at the beginning of the section on why these samples were collected and that they were to be Level II.

Atlantic Richfield Company Response: The samples referenced were collected as part of the Phase I Site Investigation from hydrocarbon-bearing soil generated from Site investigation activities. These samples were not originally accounted for in the Phase I QAPP, and the samples were collected solely for the purpose of determining the proper treatment and/or disposal requirements for the hydrocarbon-bearing soil. As a result, it was determined by the Contractor Project Manager (CPM) and Contractor Quality Assurance Officer (QAO) that Level 2 data validation was appropriate.

Additional detail has been added to Section 2.1.2 (previously Section 2.1.1) on why certain samples were collected and why they were validated against Level 2 criteria.

EPA Specific Comment 3: <u>Section 2.1.1.2</u>: *Going forward it is good practice to just collect field duplicates as required. This would have allowed the data to possibly meet both Level A and B criteria. Was, not collecting field duplicates a deviation to the QAPP?*

Atlantic Richfield Company Response: The samples referenced were collected as part of the Phase I Site Investigation from hydrocarbon-bearing soil generated from Site investigation activities. These samples were not originally accounted for in the Phase I QAPP, and the samples were collected solely for the purpose of determining the proper treatment and/or disposal requirements for the hydrocarbon-bearing soil. As a result, it was determined by the CPM and Contractor QAO that field duplicates were not required. Deviations have been added to Table A.1-1 (previously Table 1) for (1) collecting additional samples not specified in the QAPP, and (2) not collecting field duplicates as required by the QAPP.

EPA Specific Comment 4: <u>Section 2.1.2</u>: It is understood that more detail is provided in the Attachment B XRF DVR; however, please at least explain generally why so many results were J flagged and why some results were rejected.

Atlantic Richfield Company Response: Additional detail was added to Section 2.1.3 (previously Section 2.1.2) to generally summarize the findings from the XRF Data Validation Report (Attachment 2 to the Data Summary Report) for the J qualified and rejected results.

EPA Specific Comment 5: <u>Section 2.2</u>: Going forward it is good practice to just collect field duplicates as required for 4 added groundwater samples associated with the hydrocarbon treatability study. This would have allowed the data to possibly meet both Level A and B criteria. Was, not collecting field duplicates a deviation to the QAPP?

Atlantic Richfield Company Response: The samples referenced were collected as part of the Phase I Site Investigation from hydrocarbon-bearing water generated from Site investigation activities. These samples were not originally accounted for in the Phase I QAPP, and the samples were collected solely for the purpose of determining the proper treatment and/or disposal requirements for the hydrocarbon-bearing water. As a result, it was determined by the CPM and Contractor QAO that field duplicates were not required. Deviations have been added to Table A.1-1 (previously Table 1) for (1) collecting additional samples not specified in the QAPP, and (2) not collecting field duplicates as required by the QAPP.

EPA Specific Comment 6: <u>Section 3.0 Deviations from the Sampling and Analysis Plan</u>: Please organize the deviations in Table 1 by field deviations and then laboratory deviations. The data validation reports indicate that the completeness goals were met for all the data that was supposed to be collected, but in the deviation table there seems to be many cases where samples were not able to be collected as planned. Please ensure that this is appropriately evaluated as the completeness goals for data that was planned to be collected may not be 100% as is currently stated.

Atlantic Richfield Company Response: Table A.1-1 (previously Table 1) has been reorganized as requested.

In regard to the completeness goals, there were cases where investigation points were modified based on field conditions. However, it was determined by the Field Team Leader and CPM that the Data Quality Objectives (DQOs) would be met with the modified locations. Additionally, the Phase I QAPP states that the actual location and number of the test pits and boreholes may be modified, as determined by the Field Team Leader and/or CPM. Therefore, the completeness percentage was not affected by the modified locations.

EPA Specific Comment 7: <u>Section 4.1:</u> The text indicates that the DQOs are presented in the PDI ER. The DQOs are not presented in the ER but should be either in that report or in Appendix A, per CFRSSI Pilot Data Report Addendum requirements. A clear presentation of each DQO should be presented and a detailed analysis of whether the DQO was met, and if not, what the impacts are for the project. Currently there is no statement as to whether DQOs were met or not as stated in Table 3-2 of the QAPP and associated RFCs.

Atlantic Richfield Company Response: The DQOs have been added to Section 3.1 (previously Section 4.1).

EPA Specific Comment 8: <u>Section 4.2, Data Review, Page 6:</u> If the completeness evaluation changes based on the previous completeness comment for Section 3.0 above, the completeness discussions in this section may need to be updated.

Atlantic Richfield Company Response: See response to Specific Comment 6.

EPA Specific Comment 9: <u>Table 1, Deviations to BRW Phase I QAPP, No. 15</u>: Replicates (re-analyses on the same samples) can be performed after the fact, but not duplicates, which must be collected in the field. XRF subsamples collected from the same bag are splits. In general, there will be less variability for replicates or splits than duplicates due to soil heterogeneity. Please change the Impact on DQOs tostate that only replicates and splits were performed and that the calculated variability is underestimated (precision is overestimated).

Atlantic Richfield Company Response: Per BRW Phase I QAPP and Pioneer's Standard Operating Procedures (SOPs) (attached to BRW Phase I QAPP), XRF Replicate and XRF Duplicate samples were collected as follows:

- An XRF Replicate is a sample that is run twice without being removed from the XRF aperture.
- An XRF Duplicate is a sample that is run twice, but the sample is removed from the XRF aperture between runs to be kneaded in order to the mix the sample before being replaced and re-analyzed in the XRF aperture.

Field duplicates for XRF analysis (i.e., a duplicate sample collected in the field) were not intended to be collected per the BRW Phase I QAPP and Pioneer's SOPs. Field duplicates were only intended to be collected for the laboratory samples submitted to Pace Analytical Services, Inc. (Pace) and Energy Laboratories.

An additional test has been added to the text to clarify this approach. Additionally, Atlantic Richfield Company (Atlantic Richfield) understands the value in collecting field duplicates for XRF analysis and will include a requirement to collect field duplicates for XRF analysis in any future QAPPs for the Site.

Attachment A – BRW Phase 1 Data Validation Report

EPA Specific Comment 10: <u>Section 1.0 Data Validation Report Summary, Page 3, Second</u> <u>Paragraph:</u> Please provide more information in this section, including how many results were rejected, how many analytes were rejected, and the reason for the rejected data.

Atlantic Richfield Company Response: Additional detail has been added to Section 1.0 including how many results were rejected, how many analytes were rejected, and the reason for the rejected data.

EPA Specific Comment 11: <u>Section 1.0 Data Validation Report Summary, Page 3, Table:</u> The percentage of enforcement quality data seems low for the Phase 1 2018 Energy Soils Additional data set and the Additional 2020 Pace Soils data set. Please explain if there were any global issues identified in sampling practices and or laboratory analyses that would require corrective actions going forward.

Atlantic Richfield Company Response: The percentage of enforcement quality data is low due to hold time exceedances for the "Phase I 2018 Energy Soils Additional" and the "Additional 2020 Pace Soils" sample groups. For the "Phase I 2018 Energy Soils Additional" sample group, the method required hold time was exceeded due to the amount of time it took the field team to collect all the samples, complete the required XRF analysis, and then use that information to select the samples to be submitted for SPLP analysis. Atlantic Richfield recognized this problem during the Phase I Site Investigation and has adjusted the sampling procedures for subsequent Site investigations to prevent hold time exceedances for samples being submitted for SPLP analysis. For the "Additional 2020 Pace Soils" sample group, these samples were submitted for analysis after the method required hold time at the request of Agencies (via email correspondence on March 25, 2020). For this later group of samples, it was recognized by both the Agencies and Atlantic Richfield that these samples were out of hold time and no corrective actions are proposed. This explanation was previously included in the Data Summary Report (DSR) and has been added to Section 1.

EPA Specific Comment 12: <u>Section 2.1 Field Quality Control Samples, Page 5:</u> Please provide more information on corrective actions that will be followed going forward to ensure that all field QC samples are collected at the required frequency and that all methods will be analyzed as required.

Atlantic Richfield Company Response: The samples referenced were collected as part of the Phase I Site Investigation from hydrocarbon-bearing soil and water generated from Site investigation activities. These samples were not originally accounted for in the Phase I QAPP, and the samples were collected solely for the purpose of determining the proper treatment and/or disposal requirements for the hydrocarbon-bearing soil. As a result, it was determined by the CPM and Contractor QAO that field duplicates were not required. Since the samples were not originally accounted for in the Phase I QAPP, there is no effect to the DQOs. **EPA Specific Comment 13:** <u>Section 2.2, Laboratory Quality Control Samples, Page 7:</u> It is noted in the report that only the parent sample for MS, laboratory duplicates, and serial dilution samples are qualified if quality control results are outside of criteria. If samples in the SDG are considered similar enough to the parent sample, all results should be qualified and/or it should be noted that the other samples in the SDG are not considered similar enough to be qualified. Please revise accordingly.

Atlantic Richfield Company Response: Atlantic Richfield agrees that if samples in the sample delivery group (SDG) are considered similar enough to the parent sample, all results should be qualified and/or it should be noted that the other samples in the SDG are not considered similar enough to be qualified if quality control (QC) results are outside of criteria. This assessment was previously completed in the data validation checklists. Additional text has been added to Section 2.2 to clarify this approach.

EPA Specific Comment 14: <u>Section 3.0 Level A/B Assessment, Page 8:</u> Please include a note that if a result is qualified asestimated "J" by the laboratory because it is between the MDL and RL, those results are considered enforcement quality if no other qualifications are required.

Atlantic Richfield Company Response: Text has been added to Section 3.0, as requested.

EPA Specific Comment 15: <u>Section 4.4, Completeness, Page 11</u>: Please provide more information for the rejected results regarding the analytes that were rejected and if they affected project data quality objectives.

Atlantic Richfield Company Response: Additional detail has been added to Section 4.4 for the rejected results. The rejected results do not affect the DQOs, and an explanation on the effect to the DQOs has been added to Section 3.2 of the Phase I DSR.

EPA Specific Comment 16: <u>Section 4.6, Sensitivity, Page 12:</u> Energy laboratories should report values between the MDL and RL/CRQL as detected but estimated "J." Please have the laboratory report the values in this manner going forward.

Atlantic Richfield Company Response: Moving forward, all labs will be requested to report values between the minimum detection limit (MDL) and the Reporting Limit (RL) as detected but estimated "J".

EPA Specific Comment 17: <u>Section 4.6, Sensitivity, Page 13:</u> There is discussion on the reporting limit for nickel being greater than the CRQL. It was noted that some of the samples had an RL of 0.002 mg/L (in the data package) = 2 ug/L and some had an RL of 0.02 mg/L (in the data package) = 20 ug/L. There were no dilutions. Please explain why the RL changed between samples (matrix affects?) Some of sample RLs may be equal to the CRQL values.

Atlantic Richfield Company Response: Additional information has been added to Section 4.5.1 (previously Section 4.6) explaining the RL change between samples.

Attachment B – BRW Phase 1 XRF Data Validation Report

EPA Specific Comment 18: <u>Section 1.0, Data Validation Report Summary, Page 1, last</u> <u>paragraph:</u> There is discussion that the XRF data met Level A criteria only. Please explain why the data did not meet Level B criteria.

Atlantic Richfield Company Response: All XRF samples met the Level A criteria, but not the Level B criteria due to inadequate field documentation. Details on the sample container preparation, field custody, and traceable sample designation were insufficient to meet Level B criteria. Additional detail was added to Section 3.0 (referenced in Section 1.0) on why the data did not meet Level B criteria.

EPA Specific Comment 19: <u>Section 1.0, Data Validation Report Summary, Page 2, third</u> <u>paragraph:</u> There is discussion on rejected results. Please provide more details as to how many results were rejected, the analytes rejected, and if data quality objectives were affected because of the rejected data.

Atlantic Richfield Company Response: The 80 rejected data points were the results (arsenic, cadmium, calcium, chromium, copper, iron, lead, manganese, silver, and zinc) for the 8 natural samples analyzed on October 4, 2018, with XRF instrument identification (ID) 101731. These data points were rejected because there was no energy calibration check, Silicon Dioxide standard, Calibration Check Sample, XRF duplicate or XRF replicate sample analyzed during that analytical run. Despite the fact that 80 data points were rejected, there was no effect to the DQOs since there were sufficient results from the remaining samples to determine the volume, distribution, and properties of solid materials within the Site.

Additional details were added to Section 1.0 including how many results were rejected, how many analytes were rejected, and the reason for the rejected data. Additionally, a discussion on the effect of the rejected results on the DQOs has been added to Section 3.2.1 of the Phase I DSR.

EPA Specific Comment 20: <u>Section 2.1.1, Energy Calibration Check, Page 3:</u> It is noted that 8 samples were rejected based on an energy calibration check not being performed before these samples were analyzed. It is recommended that consideration should be given to not rejecting these results if all other quality control parameters were within criteria.

Atlantic Richfield Company Response: No QC samples were run for these 8 samples; therefore, the data must be rejected. Additional detail has been added to Section 2.1.1 to clarify.

EPA Specific Comment 21: <u>Section 3.0, Level A/B Assessment, Page 4:</u> It is stated that the Level B criteria was not met "due to inadequate field documentation." Please explain the

corrective actions going forward so that future XRF data is documented correctly.

Atlantic Richfield Company Response: Corrective actions have been implemented internally. Field staff have been trained to record all XRF sample IDs in the field logbook and an additional data sheet was created to record the sample preparation (i.e., sieving, drying, and then place into Mylar cup). Additional detail on the corrective actions has been added to Section 2.1.3 of the Phase I DSR.

EPA Specific Comment 22: <u>Section 4.1, Precision:</u> Please change "duplicates" to "splits" and mention that no duplicates were collected in the field and that the calculated precision would be lower if duplicates were collected.

Atlantic Richfield Company Response: See response to Specific Comment 9 for the Phase I DSR.

EPA Specific Comment 23: <u>4.4, Completeness, Page 6:</u> It is noted in the report that 4 analytes were not able to be analyzed for 59 samples due to the instrument not set to the proper ranges to include analyses for these analytes. Please detail what the corrective action plan is going forward to ensure this discrepancy does not occur for future sampling events?

Atlantic Richfield Company Response: The referenced 59 samples were slag "rock" samples which could not be analyzed following the procedures in Pioneer's SOP-SFM-02 (i.e., using the XRF stand) because the slag consisted of large aggregate materials. Instead, the XRF gun was held directly against the large aggregate material. The run time was reduced to 30 seconds (compared to 270 seconds) since it was determined that it would be unlikely that field staff could maintain steady contact with the aggregate for an extended length of time. As a result of the shortened run time; cadmium, calcium, chromium, and silver results were not generated for the 59 samples.

Additional detail has been added to Section 4.4, and this deviation has been added to Table A.1-1 (previously Table 1) of the Phase I DSR. There was no effect to the DQOs since there were sufficient results from the remaining samples to determine the volume, distribution, and properties of slag within the Site. No corrective action plan is needed moving forward.

Draft Final Revised BRW Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site PDI Evaluation Report – Appendix C Leapfrog Model

General Comments:

EPA General Comment 1: The XRF to ICP Correlation and Regression Analysis memorandum and/or the Leapfrog memorandum should take the analysis one step further by better explaining the following details:

a. Based on the final regression variables for each COC, please add detail on the number of sample results for each COC that were modified to an ICP-

predicted value out of the 667 XRF samples collected. Since ICP values would be used for decision purposes where collected, then subtracting the 137 or 136 (cadmium only) paired ICP and XRF samples, leaves 530 to 531 XRF samples available for ICP-predicted correction. Furthermore, any XRF results flagged with a U, UJ, or R qualifier would also not be modified to an ICP- predicted value. Accordingly, for each COC, please detail the number of U, J, and R qualified results and the number of results modified to an ICPpredicted value.

- b. For those XRF results modified to an ICP-predicted value, please present the original XRF result and the resulting ICP-predicted value(s) side by side in a table(s). The table(s) should provide the documentation to cross-check that calculations for ICP-predicted results were completed correctly. Most efficiently, such a table(s) would provide the sample IDs within rows and then show the original and ICP-predicted XRF results side by side in adjacent columns.
- c. As noted in previous comments, a table should be presented somewhere either in Appendix C or the main PDI ER report that summarizes all of the data used in the Leapfrog model. Appendix C is titled "Leapfrog Model Inputs", and as such should detail the data inputs used in the model. In addition, where certain data is not used in the model, such as slag and debris sample results, these data should be clearly identified as not used in any summary tables. These data should still be presented but flagged as not used for purposes of modeling.

Atlantic Richfield Company Response: As requested, the following additional details have been added to Appendix C.1 of the PDI Evaluation Report.

a. A Microsoft Excel table with details on the number of XRF sample results for each COC that were modified to an ICP-predicted value is included as Attachment 2 to the Model Inputs Technical Memorandum (Appendix C.3 of the PDI Evaluation Report).

All R results have been removed from the XRF to ICP regression analyses and the Leapfrog Model. The U and UJ results (non-detect [ND] values) have been removed from the XRF to ICP regression analyses; however, the U and UJ results (ND values) are still included within the Leapfrog Model. Otherwise, those values would be "blank" and the Leapfrog Model would interpolate through that "blank" interval based on the results from the intervals above and below which could overestimate the volume of waste within the BRW Site. Therefore, all U and UJ results (ND values) will be used in the Leapfrog Model and the "confidence interval" from the XRF unit corrected with the regression will be used as the result. This remains a conservative approach in determination of the excavation surface.

b. A Microsoft Excel table with details on the original XRF result and the resulting ICPpredicted value(s) is included as Attachment 2 to the Model Inputs Technical Memorandum (Appendix C.3 of the PDI Evaluation Report). c. A Microsoft Excel table with details on all the data used in the Leapfrog Model is included as Attachment 2 to the Model Inputs Technical Memorandum (Appendix C.3 of the PDI Evaluation Report).

<u>Specific Comments (Butte Reduction Works Phase I Site Investigation XRF to ICP</u> <u>Correlation and Regression Analysis)</u>

EPA Specific Comment 1: <u>Section 2, First Paragraph, Last Sentence:</u> Please confirm that nondetect XRF data were not used in the correlation with ICP data. If so, please state this."

Atlantic Richfield Company Response: The U and UJ results (ND values) have been removed from the XRF to ICP regression analyses. Additional detail has been added to *Butte Reduction Works Phase I and Phase II Site Investigations XRF to ICP Correlation and Regression Analysis Technical Memorandum* (included as Appendix C.1 of the PDI Evaluation Report) to clarify this.

EPA Specific Comment 2: Section 2.2, Regression Analysis: There has been some discussion on the method of setting up the linear regression analysis. One method is to place the more accurate data on the x-axis and the less accurate data on the y-axis in accordance with linear regression methodology. This is consistent with instrument calibration methodology for laboratory analysis of metals, for example, or for calibration of an XRF instrument based on *ICP* measurements. Another method is to place the XRF instrument data on the x-axis as the independent value and the ICP data on the y-axis as the dependent value because the goal is to predict an ICP result from an XRF measurement. Both setups have been previously used at various sites. EPA will be evaluating the appropriate setup to be used based on site objectives. For the BRW design, please complete the linear regression using both methods, recalculate the estimated volumes and excavation surface in the Leapfrog model, and present the difference in volumes/extent of the model in a similar way that the linear versus upper 95% confidence limit regression is currently presented. Similar to uncertainty used in the model, this analysis may show that more or less false positive (Type 1) versus false negative (Type2) decision errors result in the differing regression approach. Based on this analysis, the agencies will evaluate the results and evaluate whether the linear regression setup has a substantial impact on the design.

Atlantic Richfield Company Response: A linear regression analysis was completed using both methods described and is included in *Butte Reduction Works Phase I and Phase II Site Investigations XRF to ICP Correlation and Regression Analysis Technical Memorandum* (included as Appendix C.1 of the PDI Evaluation Report). The analysis included identifying where the bottom of waste points changed between the two methods, and there were minimal changes in the bottom of waste extents based on the data collected. Therefore, Atlantic Richfield proposes to continue to use the previously presented approach (i.e., place the XRF instrument data on the x-axis as the independent value and the ICP data on the y-axis as the dependent value). Two different Leapfrog Models were not created to recalculate and compare the estimated columns and excavation surface because there was minimal change in the waste bottom extents between the two methods.

Specific Comments (Butte Reduction Works Phase I Investigation Leapfrog Model Inputs)

EPA Specific Comment 3: <u>Section 1</u>: Soil sampling for Phase II was completed in 2020. The results should have been incorporated into the model. Figure 1 shows 2020 boring locations. Does this mean 2020 data are included? Please clarify and revise as needed.

Atlantic Richfield Company Response: The Phase II Site Investigation results have been incorporated into the Leapfrog Model.

EPA Specific Comment 4: Section 2.1.2:

- a. The XRF to ICP correlations are to be recalculated as indicated in comment 2 of this section. Depending on the results of the recalculation, changes might be necessary and will need to propagate through the PDI ER.
- b. If axes are to remain as presented, only the upper 95% confidence level correlation XRF data are to be used in the model. This is necessary to account for uncertainty in the XRF data. If axes are flipped, only the lower 95% confidence level should be used.

Atlantic Richfield Company Response: See response to Specific Comment 2 above. The linear regression and the upper 95% regression correlated XRF data are both included in the Leapfrog Model to demonstrate how using the upper 95% regression provides a level of confidence/factor of safety in the modeled waste extents. In determining the waste extents for the excavation design, only the upper 95% regression correlated XRF data is used.

EPA Specific Comment 5: <u>Section 2.2</u>: The fourth bullet uses Figure BRW-1 of the CD for the site boundary. This same figure has a conceptual removal corridor. Why wasn't this removal corridor used in the model? The proposed removal corridor shown on Figure 3 has not been approved at this time.

Atlantic Richfield Company Response: The waste removal corridor shown in the figures attached to the *Butte Reduction Works (BRW) Phase I and Phase II Investigation Leapfrog Model Inputs Technical Memorandum* (included as Appendix C.3 of the PDI Evaluation Report) was designed to remove the suspected copper-loading source located in the northern west-to-central portion of the Site, while maintaining the BPSOU Consent Decree required 275-foot average width excavation. Note that the waste removal corridor shown is preliminary and only shown as a reference at this point. The waste removal corridor and excavation surface will be refined as data interpretation and remedial design progresses.

EPA Specific Comment 6: <u>Section 2.4:</u> In all the model inputs and variables presented in this section, as stated in the general comments above for the design report, it is unclear how the assumptions made account for overall factors of safety of the waste excavation within areas of unknown waste extent. In other words, in areas (borings) where the maximum sample collected still contained waste, indicating an unbounded location (e.g., no clean sample below the waste), what factor of safety depth is assumed beyond that deepest known depth of waste? It is

understood this may not be a straightforward single answer and would likely vary based on the data in each boring, but can this be exemplified in the sensitivity analysis in some way?

Atlantic Richfield Company Response: Additional detail has been added to Section 3.0 of the *Butte Reduction Works (BRW) Phase I and Phase II Investigation Leapfrog Model Inputs Technical Memorandum* (included as Appendix C.3 of the PDI Evaluation Report) clarifying how the Bottom of Waste Surface was created to ensure all waste within the Site is captured within the surface. Additionally, a table has been added to the main text of the PDI Evaluation Report which demonstrates how the bottom of waste surface extends to or beyond the last interval that fails the waste criteria in each investigation location.

EPA Specific Comment 7: <u>Section 2.4.1</u>: If axes are to remain as presented, only the upper 95% confidence level correlation XRF data are to be used in the model. If axes are flipped, only the lower 95% confidence level should be used.

Atlantic Richfield Company Response: Please see response to Specific Comment 4 above.

EPA Specific Comment 8: <u>Section 2.5:</u> Please explain the difference in estimated total waste volume observed in the model between the normal and upper 95% confidence level regression.

Atlantic Richfield Company Response: Figure C.3-32 of the *Butte Reduction Works* (*BRW*) *Phase I and Phase II Investigation Leapfrog Model Inputs Technical Memorandum* (included as Appendix C.3 of the PDI Evaluation Report) present the waste volume for the linear regression, upper 95% regression, and the waste volume added by the upper 95% regression for the selected approach (i.e., place the XRF instrument data on the x-axis as the independent value and the ICP data on the y-axis as the dependent value).

EPA Specific Comment 9: <u>Figure 13</u>: The southwest corner shows a large wedge of waste remaining due to slope constraints. This seems to be artificial based on not using the corridor specified on Figure BRW-1 which followed the slag wall. The model needs to be rerun using the boundary following the toe of the railroad slope and the slag wall. The FRE SOW identifies this boundary as "The width of this removal area shall be an average of 275 feet from the toe of the south railroad grade, as shown onFigure BRW-1..." Please revise the boundary and rerun the model.

Atlantic Richfield Company Response: The waste removal corridor boundary has been revised as requested. However, this boundary (consistent with that of Figure BRW-01 of the FRESOW) is only a representation of where excavation of waste materials is to begin and is not indicative of field conditions that will dictate safe and practical performance of the excavation activities. The final excavation surface will be developed to meet the requirements of the BPSOU Consent Decree, while maintaining a stable excavation slope to protect worker safety.

Draft Final Revised BRW Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site PDI Evaluation Report – Appendix F Risk-Based Corrective Action Guidance Evaluation for Petroleum-Impacted Material at BRW

Specific Comments:

EPA Specific Comment 1: <u>*Pg. 2, Site Background:*</u> Please discuss the discovery of the sheen during the NRD test pit evaluation and the reporting of the release at that time. This reporting results in the creation of a DEQ file for the site and triggers the RBCA process.

Atlantic Richfield Company Response: A discussion on the discovery of the sheen during the Natural Resource Damage Program test pit evaluation and the reporting of the release at that time has been added to *Risk-Based Corrective Action Guidance Evaluation* for Petroleum-Impacted Material at Butte Reduction Works Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Technical Memorandum (Appendix F to the PDI Evaluation Report).

EPA Specific Comment 2: <u>*Pg. 7, 3rd paragraph, 3rd sentence: Please state that institutional controls will prohibit installation of drinking water wells.*</u>

Atlantic Richfield Company Response: The following text has been added to Section 6, *"Direct groundwater exposure pathways are also considered incomplete because institutional controls currently prohibit installation of public service drinking wells within the Site for future land use (EPA, 2020)".*

EPA Specific Comment 3: Pg. 10, last paragraph:

- a. If a RBCA Tier 3 evaluation is to be performed, keep in mind that additional data may need to be collected to support any planned modeling efforts. For example, soil TOC, dry bulk density, and other parameters, depending on the model used. Currently, the Phase III QAPP does not include all of the parameters that may be required. However, Tier 3 analyses could be done as part of the RBCA evaluation without an RFC to the Phase III QAPP, because the organic contaminants are regulated by the State of Montana.
- b. The proposed Tier 3 approach and model should be discussed with DEQ prior to conducting the Tier 3 evaluation.

Atlantic Richfield Company Response: The evaluation of data (i.e., Tier 1 and Tier 2 Evaluations) have been updated based on additional data collected as part of the Phase II Site Investigation activities. As a result, the further evaluation section has been updated.

EPA Specific Comment 4: <u>*Table 8:*</u> The RBSLs presented in Table 8 are the same as in the lookup <u>tables</u> in the RBCA guidance (i.e. DAF = 10). In Tier 2, the RBSLs are adjusted using site-specific information and simple equations. For the leaching to groundwater adjustment,

the gradient, hydraulic conductivity, aquifer thickness, source length parallel to groundwater flow, and infiltration rate areused to calculate a mixing zone depth and site-specific dilution attenuation factor (DAF), used to calculate the site-specific RBSLs. The RBCA guidance does list the first step of the Tier 2 analysis as completing a Tier 1 analysis. However, if this is all you do it is simply a Tier 1 evaluation and not a preliminary Tier 2 analysis. Please either include the Tier 2 adjustment to the RBSLs, if sufficient data are available, or do not refer to this table as a Tier 2 evaluation.

Atlantic Richfield Company Response: The adjusted Tier 2 screening levels are included in the revised *Risk-Based Corrective Action Guidance Evaluation for Petroleum-Impacted Material at Butte Reduction Works Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Technical Memorandum* (Appendix F to the PDI Evaluation Report).

End of Comments.

SILVER BOW CREEK/BUTTE AREA NPL SITE BUTTE PRIORITY SOILS OPERABLE UNIT

Draft Final Revised

Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Pre-Design Investigation (PDI) Evaluation Report

Prepared for:

Atlantic Richfield Company 317 Anaconda Road Butte, Montana 59701

Prepared by:

Pioneer Technical Services, Inc. 1101 S. Montana Street Butte, Montana 59701

Revision 1 June 2022

TABLE OF CONTENTS

Page

1.0	INTR	ODUCTION	1
	1.1	Site Background and Description	
	1.2	Remedial Design	
	1.3	Previous Investigations	
	1.4	Summary of Phase I Site Investigation	
	1.5	Summary of Phase II Site Investigation	
	1.6	Other Site Investigation Activities	
	1.7	Future Site Investigation Activities	
• •			
2.0		MARY OF WORK PERFORMED	
	2.1	Phase I Site Investigation	
		2.1.1 Solid Materials Characterization	
		2.1.1.1 Test Pits	
		2.1.2 Groundwater Characterization	
		2.1.3 Organic Pollutants	
	2.2	2.1.4 Site Survey	
	2.2	Phase II Site Investigation	
		2.2.1 Solid Material Characterization	
		2.2.2 Groundwater Characterization	
	• •	2.2.3 Organic Pollutants	
	2.3	Other Site Investigation Activities	
		2.3.1 Structural Assessment	
		2.3.2 Cultural Survey	
		2.3.3 Wetland Delineation Survey	24
3.0	INTE	CRPRETATION OF RESULTS	25
	3.1	Solid Material Characterization	25
		3.1.1 Volume, Distribution, and Properties of Solid Materials	26
		3.1.2 Constructability Considerations	
	3.2	Groundwater Characterization	28
		3.2.1 Chemistry and Spatial Variability	28
		3.2.2 Groundwater Surface and Direction of Flow	29
		3.2.3 Aquifer Parameters and Geometry	29
		3.2.4 Seasonal Groundwater Elevation Change	
		3.2.5 Evaluation of Groundwater Impact to SBC	32
	3.3	Organic Pollutants	
		3.3.1 Chemistry and Spatial Variability	
		3.3.2 Plan to Manage Impacted Soil and/or Groundwater	
	3.4	Silver Bow Creek Realignment	33
		3.4.1 SBC Bottom Invert at Upstream and Downstream Tie-in Locations	
		3.4.2 Evaluation of Potential Lining of Relocated SBC	
4.0	B em	AINING DATA GAPS	31
T. U	4 .1	Solid Materials Characterization.	

		4.1.1 Volume and Distribution of Waste Materials	
		4.1.2 Geotechnical Properties	
	4.2	Groundwater Characterization and Hydraulic Control	
	4.3	Organic Pollutants	
5.0	CON	CLUSIONS AND REMEDIAL DESIGN RECOMMENDATIONS	
	5.1	Excavation Design	
		5.1.1 Waste Removal Extents	
		5.1.2 Waste Characterization for Proper Disposal	
		5.1.3 Preservation and Demolition of Existing Durable Historic Infrastru	
		5.1.4 Wetland Protection and Mitigation Recommendations	
		5.1.5 Utility Avoidance	
		5.1.6 Construction Dewatering	
	5.2	Backfill and Site Grading	
	5.3	Silver Bow Creek Reconstruction	
	5.4	Hydraulic Control	
	5.5	Management of Soil and Groundwater Impacted with Organic Pollutants	
6.0	REFI	ERENCES	42

LIST OF FIGURES

Figure 1. Site Location Map

- Figure 2. Lower Area One and BRW Smelter Area Site Map
- Figure 3. BRW Smelter Area Conceptual Remedial Action Plan
- Figure 4. Previous Investigations
- Figure 5. BRW Phase I Site Investigation Locations
- Figure 6. Existence of Durable Historic Infrastructure within Butte Reduction Works Site
- Figure 7. Subsurface Flume(s)/Culvert(s) within the Site
- Figure 8. Phase II Slag Investigation Stages 1-3
- Figure 9. Site Investigation Locations Installed During Phase II
- Figure 10. Manual Groundwater Elevation Readings Collected for The Phase I and Phase II Site Investigations
- Figure 11. Groundwater Contours for Low Water Conditions (February 2021) in the Shallow Aquifer Unit
- Figure 12. Groundwater Contours for Low Water Conditions (February 2021) in the Deep Aquifer Unit
- Figure 13. GW Quality Analysis of Arsenic Compared to CD Performance Standards
- Figure 14. GW Quality Analysis of Cadmium Compared to CD Performance Standards
- Figure 15. GW Quality Analysis of Copper Compared to CD Performance Standards
- Figure 16. GW Quality Analysis of Mercury Compared to CD Performance Standards
- Figure 17. GW Quality Analysis of Lead Compared to CD Performance Standards
- Figure 18. GW Quality Analysis of Zinc Compared to CD Performance Standards
- Figure 19. Site Survey and Utilities
- Figure 20. Slag Distribution within the Site
- Figure 21. Demolition Debris Distribution within the Site
- Figure 22. Waste Distribution within the Site
- Figure 23. Unimpacted Materials Distribution within the Site
- Figure 24. Phase III Site Investigations Points

LIST OF TABLES

- Table 1. Waste Identification Criteria
- Table 2. Data Gaps Summary
- Table 3. Investigation Points and Analyses for Phase I and Phase II Site Investigations
- Table 4. Sample Collection, Preservation, and Holding Times
- Table 5. SPLP Analytical Results Summary (Phase I)
- Table 6. SPLP Analytical Results Summary (Phase II)
- Table 7. Summary of Historic Infrastructure
- Table 8. Summary of Surface Water and Groundwater Analytical Results
- Table 9. Monthly Depths to Groundwater
- Table 10 Summary of Groundwater and Surface Water PCB, PCP, and Dioxin Analytical Results
- Table 11. Hydrocarbon Impacted Soil Treatment Results
- Table 12. Approximate Volumes of Materials Within BRW Site
- Table 13 Depth for Bottom of Waste in Each Investigation Point

LIST OF APPENDICES

(Provided electronically with this document)

Appendix A Data Summary Reports for the Phase I and Phase II Site Investigations

Appendix B Lithology Logs for Phase I and Phase II Site Investigation Locations

Appendix C Leapfrog Model Results

- Appendix D Butte Reduction Works Multichannel Analysis of Surface Waves Survey Final Report
- Appendix E 2019 Butte Reduction Works Waters of the U.S. Delineation Report
- Appendix F Risk-Based Corrective Action Guidance Evaluation for Hydrocarbon-Impacted Material at Butte Reduction Works Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site
- Appendix G Butte Reduction Works (BRW) Pumping Tests Interpretation Technical Memorandum

Appendix H BRW Hydraulic Control and Construction Dewatering Technical Report

- Appendix I Hydrologic Evaluation of Landfill Performance at Butte Reduction Works Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site
- Appendix J Further Remedial Elements Scope of Work Remedial Design/Remedial Action, Butte Priority Soils Operable Unit Cultural Resource Inventory, Evaluation, and Recommendations
- Appendix K Structural Assessment of Existing Bridge and Historic Structures, Butte Reduction Works Smelter Site, Butte, Montana

Revision No.	Version	Description	Date
Rev. 0	Draft	Internal Atlantic Richfield Company Review	8/21/2020
Rev. 1	Draft Final	Agency Review	10/06/2020
Rev. 2	Draft Final Revised	Internal Atlantic Richfield Company Review	3/26/2021
Rev. 3	Draft Final Revised	Agency Review	5/13/2021
Rev. 4	Draft Final Revised	Internal Atlantic Richfield Company Review	3/31/2022
Rev. 5	Draft Final Revised	Agency Review	06/10/2022

DOCUMENT MODIFICATION SUMMARY

ACRONYMS

Term	Definition
ARM	Administrative Rules of Montana
Atlantic Richfield	Atlantic Richfield Company
АТО	Alluvium, Tailings, and Organic Soil
BNSF	Burlington Northern Santa Fe (Railway)
BPSOU	Butte Priority Soils Operable Unit
BRW	Butte Reduction Works
BSB	Butte-Silver Bow
BH	Borehole
BTL	Butte Treatment Lagoons
CD	Consent Decree
COC	Contaminant of Concern
CSM	Conceptual Site Model
DCI	DCI Engineers
DEQ	Montana Department of Environmental Quality
eV	Electron-Volt
FEWA	Functionally Effective Wetland Area
GPS	Global Positioning System
НСС	Hydraulic Control Channel
ICP-OES	Inductively Coupled Plasma – Optical Emission Spectrometry
LAO	Lower Area One
LiDAR	Light Detection and Ranging
LNAPL	Light Non-Aqueous Phase Liquid
MASW	Multichannel Analysis of Surface Waves
Mg/kg	Milligrams per kilogram
МРТР	Montana Pole and Treating Plant
MWR	Mine Waste Repository
NAD	North American Datum
NAVD	North American Vertical Datum
NWE	NorthWestern Energy
O&M	Operation and Maintenance
РСВ	Polychlorinated Biphenyls
РСР	Pentachlorophenol
PDI	Pre-Design Investigation
PID	Photoionization Detector
Pioneer	Pioneer Technical Services, Inc.
ррт	Parts per Million
PZ	Piezometer
QAPP	Quality Assurance Project Plan
RA	Remedial Action
RBCA	Risk-Based Corrective Action

Term	Definition
RBSL	Risk-Based Screening Level
RD	Remedial Design
RDWP	Remedial Design Work Plan
RFC	Request for Change
SBC	Silver Bow Creek
SPLP	Synthetic Precipitation Leaching Procedure
ТЕН	Total Extractable Hydrocarbons
USACE	U.S. Army Corps of Engineers
XRF	X-Ray Fluorescence

1.0 INTRODUCTION

The Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site (Site) is one of 9 further remedial elements addressed in the *Butte Priority Soils Operable Unit* (BPSOU) *Consent Decree* (CD) (EPA, 2020), referred to herein as the BPSOU CD. The BPSOU CD requires a 275-foot average width removal of waste from the southern portion of the Site (referred to herein as the waste removal corridor). The BPSOU CD specifies that "An excavation surface (subject to EPA approval, in consultation with DEQ) shall be developed during design and will consider the results of the predesign investigation. The excavation surface will define the vertical extent of removal within the removal corridor." After removing the waste material, Silver Bow Creek (SBC) will be rerouted from its current path through the slag canyon along the northern portion of the Site through the excavated waste removal corridor. The BPSOU CD also requires the management of groundwater impacted with contaminants of concern (COCs) (i.e., arsenic, cadmium, copper, mercury, lead, and zinc) through hydraulic control.

As part of the Remedial Design (RD) for the Site, additional data have been collected during two Site investigations. To begin determining the excavation surface within the waste removal corridor and the nature and extent of impacted groundwater within the Site, Atlantic Richfield Company (Atlantic Richfield) conducted the BRW Phase I Site Investigation (Phase I Site Investigation) according to the *Butte Reduction Works (BRW) Phase I Quality Assurance Project Plan (QAPP)* (Atlantic Richfield Company, 2021a) (referred to herein as BRW Phase I QAPP). Following the Phase I Site Investigation, Atlantic Richfield completed the BRW Phase II Site Investigation (Phase II Site Investigation) according to the *Butte Reduction Works (BRW) Phase II Quality Assurance Project Plan (QAPP)* (Atlantic Richfield Company, 2021b) (referred to herein as BRW Phase II QAPP). The Phase II Site Investigation addressed additional designrelated data gaps pertaining to the future hydraulic control and construction dewatering and included additional data collection related to the characterization of solid materials, particularly slag and groundwater within the Site.

This Pre-Design Investigation (PDI) Evaluation Report summarizes and evaluates the results of sampling and field activities conducted per the BRW Phase I and Phase II QAPPs and associated request for changes (RFCs). Phase I Site Investigation activities were completed from August 2018 through February 2020, with the exception of groundwater-level measurements, which continued through June 2021. Phase II Site Investigation activities were completed from March 2020 through March 2021.

This PDI Evaluation Report is written to provide a summary of the work performed, general interpretation of results, and provide RD recommendations. Additional details on the work performed and more detailed interpretation of results can be found in the attached appendices:

- Appendix A: Data Summary Reports for the Phase I and Phase II Site Investigations.
- Appendix B: Lithology Logs for Phase I and Phase II Site Investigation Locations.
- Appendix C: Leapfrog Model Results.
- Appendix D: Butte Reduction Works Multichannel Analysis of Surface Waves Survey Final Report.

- Appendix E: 2019 Butte Reduction Works Waters of the U.S. Delineation Report.
- Appendix F: Risk-Based Corrective Action Guidance Evaluation for Hydrocarbon-Impacted Material at Butte Reduction Works Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site.
- Appendix G: BRW Pumping Tests Interpretation Technical Memorandum.
- Appendix H: BRW Hydraulic Control and Construction Dewatering Technical Report.
- Appendix I: Hydrologic Evaluation of Landfill Performance at Butte Reduction Works Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site.
- Appendix J: Further Remedial Elements Scope of Work RD/Remedial Action, Butte Priority Soils Operable Unit Cultural Resource Inventory, Evaluation, and Recommendations.
- Appendix K: Structural Assessment of Existing Bridge and Historic Structures, Butte Reduction Works Smelter Site, Butte, Montana.

This PDI Evaluation Report follows requirements listed in the BPSOU Statement of Work (Appendix D to the BPSOU CD) and contains the following components:

- Summary of the work performed (Section 2.0).
- Summary of work results (Section 2.0).
- Summary of validated data (Section 2.0, Appendix A, and Appendix B).
- Data validation reports and laboratory data reports (Appendix A).
- Narrative interpretation of data and results (Section 3.0).
- Results of statistical and modeling analyses (Section 3.0, Appendix C, Appendix G, Appendix H, and Appendix I).
- Photographs documenting the work conducted (Appendix A).
- Conclusion and recommendations for the RD, including design parameters and criteria (Section 5.0).

In addition to the above, Section 4.0 discusses remaining data gaps that have been identified based on the investigation findings to date. As a result, additional investigations are planned for the Site, to fill the data gaps identified in Section 4.0. Atlantic Richfield will incorporate the results of these investigations, including an updated interpretation of the results, into this PDI Evaluation Report and resubmit to Agencies for review prior to the submittal of the Intermediate (60%) RD Report. Additional details on these planned investigations are included in Section 1.7.

1.1 Site Background and Description

The Site covers approximately 24 acres in Butte, Montana, to the immediate west of Montana Street between SBC and the north side of the Burlington Northern Santa Fe (BNSF) Railway Company railroad line (Figure 1 and Figure 2).

The Site is located within an urban area and adjacent to other impacted areas. To the south and west of the Site, the Montana Pole and Treating Plant (MPTP) Water Treatment Plant treats groundwater impacted by a solution of approximately 5% pentachlorophenol (PCP) mixed with a petroleum carrier oil that was used to preserve poles, posts, and bridge timbers from 1946 to 1984 (Figure 2) (EPA, 2017). NorthWestern Energy (NWE) has a storage yard and operating

center immediately south of the Site (Figure 2). The storage yard has existed since 1899 and is a Comprehensive Environmental Cleanup and Responsibility Act Site. Underground storage tanks and on-site use or disposal of various substances such as paints, solvents, mercury, Fuller's earth, wood-treating compounds, and transformer oil containing polychlorinated biphenyls (PCBs) have resulted in on-site soil contamination and possibly localized groundwater contamination (DEQ, 2002).

Beginning in 1885 and to the time of this writing, the Site has been the location of multiple industrial operations including a copper smelter and a zinc concentrator, and it was also used by the Domestic Manganese and Development Company (Sanborn, 1943) and Rocky Mountain Phosphates, Inc. (GCM Services, Inc., 1991). Additionally, Butte-Silver Bow (BSB) operated an asphalt plant and aggregate crushing plant at the Site from the mid-1990s to late 2020. Currently, BSB uses the Site to store construction and aggregate materials.

The Site contains a complex distribution of materials (including slag, tailings, manganese waste, demolition debris, foundations, and other historic structures) as well as impacted soil and groundwater arising from past operations and from upstream sources that released metals and mineral processing waste onto the Site.

1.2 Remedial Design

The BRW remedial action (RA) is to include removal of tailings, waste, COC-impacted soil, and slag within the SBC 100-year floodplain reconstruction area (i.e., waste removal corridor) to a depth to be determined during the RD activities. The conceptual RD, shown on Figure 3, will include the following elements:

- Waste removal (as defined by the BPSOU CD Waste Identification Screening Criteria and listed in Table 1) from the Site in the waste removal corridor to a depth determined during the RD.
- Management of soil and groundwater within the Site impacted by organic pollutants, as appropriate and in a manner that is complementary with the RA. Organic pollutants (hydrocarbon compounds, PCBs, PCP, and dioxins) are secondary concerns for the Site. Soil and groundwater within the Site that have been impacted by these pollutants will be addressed/managed as necessary to implement the remedy, but the long-term management and remediation of soil and groundwater impacted with organic pollutants is not required by the BPSOU CD.
- Realign SBC and construct the bank-full channel and 100-year floodplain within the 275-foot average width waste removal corridor.
- Regrade and construct caps over the tailings, waste, impacted soil, and slag left in place.
- Hydraulically manage COC-impacted groundwater at the Site to control discharge of COCimpacted groundwater to surface water and sediment in BPSOU generally and within the Site specifically.

1.3 Previous Investigations

A number of investigations have previously occurred at the Site, and a detailed discussion of the Site description, history, and previous investigations is included in the *BRW Remedial Design Work Plan (RDWP)* (Atlantic Richfield Company, 2021c) and the BRW PDI Work Plan, included as an attachment to the RDWP. Figure 4 shows the locations of investigation activities and existing monitoring wells installed as part of previous investigations.

1.4 Summary of Phase I Site Investigation

The Phase I Site Investigation sought to fill four main design data gaps and was completed in three stages from August 2018 through February 2020, with the exception of groundwater level measurements which continued through June 2021. The Phase I Site Investigation was completed according to the procedures and protocols detailed in the BRW Phase I QAPP (and associated RFC documents, RFC BRW-2019-01 and RFC BRW-2019-03, included with the BRW Phase I QAPP). The second RFC to the BRW Phase I QAPP (RFC BRW-2019-02) was revised and submitted as the BRW Phase II QAPP discussed in Section 1.5.

- 1. Stage 1: Initial Phase I Site Investigation (August 2018 to March 2019).
- Stage 2: Additional Groundwater Sampling (October 2019 to November 2019) (RFC BRW-2019-01).
- 3. Stage 3: Hydrocarbon Investigation (December 2019 to February 2020) (RFC BRW-2019-03).

The four objectives of the Phase I Site Investigation activities listed below are detailed in the BRW Phase I QAPP and associated RFCs:

1. Solid Materials Characterization: Collect additional information to estimate the volume, distribution, and properties of solid materials within the Site including slag, demolition debris, and impacted materials (including alluvium, tailings, and organic soil [ATO]). Locate and identify historic infrastructure and/or certain conditions (i.e., wetlands) within the Site that may affect constructability of remedial elements.

The data will be used to improve the characterization of materials within the Site and will be used to guide the excavation, SBC reconstruction, hydraulic control, and end land use elements of the RD for the Site.

2. **Groundwater Characterization:** Collect additional information about the groundwater elevations, potentiometric surface, and direction of groundwater flow (including seasonal groundwater changes); the spatial variability of groundwater chemistry within the alluvial aquifer at the Site; and the aquifer geometry.

The data will be used to improve the characterization of groundwater within the Site, to guide a subsequent hydrogeological investigation (i.e., Phase II Site Investigation), to support development of a groundwater model, and to guide the excavation, SBC reconstruction, and hydraulic control elements of the RD for the Site.

3. **Organic Pollutants:** Collect additional information to estimate the nature and extent of soil and groundwater within the Site impacted by select organic pollutants (hydrocarbon compounds, PCBs,

PCP, and dioxins). The data will be used to improve the characterization of soil and groundwater impacted by select organic pollutants and to develop a plan to manage the impacted soil and groundwater within the Site as part of the RD.

4. **SBC Realignment:** Collect survey data related to the bottom invert at the upstream and downstream tie-in locations of SBC. The data will be used to design the reconstructed floodplain and SBC profile in the floodplain, as well as guide SBC alignment as shown on Figure 3. Data from the prior three objectives (i.e., solid materials, groundwater, and organic pollutants), along with data collected from a subsequent hydrogeological investigation (i.e., Phase II Site Investigation), will be used to evaluate the need for placing a liner beneath the channel of the relocated SBC.

Table 2 lists the design data gaps and details how this Phase I Site Investigation addressed data gaps. The data gaps identified in Table 2 were originally identified in the BPSOU Statement of Work (Appendix D to the BPSOU CD) and have been edited as Site investigation activities have been completed and the RD has progressed. Figure 5, Figure 6, and Figure 7 show the investigation locations for the Phase I Site Investigation. Additional details on the Phase I Site Investigation are included in Section 2.1.

1.5 Summary of Phase II Site Investigation

The Phase II Site Investigation addressed additional data gaps pertaining to design of the future hydraulic control and construction dewatering system, and collected additional data related to characterization of solid materials, particularly slag, and of groundwater within the Site. The Phase II Site Investigation included two pumping tests, pre- and post-pumping-test groundwater analysis, chemical loading analysis, additional opportunistic solid material characterization, and an investigation of slag physical properties and evaluation of limited demolition methods (slag investigation). The slag investigation consisted of multiple stages to further delineate the horizontal and vertical extents of the slag within the Site and to collect appropriate information on the potential effectiveness of methods needed for slag removal.

Site investigation activities occurred from March 2020 to March 2021, according to the procedures and protocols detailed in the BRW Phase II QAPP (originally submitted as the second RFC to the BRW Phase I QAPP [RFC BRW-2019-02] which was revised and submitted as the BRW Phase II QAPP per Agencies request). The four objectives of the Phase II Site Investigation activities listed below are detailed in the BRW Phase II QAPP:

- 1. **Pumping Tests:** Further define the aquifer parameters, boundary conditions, anisotropy, etc.; as well as the rate and quality of pumped groundwater within the Site to adequately design the dewatering system, BRW hydraulic control, and provide needed information on additional flows to the Butte Treatment Lagoons (BTL).
- 2. **Pre- and Post-Pumping Test Groundwater Analysis:** Provide finer detail on the nature and extent of COC- and hydrocarbon-impacted groundwater within the Site and upgradient of the Site to guide the design and implementation for the realigned SBC and the BRW hydraulic control.
- 3. Silver Bow Creek Loading Analysis: Collect additional information needed to determine the nature, extent, and source of the chemical loading to SBC from the area between SBC surface water monitoring points SS05B and SS06A (Figure 2).

4. Additional Solid Material Characterization: Collect additional information needed to refine the volume and location of waste materials and additional information needed on the chemical stability/leachability of solid materials that may remain after the RA is complete.

Table 2 lists the design data gaps that were identified prior to the Phase II Site Investigation and details how this Phase II Site Investigation addressed those data gaps. The data gaps identified in Table 2 were originally identified in the BPSOU Statement of Work (Appendix D to the BPSOU CD) and have been updated as Site investigation activities have been completed and the RD has progressed. Figure 8 and Figure 9 show the Phase II Site Investigation locations. Additional details on the Phase II Site Investigation are included in Section 2.2.

Note that Agencies approved two RFCs to the BRW Phase II QAPP (RFC BRW-2021-01 and RFC BRW-2021-02), which enabled a supplemental groundwater and surface water sampling event to occur during low-groundwater conditions. However, the objectives related to the sampling are detailed in the *Draft Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Phase III Quality Assurance Project Plan (QAPP)* (Atlantic Richfield Company, 2021d) (referred to herein as BRW Phase III QAPP). To allow the sampling event to occur during low-groundwater conditions, Agencies approved the data collection (i.e., sampling) as part of the BRW Phase II QAPP while the BRW Phase III QAPP was being finalized. As a result, the data validation and interpretation associated with the supplemental sampling event will be included in the updated PDI Evaluation Report along with the additional data collected during the future Site investigation activities.

1.6 Other Site Investigation Activities

In addition to the activities completed as part of the Phase I and Phase II Site Investigations, a structural assessment, cultural resource inventory, and wetland delineation were conducted at the Site. These evaluations are important for instructing the RD, in accordance with the BPSOU CD. Additional details on the structural assessment, cultural resource inventory and wetland delineation are included in Section 2.3.1, Section 2.3.2 and Section 2.3.3 respectively.

1.7 Future Site Investigation Activities

The remaining Site investigation activities for the Site which have QAPPs approved by Agencies include the following:

• Phase III Site Investigation: The Phase III Site Investigation focuses on collecting designrelated data to finalize the excavation design surface and hydraulic control design and to collect data regarding the geotechnical considerations at the Site. The Phase III Site Investigation has four objectives: additional solid material characterization, geotechnical investigation, groundwater characterization, and SBC COC-loading analysis. An additional objective is to establish a baseline for groundwater conditions (hydraulic gradient and chemistry) between the MPTP site and the Site to inform the design of the future BRW hydraulic control and/or construction dewatering efforts that will take place during the RA. Details of the investigation activities are outlined in the BRW Phase III QAPP. Field activities for the Phase III Site Investigation have already been completed; however, the results of the investigation are not included in this PDI Evaluation Report because the data has not gone through the necessary data review, verification, and validation procedures.

• **Microbial Analysis and Biotreatability Study:** The Microbial Analysis and Biotreatability Study will advise appropriate Site-specific action levels for hydrocarbon-impacted soil by collecting data on the characteristics of the soil (hydrocarbon leachability, microbial activity, etc.). Additionally, if treatment of hydrocarbon-impacted soil is necessary to successfully implement the RA, the study will help identify the proper treatment option (i.e., chemical oxidation, landfarming, expedited natural attenuation under improved conditions, etc.) and advise the management plan for hydrocarbon-impacted soil. Details of the investigation activities are outlined in the *Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Quality Assurance Project Plan (QAPP) for Microbial Analysis and Biotreatability Study (Atlantic Richfield Company, 2021e) (referred to herein as Biotreatability QAPP) which was approved by Agencies on January 5, 2022.*

Table 2 summarizes each investigation's activities in relation to fulfilling design-related data gaps and objectives identified for the Site. Atlantic Richfield will incorporate the results of these future Site investigation activities, including an updated interpretation of the results, into this PDI Evaluation Report and resubmit to Agencies for review as part of the RD process.

2.0 SUMMARY OF WORK PERFORMED

Work performed during the Phase I and Phase II Site Investigations is summarized in the sections below. Table 3 shows the investigation locations along with the samples collected, and Table 4 shows the field and laboratory analytical methods. The following tables summarize the investigation results:

- Synthetic Precipitation Leaching Procedure (SPLP) (Table 5 and Table 6)
- Historic Infrastructure at the Site (Table 7)
- Groundwater and Surface Water Analytical Results (Table 8)
- Monthly Depth to Groundwater Measurements (Table 9)

Additional details on the work performed and data collected are included in the sections below.

2.1 Phase I Site Investigation

Work performed for the Phase I Site Investigation is categorized into Solid Materials Characterization, Groundwater Characterization, Organic Pollutants, and Site Survey. The following sections detail the work performed according to the BRW Phase I QAPP.

2.1.1 Solid Materials Characterization

The following activities were completed to estimate the volume, distribution, and properties of solid materials within the Site as part of the Phase I Site Investigation:

- Excavated 15 test pits and drilled 60 boreholes (Section 2.1.1.1, Section 2.1.1.2, and Figure 5).
- Documented lithology of test pits and boreholes to determine the distribution of materials (Appendix B).
- Collected soil samples from lithological layers and had them analyzed for COCs (arsenic, cadmium, copper, mercury, lead, and zinc) and additional constituents of interest (e.g., manganese, trace elements, organic pollutants) to determine the properties of solid materials including the chemical stability/leachability of these solid materials within the Site.

The target of the Phase I Site Investigation included collecting solid material samples both within and adjacent to the waste removal corridor (Figure 3). The purpose of including materials adjacent to the waste removal corridor was to identify other potential source areas within the Site to facilitate decision making for response actions in the area, including design-level information to optimize the balance between any potential additional source removal beyond the required waste removal corridor and the BRW hydraulic control.

Field X-ray fluorescence (XRF) field analysis was used as a guide to determine the depth of test pits and boreholes and to identify materials from test pits to be submitted for laboratory SPLP analysis. The field samples were collected in a ziplock bag and mixed prior to analysis with the XRF unit. The samples were not dried before analysis since these samples were meant for field screening information only.

Pioneer Technical Services, Inc. (Pioneer) laboratory XRF samples were analyzed with the XRF unit in the Pioneer field office at 244 Anaconda Road in Butte, Montana. These samples were dried, screened, and placed in a small plastic cup with a mylar film cover prior to analysis. Only XRF samples prepared/analyzed in the Pioneer field office were considered official sample results and used for data interpretation. The total number of Pioneer laboratory XRF samples was 667 for the Phase I Site Investigation. Pioneer laboratory XRF samples were analyzed most often for COCs (arsenic, cadmium, copper, mercury, lead, and zinc) as well as calcium, chromium, iron, manganese, and silver. Additional detail on the number of samples and analyses completed is included in Appendix A.

There were 403 natural soil samples (344 borehole samples, 32 test pit samples, 14 surface samples, and 13 miscellaneous) collected and submitted to the laboratory (Pace Analytical, LLC [Pace] or Energy Laboratories, Inc.[Energy]) for analysis. A natural sample indicates samples were field samples, not field QC samples (i.e., not a field duplicate, field blank, or equipment rinsate blank). The miscellaneous samples included 9 samples to help determine the proper disposal of hydrocarbon bearing material generated from investigation activities and 4 samples collected for asbestos analysis. The samples were analyzed most often for metals, general chemistry, asbestos, and organic pollutants (e.g., hydrocarbons). Analysis for PCBs was intended to occur but was not completed due to safety concerns regarding the proximity of active BSB

operations to the proposed sampling locations. The BSB asphalt plant and supporting operations, including utilities, were located too close to the target area (proposed sampling locations) for the field investigation work to be completed safely. Additional detail on the number of samples and analyses completed is included in Appendix A.

The following efforts were also completed to locate and identify historic infrastructure within the Site that may affect constructability of remedial elements:

- Collected measurements and photographs to document the remaining infrastructure at the Site (Section 2.1.1.3).
- Conducted a geophysical Multichannel Analysis of Surface Waves (MASW) seismic survey to confirm the existence and location of a subsurface flume(s)/culvert(s) within the Site (Section 2.1.1.4 and Appendix D).

The sections below provide additional detail on the work performed for the solid materials characterization.

2.1.1.1 Test Pits

In the Initial Phase I Site Investigation (Stage 1), 12 test pits were excavated and sampled to refine the location of durable historic infrastructure, evaluate any remaining manganese impacts, and determine the distribution and properties of solid materials within the Site. Three additional test pits were excavated during the Hydrocarbon Investigation (Stage 3) to determine the presence and distribution of hydrocarbon-impacted materials and solid materials within the Site. The location of each test pit is shown on Figure 5.

Test pits were dug with an excavator until the equipment hit refusal (i.e., could not excavate through material), the equipment's safe digging limits were met, or until other Site-specific limitations were encountered (e.g., groundwater, sidewall stability became insufficient, etc.). The field logs note whether the excavator encountered refusal or groundwater at the final depth. The field data sheets and logbook entries are included in the Phase I Data Summary Report (Appendix A). The final depth and lithology of each test pit are also shown in the Lithology Logs (Appendix B).

Samples were collected following the procedures and protocols detailed in the BRW Phase I QAPP and associated RFCs. Generally, samples were collected using a disposable hand scoop by scraping soil from the sidewall or collecting it from the appropriate excavated piles or from the excavator bucket. Samples were then placed in the appropriate sampling containers. For each lithological layer, Pioneer laboratory XRF samples were collected in a ziplock bag, mixed in the field, and then prepped (dried, screened, and placed in a small plastic cup with a mylar film cover) and analyzed at the Pioneer field office using an XRF field unit. Select samples were submitted to the laboratory (Pace or Energy) for specified metals analyses by inductively coupled plasma – optical emission spectrometry (ICP-OES) (Table 3 and Table 4). The Pioneer laboratory XRF and ICP-OES results for each soil sample collected from the test pits are shown in the Lithology Logs (Appendix B) and are also presented in a Microsoft Excel file attached to

the Butte Reduction Works (BRW) Phase I and Phase II Investigation Leapfrog Model Inputs Technical Memorandum (included in Appendix C).

During the Initial Phase I Site Investigation (Stage 1), selected samples (from each major type of impacted materials including slag, demolition debris, tailings, peat/organic soil, and alluvium) were collected and sent to Energy for SPLP. Samples were selected based on visual inspection of impacted materials, the total number of SPLP samples per lithologic unit, and the concentration action levels as described in the BRW Phase I QAPP. Analytical results for each sample submitted for SPLP analysis are summarized in Table 5 and included in the Phase I Data Summary Report (Appendix A).

Additional samples were collected and are further discussed in Section 2.1.3. No water samples were collected from the test pits for laboratory analysis. The field sheets, logbook entries, and laboratory results for each test pit are included in the Phase I Data Summary Report (Appendix A).

2.1.1.2 Boreholes

Sixty boreholes were drilled during the Phase I Site Investigation to refine the distribution and properties of solid materials and evaluate the presence of hydrocarbon compounds. Boreholes were drilled using either a Geoprobe® or sonic drill rig, both of which collected nearly continuous core from which to record lithology and collect samples. The borehole locations are shown on Figure 5 and detailed in Table 3. The 60 borehole locations include the 23 locations marked with a "BH" designation, the 24 groundwater piezometers installed during the Initial Phase I Site Investigation (Stage 1) identified with a "PZ" designation, and the 13 hydrocarbon monitoring piezometers installed during the Hydrocarbon Investigation (Stage 3) identified with a "HCW" designation. Lithology for each borehole (with or without installed piezometers) is shown in the Lithology Logs (Appendix B). The field sheets and logbook entries are included in the Phase I Data Summary Report (Appendix A).

Samples were collected following the procedures and protocols detailed in the BRW Phase I QAPP. Generally, during the Initial Phase I Site Investigation (Stage 1), samples were collected as follows:

For each lithological layer of at least 2 feet in thickness (as observed in the core), samples were collected in the appropriate sampling containers and submitted to the laboratory (Pace or Energy) for metals analysis by ICP-OES (Table 3 and Table 4). For lithological layers of less than 2 feet in thickness, Pioneer laboratory XRF samples were collected in a ziplock bag for XRF analyses at the Pioneer field office (Table 3 and Table 4).

• Selected samples (from each major type of impacted materials including slag, demolition debris, tailings, peat/organic soil, and alluvium) were collected and sent for SPLP analysis to Energy. Samples were selected based on visual inspection of impacted materials, the total number of SPLP samples per lithologic unit, and the concentration action levels as described in the BRW Phase I QAPP. Additional detail on sample selection and the analytical results for each sample submitted for SPLP analysis are summarized in Table 5.

Additional samples were collected and submitted for laboratory analyses and are further discussed in Section 2.1.3.

A slightly different sampling methodology was required for the Hydrocarbon Investigation (Stage 3), which included collecting samples near the saturated layer (in the capillary fringe) for laboratory analysis (Section 2.1.3) and additional guidelines for unpaired and paired piezometer locations.

- For paired locations (i.e., a location within approximately 5 feet of a deeper previously completed investigation point), each lithology layer was documented and no samples were collected for metals analysis if the lithology was similar to the paired location, as determined by field personnel based on material type, lithological layer thickness, and recovery. There were 9 paired locations drilled during the Hydrocarbon Investigation (Stage 3).
- For unpaired locations, lithology was documented and a Pioneer laboratory XRF sample was collected from each discrete lithological layer for XRF analyses at the Pioneer field office. Additionally, a confirmation sample of the first lithological layer that passed the Waste Identification Screening Criteria (Table 1), based on field XRF analyses, was collected and submitted for metals analyses via ICP-OES (Table 3 and Table 4).
- Additional samples were collected and submitted for laboratory analyses as further discussed in Section 2.1.3.

The field sheets, logbook entries, and laboratory results for each borehole are included in the Phase I Data Summary Report (Appendix A). The Pioneer laboratory XRF and ICP-OES results for each soil sample collected from the boreholes are shown in the Lithology Logs (Appendix B) and are also presented in a Microsoft Excel file attached to the *Butte Reduction Works (BRW) Phase I and Phase II Investigation Leapfrog Model Inputs Technical Memorandum* (included in Appendix C).

2.1.1.3 Quantification of Existing Durable Historic Infrastructure

Most of the durable historic infrastructure at the Site was removed after the industrial operations were discontinued. However, some infrastructure items were not demolished or were partially demolished and remain, or potentially remain, at the Site. Additional quantification of the existing durable historic infrastructure was necessary to characterize the infrastructure that remains within the Site. Measurements and photographs were taken to document the remaining infrastructure at the Site, and the details are listed in Table 7 and shown on Figure 6.

2.1.1.4 Geophysical Investigation

In September 2018, a geophysical MASW seismic survey was completed to confirm the existence and location of a subsurface flume(s)/culvert(s) within the Site. Site observations and historic research indicated there may be at least two remaining flumes/culverts within the Site: the Blacktail Creek flume and the historic SBC channel south culvert (Table 7 and Figure 7).

Pioneer completed MASW surveys along three separate transects at the Site. Pioneer positioned the east and west MASW survey transect lines to intersect the approximate location of the

flume(s) and to cross as much of the southern part of the Site as possible. The Middle Transect was positioned near an exposed brick roof of one flume or culvert. Based on the analysis of the MASW survey and background information, the historic flume can be traced across the Site, as shown on Figure 7, from the exposed brick and slag tunnel near the west end of the Site through a void identified in the Middle Transect, the exposed brick roof of the flume in the middle of the Site, and finally the void identified in the East Transect. Additional detail on this investigation can be found in Appendix D.

2.1.2 Groundwater Characterization

In the Initial Phase I Site Investigation (Stage 1), piezometers were installed in 24 locations to fill data gaps regarding groundwater elevations, potentiometric surface, and direction of groundwater flow within the Site, as well as determining seasonal groundwater elevation change (Table 3). Additional work was completed to characterize groundwater chemistry and spatial variability as well as aquifer geometry (i.e., identify depths to bedrock). The 24 piezometers were sampled, along with some existing monitoring wells, during Stage 2 of the Phase I Site Investigation. The results of the analyses are presented in Table 8. Additionally, during the Hydrocarbon Investigation (Stage 3), piezometers were installed in 4 unpaired locations and in 9 locations paired with existing piezometers to refine the spatial extent of hydrocarbon compounds and associated concentrations (Section 2.1.3). Each piezometer location is shown on Figure 5. Piezometers that were anticipated to encounter difficult drilling conditions were installed with a sonic drill rig, and the remainder were installed using a Geoprobe®. The construction for each piezometer is shown on the Lithology Logs in Appendix B, and the field logs for each piezometer are in the Phase I Data Summary Report (Appendix A).

Beginning in January 2019, monthly groundwater levels were collected from the locations identified in Table 3 using an electronic depth-to-water indicator tape (E-tape). Monthly groundwater level monitoring for the additional piezometers installed during the Hydrocarbon Investigation (Stage 3) began in January 2020. The additional piezometers and previously installed locations identified in Table 3 were monitored for monthly water levels for the Phase I Site Investigation and will continue to be monitored through the Phase III Site Investigation. Transducers were installed in select piezometers (Table 3), and data from these transducers are downloaded as part of the monthly groundwater level monitoring efforts. Table 9 lists the monthly groundwater level data from January 2019 to June 2021, and Figure 10 shows the manually documented groundwater elevation variations over time. Figure 11 and Figure 12 show the groundwater contours during low water conditions (February 2021) for both the shallow and deep aquifer units, respectively.

During all three stages of the Phase I Site Investigation, groundwater samples were collected from specified locations and submitted to the laboratory (Pace or Energy) for specified analyses (Table 3 and Table 4). The results of the analyses are presented in Table 8 and Figure 13 through Figure 18.

2.1.3 Organic Pollutants

The Hydrocarbon Investigation (Stage 3) specifically focused on defining the nature and extent to which soil and groundwater within the Site have been impacted by organic pollutants (hydrocarbon compounds, PCB, PCP, and dioxins); however, data were collected during all three stages of the Phase I Site Investigation to help estimate the nature and extent of impacted soil and groundwater within the Site.

During the Initial Phase I Site Investigation (Stage 1), field personnel used photoionization detectors (PIDs) and visual and olfactory observations to screen for the presence of hydrocarbon compounds in heavy vehicular traffic areas, maintenance areas, areas with historic or present-day industrial activities, stained or aromatic areas, borehole cores, and test pit material. The PIDs used were a MiniRae 3000 with a 10.6 electron-volt (eV) lamp and an UltraRae 3000 with an 9.8 eV lamp. Two different lamps were used to differentiate between the different types of hydrocarbon compounds being encountered in the field and provide the team with additional information when selecting laboratory samples to be collected and submitted for laboratory analyses (Table 3 and Table 4). Additionally, groundwater samples were generally collected from piezometers where soil samples had a positive PID detection during drilling activities, and the samples were submitted for laboratory analyses (Table 3 and Table 4). Groundwater samples were also collected from select piezometers during the Additional Groundwater Sampling (Stage 2), and the samples were submitted for laboratory analyses (Table 3 and Table 4).

While activities in the first 2 stages of the Phase I Site Investigation collected relevant data, the Hydrocarbon Investigation (Stage 3) focused specifically on defining the nature and extent of the soil and groundwater within the Site impacted by organic pollutants (e.g., hydrocarbon compounds and PCBs) and identifying if light non-aqueous phase liquid (LNAPL) was present. Thirteen piezometers were installed at strategic locations to better delineate groundwater impacts and detect potential LNAPL (Figure 5). The piezometer screens were installed across the water table (i.e., approximately 5 feet above and 10 feet below the groundwater table) to detect potential LNAPL. The construction for each piezometer is shown on the Lithology Logs in Appendix B. Additionally, 3 test pits were excavated to help delineate the potential impacted soil near borehole BRW18-BH11 (Figure 5). The final depth and lithology of each test pit is shown in the Lithology Logs in Appendix B.

During the Hydrocarbon Investigation (Stage 3), field personnel continued to use PIDs and visual and olfactory observations to screen for the presence of hydrocarbon compounds in borehole cores and test pit material. Based on the field screening, the following samples were collected as follows:

- For all unpaired locations:
 - If the presence of hydrocarbon compounds was detected (via sight, smell, and/or detection with a PID) in the cores from the sonic rig or in the test pit soil, a representative sample was most often collected for laboratory analyses (Table 3 and Table 4).

- For all boreholes and test pits, a soil sample was collected, when possible, near the top of the saturated layer (in the capillary fringe) for laboratory analyses (Table 3 and Table 4) even if there was no evidence of hydrocarbon compounds.
- For paired locations (i.e., a location within approximately 5 feet of a deeper previously completed investigation point), samples were not collected if that location was previously sampled for hydrocarbon compounds.

Once all the hydrocarbon piezometers were installed, groundwater samples were collected from existing and newly installed piezometers and submitted for laboratory analyses (Table 3 and Table 4). The results of the hydrocarbon compound laboratory analyses are included in the Risk-Based Corrective Action (RBCA) Evaluation in Appendix F, and the PCB, PCP, and dioxin laboratory analyses are included in Table 10.

2.1.3.1 Records Review

Historic and contemporary records were reviewed to determine the source of organic pollutants within the Site. These records included Montana Department of Environmental Quality (DEQ) reports from the following neighboring sites with documented releases of organic pollutants (Figure 2):

- 400 Oxford Street: Location of a leaking underground storage tank managed by the DEQ in 1995 (DEQ, 2019).
- 759 South Montana Street: Formerly the location of a Cenex Convenience Store. The site received reimbursement from the Petroleum Tank Release Compensation Board for releases in 1990 and 2006 (DEQ, 2018a).

2.1.3.2 Treatment and Disposal of Hydrocarbon-Impacted Soil from Field Activities

During the Initial Phase I Site Investigation (Stage 1), a temporary bermed containment area, lined with low-density polyethylene plastic sheeting, was set up on the Site to temporarily store soil generated from drilling and potholing activities with detectable hydrocarbon compounds. Per the RFC to the Butte Mine Waste Repository (MWR) Operation and Maintenance (O&M) Manual (BPSOU-MWR OMM-RFC-01) (Atlantic Richfield Company, 2019), the soil was transported from the Site to the Butte MWR for treatment and disposal.

A bermed area was constructed on the upper deck of the Butte MWR by BSB to landfarm the hydrocarbon-impacted soil from the Site. The hydrocarbon compounds in the soil were treated using landfarming techniques, which were conducted in accordance with the Administrative Rules of Montana (ARM) Title 17, Chapter 50, Sub-Chapter 16, Landfarm License and Operation Standards (ARM 17.50.16). Atlantic Richfield monitored the concentrations in the soil until the total hydrocarbon concentrations (the sum of total extractable hydrocarbons plus total petroleum hydrocarbons) was below 100 parts per million (ppm) (the required threshold for disposal at the Butte MWR [Atlantic Richfield Company, 2015]) and to determine if the soil would meet the Tier 1 risk-based screening levels (RBSLs) listed in the Montana RBCA

Guidance for Petroleum Releases (RBCA Guidance) (DEQ, 2018b). Table 11 lists the analytical results compared to the Tier 1 residential surface soil RBSLs, the most stringent RBSLs in the RBCA Guidance. Analytical results were compared to the Tier 1 residential surface soil (less than 10 feet to groundwater) RBSLs to determine if these limits were achievable with landfarming techniques, which will help inform future remedial activities at the Site.

Final measurements indicated that the total hydrocarbon concentrations and extractable petroleum hydrocarbons concentrations from the soil contained at the Butte MWR (Table 11) decreased from approximately 920 ppm to 8.3 ppm and from 1,070 ppm to 244 ppm, respectively. The initial samples were collected on November 2, 2018, and the values decreased to below the threshold for disposal at the Butte MWR by May 29, 2020. As a result, the soil was removed and disposed of at the Butte MWR and the landfarm was closed (i.e., the berms were reclaimed to pre-landfarm conditions, and the final surface was graded to prevent ponding and erosion).

Based on the final samples collected, the soil meets both the required threshold for disposal at the Butte MWR as well as the Tier 1 residential surface soil (less than 10 feet to groundwater) RBSLs. A background sample met all the standards except for benzo(a)pyrene where the concentration was 0.34 ppm, which exceeds the residential surface soil RBSL of 0.13 ppm. However, the background soil sample met the required threshold for disposal at the Butte MWR (total hydrocarbons less than 100 ppm). Based on these results, data indicate landfarming techniques were successful which helps to inform future remedial activities for the Site.

2.1.4 Site Survey

The Site survey with known utilities is shown on Figure 19. The survey data for the Site include an existing ground surface, stream elevations at the general upstream and downstream tie-in locations, critical utility locations, and other general Site conditions.

Due to the consistently changing conditions at the Site (i.e., BSB's operations), the current existing ground surface was estimated from Light Detection and Ranging (LiDAR) data collected in 2020 with the stockpiles of useable material removed from the surface. A base station was operating during the LiDAR flight, at a known location, to provide reference data for the positional coordinate sensor and altitude sensor onboard the aircraft. During post-processing, aircraft data, indexed by Global Positioning System (GPS) time, are corrected and calibrated against reference data to ensure precision (0.102 feet relative vertical accuracy, 0.40 feet horizontal accuracy) of the LiDAR data set that is used to generate surfaces in various software (i.e., Global Information Systems or AutoCAD) (QSI Corvallis, 2020). The existing ground surface was developed by taking LiDAR metadata provided by Quantum Spatial, measured in horizontal datum - North American Datum (NAD) 83 (CORS96; international feet), North American Vertical Datum - (NAVD)88 (GEOID12B; survey feet), and trimming out the varying topography of material stockpiles that exist on the Site which are anticipated to be removed before the RA begins. Ground surface points within a dataset were trimmed by either defining a boundary and excluding anything outside of the boundary from the surface or by selecting all the points that need to be trimmed and removing them from the surface.

OneCall tickets were created for the Site. Representatives from BSB, NWE, and CenturyLink were notified and provided markings for on-Site utilities. In accordance with Atlantic Richfield's overhead utility and ground disturbance defined practice, utility locations were confirmed using blind sweeping and potholing methods during Site investigation activities.

2.2 Phase II Site Investigation

Work performed for the Phase II Site Investigation is categorized into Solid Materials Characterization, Groundwater Characterization, and Organic Pollutants. The following sections detail the work performed in accordance with the Phase II QAPP.

2.2.1 Solid Material Characterization

Generally, the following activities were completed to estimate the volume, distribution, and properties of solid materials within the Site as part of the Phase II Site Investigation:

- Excavated 44 test pits and drilled 5 boreholes for the Slag Investigation and documented information (i.e., physical properties of the slag, equipment production rates, etc.) to inform the potential effectiveness of methods that may be employed to remove the slag (Section 2.2.1.1 and Figure 8).
- Drilled 26 boreholes used for additional solid material characterization. Piezometers were installed in these boreholes and used for groundwater characterization. (Section 2.2.1.2 and Figure 9).
- Collected test pit and borehole soil samples from select lithological layers and had them analyzed for COCs (i.e., arsenic, cadmium, copper, mercury, lead, and zinc) and/or additional constituents of interest (e.g., manganese, trace elements, organic pollutants, etc.) to determine the properties of solid materials including the chemical stability/leachability of these solid materials within the Site (Section 2.2.1.3).
- Documented lithology of test pits and boreholes to determine the distribution of materials (Appendix B).

The subsections below provide additional detail on the work performed for the solid materials characterization.

2.2.1.1 Investigation of Slag Physical Properties and Demolition Method

Generally, the following activities were completed to help refine the extent and physical characteristics of the slag within the Site as part of the Phase II Site Investigation:

• <u>Stage 1:</u> Excavated 40 test pits at locations within the Site where slag is anticipated to be removed during remedial activities and investigate the remaining smelter stack foundation which is constructed on a slag base. Documented physical features of the slag (e.g., visual description, bedding, discontinuities, weathering, hardness, color, etc.).

- <u>Stage 2:</u> Drilled 5 boreholes at locations where slag caused refusal during the excavation of test pits. Attempted to collect core samples to submit for laboratory analysis to determine tensile strength, compressive strength, and the fracture toughness of the slag.
- <u>Stage 3:</u> Conducted field tests at four select locations within the Site and recorded production data to help determine the effectiveness of heavy equipment for slag removal.

For all stages, the lithology of test pits and boreholes was documented, and opportunistic soil samples were collected for analysis of metals and/or hydrocarbon compounds as required by the BRW Phase II QAPP. The work completed for each stage is described in the following subsections.

Stage 1: Test Pits

During the Stage 1 of the Slag Investigation, 39 test pits were excavated and sampled to refine the extent and characteristics of slag in areas where slag is planned to be removed during RA activities. One additional test pit was excavated to determine the extents of the slag foundation base. The location of each test pit is shown on Figure 8. In accordance with the Phase II QAPP, all test pits were logged, and opportunistic soil samples were collected from select test pits within the waste removal corridor for analysis of metals and/or hydrocarbon compounds. Additional details on the soil samples collected are included in Section 2.2.1.3.

Test pits were dug with a 312C Caterpillar excavator and a 320 Caterpillar backhoe until the equipment hit refusal (i.e., could not excavate through material), reached the equipment limitations, or until other Site-specific limitations were encountered. Test pit excavation was constrained by the following equipment limitations and Site-specific conditions:

- The limit of the excavator/backhoe was achieved. There were 2 test pit locations that were completed to maximum depth of the equipment.
- Groundwater was encountered within the test pit. Groundwater was generally encountered during test pit excavation along the southern boundary of the Site and within the waste removal corridor.
- Sidewall stability of the test pit was determined to be unsafe. In a few locations, the Field Team Leader determined that excavation could not continue due to concerns about the stability of the test pit. Demolition debris and void spacing between slag layers were noted for soil instability.
- The excavation equipment met refusal (i.e., the equipment could not excavate through the material). Hard slag was located near the northern Site boundary along the slag wall. Refusal was encountered in some test pits overburdened with fill material from BSB operations or demolition debris from previous operations at the Site. The slag that was beneath the fill or demolition debris was particularly difficult to excavate.

The specific constraint for each location is shown on Figure 8, and additional details on the constraints for each test pit (including the final depths of each test pit) are documented in logbook entries; field logs note the final depths of each test pit.

The one additional test pit that was excavated to determine the extents of the stack foundation confirmed that the general construction of the stack foundation as reported in historic documents (Table 7) is accurate.

The logbook entries, field data sheets, and photographs are included in Appendix A, and the final depth and lithology of each test pit are also shown in the Lithology Logs (Appendix B).

Stage 2: Slag Core Sample Collection

During Stage 2 of the Slag Investigation, 5 boreholes were drilled to collect samples for laboratory tests to determine the tensile strength, compressive strength, and fracture toughness of slag throughout the Site. Test pit results from Stage 1 informed borehole locations for Stage 2 (Figure 8).

Boreholes were drilled using a sonic drill rig, capable of drilling both by traditional (i.e., rotating drill bit) and sonic methods. The borehole locations are shown on Figure 8 and detailed in Table 3. The extracted slag cores were fragile, and lengths were insufficient for laboratory analysis. As a result, no samples were submitted for laboratory testing. Without laboratory analysis, expandable grout could not be specified for the planned field test (Stage 4); however, boreholes were completed to observe physical properties of the slag and to determine potential heavy equipment needed for removal in Stage 3.

The logbook entries, field data sheets, and photographs are included in Appendix A. The final depth and lithology of each borehole are shown in the Lithology Logs (Appendix B).

Stage 3: Heavy-Equipment Removal

During Stage 3 of the Slag Investigation, 4 additional test pits (BRW21-TP1 through BRW21-TP4) were excavated along the northern Site boundary to determine if the slag could be removed with heavy equipment and which piece and/or combination of equipment would be most effective. Test pit locations were determined based on the results from Stage 1 and Stage 2.

Heavy equipment used during Stage 3 consisted of a 350G John Deere excavator with ripper, hammer, and bucket attachments This was supplemented with a 312C Caterpillar excavator with a bucket attachment. The following general procedures were followed during the excavation of each test pit:

- A 312C Caterpillar excavator was used to clear overburden from the test pit locations and the area of exposed slag was surveyed.
- A 350G John Deere excavator was then used to remove the slag. Dependent on the nature of the slag, the Field Team Leader and equipment operator determined the most appropriate attachment to attempt to remove the slag.

- The start and stop time to remove the slag was documented on the Field Data Sheet (Appendix A) for each attachment (i.e., ripper, hammer, and bucket).
- The excavation area/void was surveyed to determine the volume of slag removed.
- Excavation at each test pit was continued until the total depth of slag was determined, the equipment reached refusal (i.e., could not excavate through material), or other Site-specific limitations were encountered (e.g., groundwater, insufficient sidewall stability, etc.).

A digital video camera (or equivalent) was used to record the fracture and removal of slag, as directed by the Field Team Leader. Test pits were logged, and soil samples were collected using techniques detailed in the Phase II QAPP. Only one opportunistic soil sample was collected during Stage 3. A sample was collected from BRW21-TP2 and sent for laboratory analysis of hydrocarbon compounds due to a strong hydrocarbon odor observed while drilling (Appendix B). The logbook entries, field data sheets, and photographs are included in Appendix A. The final depth and lithology of each test pit are also shown in the Lithology Logs (Appendix B).

Stage 4: Expandable Grout Field Test

As stated in the BRW Phase II QAPP, an expandable grout field test was considered as a removal option for the more challenging areas of the slag within the Site. However, knowing the physical properties of the slag (i.e., tensile strength, compressive strength, and fracture toughness) was necessary to safely complete the expandable grout field test. As stated in the Stage 3 summary above, the extracted slag cores were fragile, and lengths were insufficient for laboratory analysis. As a result, the tensile strength, compressive strength, and fracture toughness of the slag could not be determined, and Atlantic Richfield was unable to safely complete the expandable grout field test.

2.2.1.2 Piezometer Installation

Twenty-six boreholes were drilled during the Phase II Site Investigation to install piezometers for the pumping tests. Boreholes were drilled using either a Geoprobe® or sonic drill rig, both of which collected nearly continuous core from which to record lithology and collect samples. The locations are shown on Figure 9 and detailed in Table 3. Lithology for each borehole (with the piezometer construction details) is shown in the Lithology Logs (Appendix B). The field sheets and logbook entries are included in the Phase II Data Summary Report (Appendix A).

2.2.1.3 Field Analysis and Sampling

Soil samples were collected to further define the nature and extent of the COCs and organic pollutants at the Site and to collect additional information regarding the chemical stability/leachability of solid materials that may remain after the RA is complete. A total of 381 natural soil samples were collected from 44 sample locations. A natural sample indicates samples were field samples, not field QC samples (i.e., not a field duplicate, field blank, or equipment rinsate blank). Samples were most often analyzed for metals and organic pollutants. Additional detail on the number of samples is included in Appendix A.

Samples were generally collected from test pits and boreholes following the procedures described below and detailed in the Phase II QAPP.

- Field metals analysis was conducted for each material horizon via the XRF unit, unless determined otherwise by field personnel. The field samples were collected in a ziplock bag and mixed prior to analysis with the XRF unit. The samples were not dried before analysis since these samples were meant for field screening information only.
- A sample was collected from each lithological layer in each borehole and test pit and submitted for metals analysis via ICP-OES, unless the lithological layer was too thin and there was not enough material to fulfill the required sample volume. In this instance, a sample was collected and prepared for Pioneer laboratory XRF analysis. Pioneer laboratory XRF samples were analyzed with the XRF unit in the Pioneer field office at 244 Anaconda Road in Butte, Montana. These laboratory XRF samples were dried, screened, and placed in a small plastic cup with a mylar film cover prior to analysis. Only XRF samples prepared/analyzed in the Pioneer field office were considered official sample results and used for data interpretation. The total number of Pioneer laboratory XRF samples was 130 for the Phase II Site Investigation. Pioneer laboratory XRF samples were most often analyzed for COCs (arsenic, cadmium, copper, mercury, lead, and zinc) as well as calcium, chromium, iron, manganese, and silver. Additional detail on the number of samples and analyses completed is included in Appendix A.
- Selected samples were collected and sent for SPLP analysis. Samples were selected based on location of the sample, soil type of the sample, and if the concentration action level was exceeded (e.g., 367 milligrams per kilogram [mg/kg] copper) as described in the BRW Phase II QAPP. Additional detail on sample selection and the analytical results for each sample submitted for SPLP analysis are summarized in Table 6.
- Additional samples were collected and submitted for laboratory analyses as further discussed in Section 2.2.3.

Note that samples were not collected from boreholes or test pits within approximately 5 feet of a deeper, previously completed investigation point or outside the waste removal corridor unless determined necessary by the field personnel.

The field sheets, logbook entries, and laboratory results for each borehole are included in the Phase II Data Summary Report (Appendix A). The Pioneer laboratory XRF and ICP-OES results for each soil sample collected from the boreholes are shown in the Lithology Logs (Appendix B) and are also presented in a Microsoft Excel file attached to the *Butte Reduction Works (BRW) Phase I and Phase II Investigation Leapfrog Model Inputs Technical Memorandum* (included in Appendix C).

2.2.2 Groundwater Characterization

Groundwater characterization consisted of two pumping tests, pre- and post-pumping-test groundwater analysis, and SBC loading analysis. The pumping tests and analyses addressed

additional design-related data gaps relevant to future hydraulic control and construction dewatering.

2.2.2.1 Pumping Tests

The first pumping test occurred in the western portion of the Site (BRW-PW-01A) and the second pumping test (BRW-PW-01B) occurred within the industrial area of the Site, approximately 550 feet to the east of the first pumping test. The following activities were completed as outlined in the Phase II QAPP:

- Installed and developed pumping test wells BRW-PW-01A and BRW-PW-01B.
- Installed additional piezometers for water level monitoring.
- Completed baseline water level monitoring.
- Conducted step-drawdown test, 72-hour pumping test, and recovery test along with associated monitoring.

Pumping test well BRW-PW-01A was installed near piezometer BRW18-PZ02, in an area identified for relatively high hydraulic conductivity, proximity to potential sources of COCs, and proximity to SBC. The second pumping test well, BRW-PW-01B, was installed in a conductive zone near piezometer BRW18-PZ21 to gather additional data about the area of influence that extends into the east and central areas of the waste removal corridor. Additionally, 26 piezometers were installed prior to the pumping tests to monitor local groundwater elevations during the pumping tests. Phase II Site Investigation Locations, including the pumping wells, are shown on Figure 9.

Pressure transducers were installed to determine groundwater elevations for at least 7 days before and after each pumping test. After determining baseline conditions, each pumping test included a step-drawdown test to determine an effective pumping rate for the 72-hour pumping test. Then the 72-hour pumping test was conducted at the pumping rate determined from stepdrawdown test results, and a 72-hour recovery test was conducted immediately after the pumping test to observe the aquifer recovery at the pumping test well and at nearby monitoring locations. Additional details on the pumping tests are included in Appendix G.

2.2.2.2 Pre- and Post-Pumping-Test Groundwater Analysis

Various locations, summarized in Table 3, were used for pre- and post-pumping-test sampling. Samples were collected prior to either pumping test occurring and then again after both pumping tests were completed (i.e., two sampling events total). The purpose this sampling was to collect additional data that will be used to improve the overall characterization of groundwater chemistry within the Site.

A total of 30 natural groundwater samples were collected prior to the pumping tests, and 31 natural groundwater samples were collected after the pumping tests. A natural sample indicates samples were field samples, not field QC samples (i.e., not a field duplicate, field blank, or equipment rinsate blank). Field parameters were documented following the procedure detailed in

the Phase II QAPP, and samples were most often analyzed for COCs and organic pollutants. The Phase II Data Summary Report (Appendix A) breaks down pre- and post-pumping groundwater sampling by analytical group and the number of samples sent for each.

Analytical results for COCs are included in Table 8 and on Figure 13 through Figure 18; the PCB, PCP, and dioxin laboratory analyses are included in Table 10; and the results of the hydrocarbon compound laboratory analyses are included in the RBCA Evaluation in Appendix F.

2.2.2.3 Silver Bow Creek Loading Analysis

A network of surface water and groundwater monitoring points were used during the pumping tests to evaluate the potential impact of adjacent groundwater on sections of SBC. The work included monitoring staff gages in SBC, stream gaging, and sampling groundwater and surface water for COCs and Radon-222 to estimate groundwater and surface water flux and chemical loading. Stream flow measurements and water quality samples of SBC were collected during low-flow and/or stable surface water flow conditions before, during, and after each pumping test at existing and new staff gages (Figure 9). Groundwater samples were collected from 5 groundwater monitoring locations adjacent to SBC before and after each pumping test, but not during the pumping test to avoid disrupting transducer readings. The samples were collected at locations identified in Table 3 and analyzed for constituents shown in Table 4. A total of 15 natural groundwater samples were collected, and a total of 30 natural surface water samples were collected. A natural sample indicates samples were field samples, not field QC samples (i.e., not a field duplicate, field blank, or equipment rinsate blank). Additional details on the procedures followed as part of the analysis are included in the BRW Phase II QAPP, and evaluation of the data can be found in Appendix H.

2.2.3 Organic Pollutants

The Phase II Site Investigation further delineated the nature and extent of soil and groundwater within the Site that have been impacted by organic pollutants (hydrocarbon compounds, PCB, PCP, and dioxins).

Field personnel used PIDs, visual observations, and olfactory observations to screen for the presence of hydrocarbon compounds in heavy vehicular traffic areas, maintenance areas, areas with historic or present-day industrial activities, visually stained or aromatic areas, borehole cores, and test pit material. The PIDs used were a MiniRae 3000 with a 10.6 eV lamp and an UltraRae 3000 with an 9.8 eV lamp. Two different lamps were used to differentiate between the different types of hydrocarbon compounds being encountered in the field and to provide the team with additional information when selecting samples to be collected and submitted for laboratory analyses (Table 3 and Table 4).

Groundwater samples were collected from select piezometers based on results from previous investigations, and the samples were submitted for laboratory analyses (Table 3 and Table 4). Additionally, field personnel screened investigation locations for LNAPL, but LNAPL was not identified at any location during the Phase II Site Investigation.

The results of the hydrocarbon compound laboratory analyses are included in the RBCA Evaluation in Appendix F; and PCB, PCP, and dioxin laboratory analyses are included in Table 10.

2.3 Other Site Investigation Activities

Work performed for Other Phase II Site Investigation activities is categorized into Structural Assessment, Cultural Resource Inventory and Water Delineation Survey. The following sections detail the work performed in accordance with the Phase II QAPP.

2.3.1 Structural Assessment

DCI Engineers (DCI) performed a structural assessment of various structures at the Site in 2021. These included a single span bridge with steel girders and wooden deck supported by slag walls on the northern boundary of the Site, the historic ore bin structure supported by concrete columns, and furnace foundation structures constructed of slag and concrete. The parallel slag walls that run along either side of the existing SBC (Slag Canyon) were not included with this structural assessment. The structures evaluated are shown in Figure 6 and described in Table 7.

On July 28, 2021, DCI completed a visit to the Site, where the structures were visually inspected along with taking measurements and photographs. Based on the observations, DCI made the following conclusions for the structures included as part of the assessment (DCI Engineers, 2021):

- <u>Bridge:</u> The bridge should be closed to all vehicle traffic and pedestrians because the construct of the bearings could not be evaluated. The bridge superstructure and deck are in fair or better condition; however, the bridge deck and superstructure are only rated for light vehicles and could not be used for highway trucks or emergency vehicles even after the condition of the bearings is known.
- <u>Ore Bin Structure:</u> Parts of the ore bin structure are severely deteriorated due to exposure to weather, and the structure will continue to lose structural integrity over time and may collapse in the future (at any time or possibly during a seismic event).
- <u>Furnace Foundation Structures:</u> Visible furnace foundations vary in condition from good to completely failed. These foundations only support themselves, and their buried portions could not be evaluated. Signs of moderate to severe deterioration have occurred indicating their condition will continue to worsen with time, leading to partial or complete collapse.

Additional information on the recommendations for the RD are included in Section 5.0, and a copy of the structural report is attached as Appendix K.

2.3.2 Cultural Survey

A cultural resource inventory and evaluation for BPSOU was conducted by Mitzi Rossillon (Consulting Archaeologist, LLC). Six separate areas covering approximately 121 acres were evaluated. Of the six, the Site accounts for approximately 70 acres. This inventoried area is

larger than the Site area identified by the BPSOU CD (Section 1.1), but the features discussed only pertain to BPSOU CD area.

The fieldwork portion of the project was completed in April and May 2021. The Site area (and surrounding area) was inventoried with meandering transects across the Site, and cultural resources were documented and/or redocumented (as necessary) for those previously documented on standard Montana Cultural Resource Information System forms. Features were photographed and field mapped using a combination of a resource-grade GPS and reference to Google Earth imagery. As part of the cultural survey, a variety of historic documents were examined as well as completing on-line research.

A total of 24 structures were evaluated. The structures evaluated within the Site are shown on Figure 6 and described in Table 7. Based on the observations, the following structures within the Site were either previously listed or are eligible for listing in the National Register of Historic Places (Rossillon, 2021):

- Network of slag walls (previously listed in Butte-Anaconda Historic District).
- Smoke flue, Blacktail Creek flume, and slag trench (associated with the smoke flue and Blacktail Creek flume).
- Possible reverberatory furnace foundation and settling tables.
- Blister building/blowing engine building foundation.
- Ore bin.
- Concrete and slag culvert and headgate.

These surviving features retain sufficient integrity (i.e., design, workmanship, evoked historic feeling) to their known or presumed functions to warrant consideration to being listed in the National Register of Historic Places. However some structures will be removed due to poor structural integrity and to meet cleanup goals established by the BPSOU CD. Additional information on the recommendations for the RD are included in Section 5.0, and a copy of the cultural survey report is attached as Appendix J.

2.3.3 Wetland Delineation Survey

In June of 2019, Pioneer conducted a wetlands assessment to determine Functionally Effective Wetland Area (FEWA) units (defined as delineated wetland acreage adjusted by an overall rating for functional value) at the Site. The full wetland delineation report is included in Appendix E. Methods set forth in the U.S. Army Corps of Engineers (USACE) *Wetland Delineation Manual* (Environmental Laboratory, 1987) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (USACE, 2010) were applied to complete the FEWA evaluation.

For functional assessment purposes, the Site was divided into 2 areas based on current conditions. These areas are shown on Figure 1 of Appendix E. The first area is immediately west of Montana Street consisting of the "Slag Canyon" and BSB maintenance materials area and is identified as the "BRW-BSB" site and is 19.0 acres. The overall FEWA rating for the BRW-BSB

site was 0.9 out of 3.0 with a low or very low rating for all functional categories except for Sediment Stabilization and Erosion Control, which was rated high. In total, 0.06 acres of wetland areas were identified and mapped within the BRW-BSB site.

The second area is located to the west of the BRW-BSB site and is identified as the "BRW-Lower Area One (LAO)" site and is 4.2 acres. The overall FEWA rating for the BRW-LAO site was 1.68 out of 3.0. The BRW-LAO site scored a high reading for Hydrologic Support and Sediment Stabilization/Erosion Control. The BRW-LAO site scored moderately for the following:

- Production Export/Food Chain Support.
- Wildlife Diversity/Abundance: Breeding.
- Wildlife Diversity/Abundance: Wintering.
- Threatened and Endangered Species Habitat.

The BRW-LAO site scored low for the following:

- Flood Flow Alteration.
- Water Purification.
- Aquatic Diversity/Abundance.
- Wildlife Diversity/Abundance: Migration.

In total, 3.14 acres of wetland areas were identified and mapped within the BRW-LAO site.

3.0 INTERPRETATION OF RESULTS

The following sections provide an interpretation of the results from the work performed for the Phase I and Phase II Site Investigations in relation to the data gaps and objectives identified in Table 2. Please note that additional interpretation of future Site investigations will be incorporated into this PDI Evaluation Report and resubmitted to Agencies for review as the RD progresses.

3.1 Solid Material Characterization

The Phase I and II Site Investigations collected substantial design-related data to estimate the volume, distribution, and properties of solid materials within the Site and evaluate some constructability concerns regarding materials and structures within the Site. Solid materials collected in the field were categorized into four broad waste categories:

- Slag A stone and glass-like waste product that results from the smelting of ore. Slag tends to have a black appearance within the Site and is difficult to dig and drill through.
- Demolition Debris Material from previously demolished structures. Soil is mixed with timbers, brick, concrete, asphalt, and nails.

- ATO The ATO waste category is an acronym for alluvium, tailings, and organic soil. Alluvium is a general term that describes deposits of clay, silt, sand, and gravel. Tailings typically refers to waste rock that was pulverized to a fine sand. Organic soil describes subsurface native dirt that lies near or below waste in a soil column with high organic content.
- Other This category describes material that was stockpiled by BSB, the drill pad and access road in the flood plain, and material that lies above waste at the top of a soil column. Generally, "Other" is material that was not identified as slag, demolition debris, or ATO.

Waste categories are further discussed in the Leapfrog Model (Appendix C). Interpretations of the results are provided below. Additional design-related data will be collected during the additional Site investigations and will be incorporated into the Leapfrog model.

3.1.1 Volume, Distribution, and Properties of Solid Materials

Based on the results summarized in Sections 2.1.1.1 and 2.1.1.2, the Leapfrog Works software was used to estimate the volume, distribution, and properties (i.e., COC concentrations and leachability) of solid materials (slag, demolition debris, ATO, and other). The software was further used to identify the volume and distribution of impacted and unimpacted ATO (which informed the evaluation of waste at the Site) and to provide information to inform the Conceptual Site Model (CSM) within the BRW Hydraulic Control and Construction Dewatering Technical Report (Appendix H) and RBCA Evaluation (Appendix F).

Waste

Observations of slag and demolition debris were noted in the borehole logs from the Phase I and Phase II Site Investigations, the BRW Smelter Site Test Pit Report (NRDP, 2016), and the installation of existing monitoring wells. These observations were imported into the Leapfrog Works software to generate the models depicting the distribution of slag and demolition debris. Figure 20 and Figure 21 show the distribution of slag and demolition debris, respectively, within the Site.

To estimate the quantity and distribution of waste material (i.e., material above the waste identification criteria in the BPSOU CD [Table 1]) within the Site and within the waste removal corridor, chemical properties (i.e., COC concentration data from soil samples collected during the Phase I and Phase II Site Investigations) were imported into the Leapfrog Works software (Appendix C). The Pioneer laboratory XRF concentration data were adjusted to the regression for the upper 95% confidence interval, referred to as the upper 95% regression, using paired samples with the ICP-OES concentration data prior to being imported. Figure 22 shows the interpreted volume of material that exceeds the waste criteria, and Figure 23 shows the interpreted volume of material that passes the waste criteria. The approximate volume of slag, demolition debris, and waste materials within the Site and within the waste removal corridor are shown in Table 12. Table 13 lists the depth to bottom of waste in each of the boreholes and test pits located within the waste removal corridor. The table also compares bottom of waste depth to the excavation depth in each location and lists the average excavation depths below bottom of waste is 1.6 feet when compared to the bottom of waste using the COC concentrations, with Pioneer laboratory XRF

adjusted with the upper 95% regression, and material types. The average excavation depth below the modeled waste using the COC concentrations is 0.9 feet. When you remove locations where no waste was found in the borehole data, the averages are 1.1 feet and 0.8 feet, respectively (Table 13). The excavation surface therefore provides an average of between 0.8 foot to 1.6 foot factor of safety. Further details on how these models were generated are discussed in Appendix C.

Leachability

In addition to the concentrations of COCs within the materials at the Site, the potential leachability of those materials was evaluated and modeled. Materials that have highly leachable concentrations of COCs have the potential to continue impacting groundwater at the Site after the RA is complete. The evaluation of the potential leachability of the on-Site materials informs the design of the overall remediation efforts, specifically the BRW hydraulic control and waste removal corridor. The following four items were derived from leachability concentrations modeled in the Leapfrog model:

- 1. Average soil depth in each percolation area for the Hydrologic Evaluation of Landfill Performance Model (Appendix I).
- 2. Average leachable COC concentration in each percolation area for the CSM (Appendix H).
- 3. Length of source parallel to groundwater, a measurement of the hydrocarbon impacts at the Site which was used in the RBCA Evaluation (Appendix F).
- 4. Leachable copper source volume, which became targeted for removal and was used to update the waste removal corridor.

Additional details on how these items were created in the Leapfrog model are described in Appendix C.

3.1.2 Constructability Considerations

Constructability considerations within the Site were investigated during the Phase I and II Site Investigations (quantification of historical infrastructure and geophysical investigation) (Section 2.1.1), the slag investigation (Section 2.2.1.1), structural assessment (Section 2.3.1), and cultural resource survey (Section 2.3.2). Each assessment targeted different aspects of structures and materials within the Site (i.e., nature/extent, physical properties, demolition considerations, stability, and historic significance).

From the slag investigation it was determined that the physical properties of the slag material within the Site are highly variable; in some areas the slag is very difficult to remove due to equipment limitations, the groundwater table, and overall stability of soil and slag once it is disturbed. Slag removal using heavy equipment, produced mixed results (Figure 8). The ripper, hammer, and bucket attachments were ineffective at BRW21-TP1 and BRW-TP2, where slag was nearly impenetrable. Slag was penetrated at BRW21-TP3, but the attachments were insufficient for complete removal of slag. Slag was easily excavated with a bucket attachment at BRW21-TP4 and did not require other attachments.

The remaining infrastructure within the Site was identified and summarized in Sections 2.1.1, 2.3.1, and 2.3.2. Recommendations for the RD are included in Section 5.0, and no additional interpretation is necessary.

3.2 Groundwater Characterization

The purpose of groundwater characterization within the Phase I and II Site Investigations was to collect preliminary groundwater elevation information to support creation of potentiometric surfaces and interpretation of groundwater flow direction (including seasonal groundwater changes); evaluate the spatial variability of groundwater chemistry within the alluvial aquifer at the Site; and assess the aquifer geometry. Based on the data collected from the Phase I Site Investigation, the Phase II Site Investigation work activities consisted of two pumping tests, pre-and post-pumping test groundwater analysis, and the SBC loading analysis. The objectives of the Phase II Site Investigation work activities included collection of additional information on the aquifer characteristics to help address design-related data gaps relevant to future hydraulic control and construction dewatering.

3.2.1 Chemistry and Spatial Variability

Groundwater quality samples collected at piezometers and pumping wells installed during field investigations indicate the presence of COC-impacted groundwater at the Site. Groundwater samples were collected during the Phase I and Phase II Site Investigations as discussed in Section 2.1.2 and Section 2.2.2, respectively.

All monitoring locations were sampled periodically during the Phase I and II Site Investigations depending on the objectives of the site investigation activities specified in the BRW Phase I QAPP and BRW Phase II QAPP. The results of the sampling are presented in Table 8. Figure 13 through Figure 18 illustrate the results of groundwater quality analysis for metal COCs in locations sampled during field investigations. Sample results for each metal COC are reported for a subset of monitoring locations screened in either the shallow aquifer (upper portion of each figure) or deep aquifer (lower portion of each figure). For all six metal COCs analyzed, a greater number of sampling locations exceeded groundwater quality thresholds in the shallow-screened locations than in the deeper locations.

It should be noted that limited detection of mercury prevented conclusive spatial interpretation of its extent, but mercury was detected to a greater degree in shallow groundwater than deep groundwater. Except for mercury, every metal COC displayed at least one location where analyzed concentrations exceeded both the chronic surface water standard and the groundwater remedial goal in both shallow and deep aquifer units, indicating widespread impact from historic disturbance. The occurrence of the highest concentrations and greatest number of detections in the shallow aquifer unit supports the planned removal of saturated waste in the shallow aquifer. Most metal COCs exhibit higher concentrations on the western portion of the Site than the eastern portion of the Site. Additional analysis and interpretation of groundwater quality can be found in Appendix H.

As discussed in Section 2.2.2.2, samples were collected before either pumping test occurred and then again after both pumping tests were completed (i.e., two sampling events total). Comparison of analytical results before and after the pumping tests show that there is no observed trend in the data between COC concentrations before and after the pumping tests. The COC concentrations increased in some piezometers during the pumping test (e.g., BRW19-PZ05S), while COC concentrations in other piezometers decreased (e.g., BRW18-PZ01). Since the objective of collecting additional groundwater samples before and after the pumping tests was to collect additional data to provide finer detail on the nature and extent of COC- and hydrocarbon-impacted groundwater within the Site, no further evaluation or data interpretation was done comparing the COC concentrations before and after the pumping tests. Characterization of production water from the two pumping tests performed at the Site is discussed further in Appendix G.

3.2.2 Groundwater Surface and Direction of Flow

Groundwater contours and direction of flow were developed based on the results from the Phase I and Phase II Site Investigations. Groundwater elevations were calculated by subtracting depth to water measurements (documented manually during the monthly water level readings) from the surveyed measuring point elevation (typically the north side of the inner casing) for each investigation point. The elevation of the water table at the Site generally ranges from approximately 5,442 to 5,435 feet above mean sea level (NAVD 88).

Compilation of groundwater potentiometric surface contours (Figure 11 and Figure 12) indicates typical groundwater gradients at the Site of approximately 0.003 to 0.005 feet per foot. The groundwater contours were created by interpolating the measured groundwater elevations at the monitoring locations with kriging algorithms. Based on the shallow and deep potentiometric surfaces, groundwater traveling under the Site generally flows from the southeast to the northwest, towards BRW-00 and the Hydraulic Control Channel (HCC).

Table 9 lists the monthly groundwater level data from January 2019 to June 2021. Figure 10 shows the manually documented groundwater elevation variations over time, Figure 11 and Figure 12 show the groundwater contours during low water conditions (February 2021) for both the shallow and deep aquifer units, respectively. Both figures contain the monitoring locations that inform the groundwater contours. These monitoring locations (Contour Data Points) are listed in the upper left corner and omitted locations, with reasoning, are listed in the upper right corner of Figure 11 and Figure 12. Standard deviation data are used within kriging algorithms that generate the shading shown in each figure. The standard deviation values used to generate shading are highlighted in green in Table 9.

3.2.3 Aquifer Parameters and Geometry

Collection of groundwater elevation data during the pumping tests allowed analysis of the aquifer response to pumping stress. Numerical evaluation of the data provided estimates of aquifer parameters (transmissivity and storativity), identified possible hydraulic boundaries, and evaluated preferential flow and anisotropy. Detailed discussion of the pumping test analysis is found in Appendix G.

The two pumping tests were performed in the western portion of the Site; both tests involved subjecting the aquifer to pumping stress and evaluating the response in a network of monitoring wells (Section 2.2.2). The pumping wells were considered representatively connected to both shallow and deep areas of the aquifer, which responded similarly to pumping stress. The shallow aquifer unit likely exhibits more historic disturbance, whereas the deeper aquifer unit contains a greater portion of cleaner alluvial sands and gravels (Appendix B).

Estimates of transmissivity between the 2 pumping tests were within the same order of magnitude. Aquifer thickness, interpreted from the associated well logs (Appendix B), allowed calculation of estimated horizontal hydraulic conductivity. Average (plus or minus one Standard Deviation) transmissivity values in the Pumping Test A area result in estimated hydraulic conductivity values of 213 plus or minus 113 feet per day, and average transmissivity values in the Pumping Test B area result in hydraulic conductivity values of 168 plus or minus 46 feet per day. A detailed discussion of aquifer conductivity and spatial heterogeneity is found in Appendix G. Estimates of groundwater quantities at the Site resulting from this analysis can be found in Appendix H.

Aquifer material at the Site consists of a mix of naturally lain alluvial material (historic SBC sediment) and tailings (the aquifer primarily consists of ATO material). The shallow aquifer contains portions of saturated industrial fill and demolition debris. It is likely that historic SBC in this area was a braided, low-gradient stream affected by beaver dams and channels, and that a range of fine (silts and clays with varying organic content) to coarse (sands and gravels) sediments were deposited given the historical progression of stream morphology. Groundwater flowing through these materials is subject to preferential channels and intermittent low-conductivity lenses, and thus groundwater does not flow or slope in a uniform fashion across the Site.

The thickness of the alluvial aquifer at the Site generally ranges from 25 to 30 feet; the bottom of the alluvial aquifer is bounded by the bedrock surface. Some groundwater likely travels through a layer of weathered bedrock at the bottom of the aquifer, but the exchange with the bedrock aquifer is considered minimal in relation to alluvial flow. The deeper aquifer unit at the Site is slightly thicker than the shallow aquifer unit, which thins slightly to the west. This estimate is based on approximating the elevation of lower conductivity material in the middle portion of the aquifer that may behave as an intermittent or semi-confining aquitard (clay material). This clay was likely deposited in low energy beaver ponds and overbank floodplain environments and is not uniform across the Site. Many boreholes showed multiple clay layers, and some did not contain clay at all. A discussion of the functional characteristics of the aquifer layers and simplifications of the lithology used for assessing contaminant loading and modeling design scenarios are in Appendix H.

3.2.4 Seasonal Groundwater Elevation Change

Figure 10 shows the manually documented groundwater elevation variations from January 2019 through June 2021. Generally, the highest groundwater elevations were observed in March, April, and October, while the lowest groundwater elevations were observed in the winter months

(December through February). Table 9 presents data collected from January 2019 through June 2021 and identifies the peaks and troughs (red and blue highlights) of seasonal variations as well as shaded cells with superscripts for dataset determinations (i.e., outliers, abnormal seasonal fluctuation). Figure 11 and Figure 12 shows the lowest groundwater contours (February 2021) for the deep and shallow aquifer units.

Outlier Determination

As indicated in Table 9 and on Figure 10, professional judgement was used to identify manual groundwater level measurement outliers. Since the overall seasonal water elevation trends are the targeted information that will be used to advise the design of the BRW hydraulic control and construction dewatering, individual measurements are not as important, and the professional judgement focused on quality data regarding the seasonal trends. The outlier measurements included groundwater elevations that did not follow the general seasonal trends of the majority of wells/piezometers at the Site (where no transducer measurements were available) and/or were notably different from trends recorded from pressure transducers.

The seasonal variation in groundwater elevations across the Site is relatively small. The standard deviation for the depth-to-water measurements taken at wells/piezometers where no outliers were identified ranged from approximately 0.07 feet to 0.6 feet in the deep aquifer unit and 0.15 feet to 1.02 feet in the shallow aquifer unit (green highlighted cells on Table 9). Figure 10 shows how the groundwater elevations increased slightly in the spring, fell in the early summer, rose slightly again in the fall, and declined in the winter. Most of the wells/piezometers followed this pattern and overall, the change in elevation was consistent between monitoring points located across the Site.

For those wells/piezometers without transducers (identified in Table 3), the outlier identification was conducted visually. The groundwater elevations were plotted on a graph similar to that shown on Figure 10. When the change in groundwater elevation between the preceding and following month did not match the overall pattern observed in the other wells/piezometers for that month, the manual groundwater level measurement was identified as an outlier. Any depth-to-water measurement identified as an outlier was compared to the field logbook (Appendix A) to ensure the value matched that in the logbook. Outlier measurements may indicate the heterogeneity of the alluvial aquifer, given the wide range of materials present at the Site, or may be a result of measurement error.

The April depth-to-water measurement for BRW18-PZ06 (8.33 feet [Table 9]) provides an excellent example of the outlier determination process for locations with no transducer. In relation to the March (4.15 feet) and May (3.86 feet) depth-to-water measurements, the magnitude of the change in elevation is significantly greater than that shown at the other wells/piezometers. Additionally, the groundwater elevation increased from March to April for many of the other wells/piezometers. The 8.33-foot depth-to-water measurement in BRW18-PZ06 would have resulted in a significant drop in groundwater elevation. This change was not observed in any of the nearby wells/piezometers. These discrepancies qualified the April monthly depth-to-water measurement as an outlier. Other outliers, presented in Table 10, identified by following the same selection process, are indicated by a superscript 1 and yellow highlight.

For those wells/piezometers with transducers (identified in Table 3), the monthly depth-to-water measurement was compared to the data collected by the transducer as well as to the transducer data of other wells/piezometers at the Site. Where the manual depth-to-water measurement could not be reconciled with the transducer data, the point was identified as an outlier. The outliers were either close to the transducer data but did not meet the 0.05-foot acceptable drift tolerance or were significantly different than the transducer data. In the latter case, accounting for changes in the placement of the transducer after it was removed and replaced could not reconcile the manual depth-to-water measurement. Efforts have been made to improve the accuracy of the manual groundwater measurements including using the same meter each month, if possible, and confirming the measured water level with both a traditional water level meter and the water level meter with an interface probe.

3.2.5 Evaluation of Groundwater Impact to SBC

Analysis of surface water and groundwater data collected as part of the SBC loading analysis determined the potential for impacted groundwater to discharge into SBC adjacent to the Site. Analysis of recent head observations indicate that the reach of SBC adjacent to the Site is generally a losing reach (adjacent the BRW-00 and HCC capture features), but management of the capture features, observed seasonal variability, and select aquifer areas with upward gradient indicate the possibility that impacted groundwater may reach or have reached SBC under past or future conditions. During field investigations, estimates of groundwater flux to SBC using field stream flow measurements and mass balance methods resulted in method error greater than calculated groundwater flux to SBC. A discussion of surface water/groundwater interaction during the pumping tests is included in Appendix G, and an evaluation of contaminant migration pathways to surface water is included in Appendix H.

3.3 Organic Pollutants

The Phase I and Phase II Site Investigations collected information to estimate the nature and extent of soil and groundwater within the Site impacted by select organic pollutants (hydrocarbon compounds, PCBs, PCP, and dioxins). The data will then be used to develop a plan to manage the impacted soil and groundwater within the Site as part of the RD.

Atlantic Richfield has completed a risk evaluation for the hydrocarbon-impacted materials within the Site following the RBCA Guidance (DEQ, 2018b). The RBCA evaluation is included in Appendix F and was completed to the extent possible based on the data from the Phase I and Phase II Site Investigations. For the current RBCA evaluation, the data were compared to Tier 1 and Tier 2 RBSLs to determine whether additional evaluation was needed. Once the Phase III Site Investigation and the Microbial Analysis and Biotreatability Study are completed, the revised RBCA evaluation will be resubmitted with the revised PDI Evaluation Report.

In addition to the RBCA evaluation, which only addressed contamination resulting from petroleum releases (i.e., hydrocarbon compounds), additional groundwater samples were collected for the remaining organic pollutants (PCBs, PCP, and dioxins). The results for the additional samples collected for the remaining organic pollutants are shown in Table 10.

3.3.1 Chemistry and Spatial Variability

The Tier 2 evaluation identified recurring RBSL exceedances based on data collected during the Phase I and Phase II Site Investigations. Soil RBSL exceedances do not correspond to groundwater RBSL exceedances, which suggests that hydrocarbon-impacted soil is fixed vertically in the soil column where the sample was collected. Furthermore, groundwater RBSL exceedances do not demonstrate a plume migrating toward SBC, and the hydrocarbon compounds appear to be isolated in the shallow groundwater aquifer beneath the industrial area of the Site. Additionally, all groundwater samples collected during the pumping tests from pumping wells BRW-PW-01A and BRW-PW-01B were below the applicable RBSLs.

Data from the Phase I and Phase II Site Investigations were also used to estimate a potential source area based on the reported soil concentrations of total extractable hydrocarbons (TEH). Based on the analytical results from the Phase I and II Site Investigations, it was decided that a conservative estimate of the source area could be represented by soils with TEH concentrations greater than 100 mg/kg (TEH volume). This source area was then used to inform the potential risk of remaining hydrocarbon-impacted materials leaching to groundwater in the RBCA evaluation. Additional details on the development of the source area are included in Appendix C, and additional details on the RBCA evaluation are included in Appendix F.

All groundwater samples collected as part of the Phase I and Phase II Site Investigations had non-detectable concentrations of PCBs, PCPs, and dioxins (Table 10).

Additional groundwater sampling of hydrocarbon compounds, PCB, PCP, and dioxins will occur per the Phase III QAPP and results will be incorporated. The chemistry and spatial variability of organic pollutants will be re-evaluated after additional data are collected from the future site investigations.

3.3.2 Plan to Manage Impacted Soil and/or Groundwater

The Biotreatability QAPP outlines additional data to be collected to characterize soil and more specifically, the biological degradation potential for hydrocarbon-impacted soil. Specific analysis of potential influence on biological degradation from metal concentrations and reduced species is needed to inform the management plan for hydrocarbon-impacted soil. Data will inform whether landfarming and/or chemical oxidation are feasible treatment options for hydrocarbons within the soil at the Site. Hydrocarbon-impacted groundwater would require treatment based on the current sampling results; however, the RA is expected to reduce potential source concentrations remaining within the Site below applicable RBSLs. The plan to manage impacted soil and/or groundwater will be included in an updated version of this PDI Evaluation Report after the Phase III QAPP and Biotreatability QAPP field activities are completed.

3.4 Silver Bow Creek Realignment

As part of Site RA, SBC will be removed from its current location to the north of the Site and reconstructed through the waste removal corridor. The new preliminary SBC alignment can be

seen on Figure 3. Additional detail regarding construction of the new SBC channel will be provided in the Intermediate (60%) RD Report submittal.

3.4.1 SBC Bottom Invert at Upstream and Downstream Tie-in Locations

The SBC runs east to west through the Site. The SBC bottom invert at the upstream and downstream tie-in locations for the preliminary stream alignment was surveyed, and the results are shown on Figure 19. Tie-in locations will be resurveyed to account for changes in stream dynamics or other design modifications based on current field conditions. No additional interpretation is necessary for this objective.

3.4.2 Evaluation of Potential Lining of Relocated SBC

The BPSOU CD outlines the potential for installation of a liner material underneath the reconstructed segment of SBC. The liner would form a hydraulic barrier between the reconstructed channel and groundwater beneath the creek. Installation of a liner is evaluated along with other technologies for hydraulic control in Appendix H. Drawbacks of a liner include the increased construction difficulty and increased level of long-term maintenance and monitoring required. Given effective hydraulic control design, reconstructed SBC through the Site will be a losing reach, similar to the reaches below it through LAO. Appropriate selection of bed material that minimizes bed conductivity will allow for a more natural stream system that prevents excess surface water from entering the capture system while simultaneously allowing for long-term channel stability. Additional discussion of SBC liners is included in Appendix H.

4.0 REMAINING DATA GAPS

Data were collected during the Phase I and Phase II Site Investigations to help fulfill the following objectives from Table 2:

- Solid Material Characterization:
 - Determine the volume and distribution of slag and solid materials that fail the waste criteria within the Site.
 - Determine the leachability of metals within the soils that will remain within the Site after removal of waste materials to properly design the BRW hydraulic control.
 - Identify constructability concerns (e.g., slag, historic infrastructure, subsurface voids, etc.).
- Groundwater Characterization:
 - Define the spatial variability of groundwater chemistry within the Site.
 - Define the hydraulic conductivity and transmissivity of the aquifer within the Site.
 - Define the aquifer geometry.
 - Evaluate the interaction between groundwater and surface water and impact of such on the subsection of SBC.

- Organic Pollutants:
 - Define the chemistry and spatial variability of groundwater and soil within the Site that is impacted with organic pollutants (hydrocarbon compounds, PCB, PCP, and dioxins).
 - Develop a plan to manage the impacted groundwater and soil within the Site.
- SBC Realignment
 - Determine reconstructed SBC upstream and downstream tie in locations.
 - Evaluate if a lining will be needed for the new SBC channel.

Based on the data collected from the Phase I and Phase II Site Investigations, these objectives were not completely met, and additional data have been/will be collected during future site investigation activities (Section 1.7). The sections below detail the Site activities, data collection, and data interpretation to be completed to fill the above data gaps and inform the RD. Prior to the submittal of the Intermediate (60%) RD Report, Atlantic Richfield intends to incorporate the data, interpretation of results, and subsequent RD recommendations into this PDI Evaluation Report and resubmit to Agencies for review.

4.1 Solid Materials Characterization

Additional data has been/will be collected during forthcoming site investigations to fulfill the following data gaps:

- Evaluate the volume and distribution of solid materials that fail the waste criteria at select borehole locations within the Site to complete the design of an excavation surface.
- Determine the leachability of metals within the soils from a final series of samples collected from archived cores to complete the design of the excavation surface and to properly design the BRW hydraulic control.
- Identify existing subsurface voids, if any, within the Site for excavation and constructability considerations.
- Assess the geotechnical properties of soils in the western portion of the Site to characterize a clay layer and for constructability considerations (e.g., end-land use, feasibility of slag removal).

The sections below detail how additional data will fulfill the above data gaps. Atlantic Richfield intends to collect the additional data detailed in the sections below in 2022 which will allow the Intermediate (60%) Remedial Design to be completed in 2023.

4.1.1 Volume and Distribution of Waste Materials

As part of creating the Leapfrog model (Section 3.1.1), an evaluation was completed to determine where additional data may be needed to refine the waste volumes and complete the design of an excavation surface. Figure 24 shows the locations of the completed investigation points for the Phase III Site Investigation (reference Appendix C for additional information on how these points were selected). During the Phase III Site Investigations, field personnel

documented the lithology and collected samples for metals analysis as specified in the BRW Phase III QAPP. Once data received from these additional locations undergo data validation, the Leapfrog model will be updated following the general procedures used to create the model (Appendix C), and the excavation surface will be completed.

In addition to the Phase III Site Investigation, Atlantic Richfield plans to collect additional samples from archived cores and submit for SPLP analysis. Based on the sample results from the Phase I Site Investigation, Atlantic Richfield has identified the need to collect additional samples for SPLP analysis to help refine the extent of leachable material in the western portion of the Site and help refine the estimate of leachability from the slag materials. The procedures and protocols for these samples will be incorporated into the BRW Phase III QAPP and submitted to Agencies for review and approval prior to initiating sample analysis. Once the data are collected, the Leapfrog model will be updated following the general procedures used to create the model (Appendix C), and the extent of the leachable source material will be finalized.

4.1.2 Geotechnical Properties

During the Phase III Site Investigation, a geotechnical analysis of Site conditions was completed for soils that will be encountered during RA activities and soils that may remain in place after the RA is complete. Figure 24 shows the locations of the completed investigation points for the Phase III Site Investigation.

In additional to the Phase III Site Investigation, a geoseismic survey is planned to help identify potential subsurface voids within the waste excavation or end-land use structure boundary and some final geotechnical sampling is planned to characterize the clay layer within the western portion of the Site. The procedures and protocols for these tentatively planned Site investigation activities will be incorporated into the applicable QAPP and submitted to Agencies for review and approval prior to initiating field work.

4.2 Groundwater Characterization and Hydraulic Control

Additional data were collected during the Phase III Site Investigation to help refine the spatial variability of groundwater chemistry within the Site during high- and low-groundwater conditions in 2021. As specified in the BRW Phase III QAPP, groundwater data were collected during high- and low-groundwater and surface water conditions to further characterize seasonal variation of groundwater at the Site. Groundwater samples were most often analyzed for COCs and organic pollutants. An updated SBC loading analysis was conducted from the area between SS-05B and SS-06A (Figure 2) during high- and low-groundwater and surface water conditions to determine changes in chemical concentration and potential loading to SBC during a representative range of seasonal groundwater and surface water conditions.

The seasonal variation data collected from the Phase III Site Investigation, including information compiled into the updated Leapfrog model, will be incorporated into the CSM that will be used to evaluate options and select designs for the BRW hydraulic control and construction dewatering (Appendix H).

4.3 Organic Pollutants

Additional data will be incorporated from the BRW Phase III Site Investigation and the Microbial Analysis and Biotreatability Study to fulfill the following data gaps:

- Define the spatial variability of groundwater and soil within the Site that is impacted with organic pollutants (hydrocarbon compounds, PCB, PCP, and dioxins).
- Develop a plan to manage the organic pollutant-impacted groundwater and soil within the Site.

The field activities and data collection for the Phase III Site Investigation activities are outlined in the BRW Phase III QAPP, and the field activities and data collection planned for the Microbial Analysis and Biotreatability Study are outlined in the Biotreatability QAPP. Additional soil and groundwater samples will be collected during both the Phase III Site Investigation and Microbial Analysis and Biotreatability Study, and then submitted for analysis of organic pollutants (hydrocarbon compounds, PCB, PCP, and dioxins).

In addition to the Phase III Site Investigation and the Microbial Analysis and Biotreatability Study, additional sampling may be completed to delineate the extent of organic pollutants (i.e., PCBs, PCP, and/or dioxins) within and adjacent to the Site. This work is dependent upon further review of records for the BNSF, MPTP, and NWE sites located near the BRW Site. The procedures and protocols for these tentatively planned Site investigation activities will be incorporated into the applicable QAPP and submitted to Agencies for review and approval prior to initiating field work.

With the additional data, Atlantic Richfield Company intends to complete the Tier 2 evaluation and develop a management plan for impacted groundwater and soil within the Site. This management plan will be incorporated into the Intermediate (60%) RD Report.

5.0 CONCLUSIONS AND REMEDIAL DESIGN RECOMMENDATIONS

5.1 Excavation Design

5.1.1 Waste Removal Extents

The BPSOU Statement of Work (Appendix D to the BPSOU CD) requires removal of all tailings, waste, contaminated soil, and slag within the waste removal corridor that exceed the Waste Identification Screening Criteria (BPSOU CD). Figure 22 shows all material that fails the Waste Identification Screening Criteria with additional information contained in Appendix C. The width of the waste removal corridor will be an average of 275 feet beginning at (or as close as feasible to) the northerly toe of the railroad extending north into the Site, and the depth of removal will be determined based on the results of the Site investigations and will be agreed upon during the RD. The preliminary waste removal corridor has been designed to achieve the average width of 275 feet while optimizing the removal of leachable materials. Additional details on the configuration of the waste removal corridor are included in Section 3.1.1 and Appendix C.

5.1.2 Waste Characterization for Proper Disposal

Waste material to be removed from the Site contains concentrations of COCs (arsenic, cadmium, copper, lead, mercury, and zinc) above the waste identification criteria in the BPSOU CD. A suitable repository location will be determined following completion of a repository siting study. Proper disposal of materials impacted with organic pollutants is discussed in Section 5.5.

5.1.3 Preservation and Demolition of Existing Durable Historic Infrastructure

Many structures within the Site are eligible for listing in the National Historic Register (Section 2.3.2). However, initial RD for the Site indicate historic features contained within the Site boundary will be impacted by the RA, and a structural assessment performed indicates that many of the historical smelting structures are in deteriorating condition. As a result, the following structures/features within the Site will be demolished and documented through on-Site interpretation and low-level, professional grade, still photography and videography (Rossillon, 2021):

- Smoke flue, Blacktail Creek flume, and slag trench (associated with the smoke flue and Blacktail Creek flume).
- Possible reverberatory furnace foundation and settling tables.
- Blister building/blowing engine building foundation.
- Ore bin.

These and others are pieces of infrastructure may be challenging to remove with typical heavy equipment, specifically the stack foundation, the Blacktail Creek Flume, the slag wall (particularly on the east side of the Site) and remaining building foundations. The anticipated construction materials and dimensions of these structures will be provided for contractor consideration within construction documents, and information from the slag investigation will be provided to the contractor prior to initiating RA activities.

The following structures are to be further evaluated and/or preserved:

- Removal of the slag wall will be limited to approximately 1,050 feet in total, and the slag culvert/abandoned aqueduct should be left in-tact if possible (Figure 6). A Site investigation and engineering analysis of intrinsic properties of the preserved slag wall to remain on Site are recommended.
- Use of the northern bridge for final design should only be considered after the north and south bearings are further investigated or after the bearings have been rebuilt. Additionally, the costs of further investigation and potential reinforcement of the bridge should be evaluated against the costs of constructing a new bridge that does not rely on the slag walls for support and could carry larger vehicles.
- All buried components should be further investigated to identify any possible subsurface voids in the area.

These efforts will allow for the RA to be completed in a way that meets the requirements within the BPSOU CD while also preserving historic smelting structures in a way that can be enjoyed and understood for years to come.

5.1.4 Wetland Protection and Mitigation Recommendations

Approximately five years following completion of the RA, the Site will be re-delineated, and reevaluated to determine the post-construction FEWA scores in accordance with the "no net loss" Superfund goal for wetlands. Due to the nature of the RA, it is anticipated that from pre- to postconstruction, wetland acreage and function will improve. If there is a net wetland loss, Atlantic Richfield will assess options for mitigation/offset within the upper Clark Fork River Superfund Sites watershed.

5.1.5 Utility Avoidance

It is anticipated that most of the on-Site utilities will be moved, rerouted, or abandoned while other utilities will be avoided during construction. The overhead electrical distribution line, including the underground portion that provides power to the BSB asphalt plant and crusher, will be abandoned beginning from the southern Site boundary. The sewer, natural gas, communications, and water lines servicing the BSB asphalt plant and crusher will be abandoned up to their connections at Montana Street.

The main utility lines along Montana Street and the BPSOU subdrain pump system alternate discharge line, will be avoided. The BPSOU subdrain pump system primary force main will be moved/rerouted during construction. Details on how the BPSOU subdrain pump system primary force main will be moved/rerouted, along with plans to maintain the line through construction, will be described later in the RD. New utilities will be installed to service any end land use amenities, these utilities will be described later in the RD.

5.1.6 Construction Dewatering

Removal of groundwater during construction will be important to safely and efficiently remove and transport saturated waste material at the Site. Significant dewatering will be required in portions of the Site. The proposed system of construction dewatering will involve implementation of a series of steps to minimize dewatering volumes, minimize unnecessary mobilization of contaminants, efficiently execute waste removal, and allow for safe travel of equipment and personnel.

• <u>Hydraulic Barrier Installation:</u> To minimize dewatering impact on adjacent sites, a hydraulic barrier may be installed along the southern boundary of the Site. The hydraulic barrier will act as a no-flow barrier during dewatering and limit the influence of Site dewatering to the south. This will prevent unnecessary impacts to the NWE, MPTP, and BNSF sites, and any potential mobilization of contaminants in these areas due to the required changes to groundwater gradient and elevation for Site excavation. This barrier will also include installation of an upgradient capture system. The upgradient capture drain will prevent groundwater mounding or reversal of flow direction in the area upgradient of the barrier. A

detailed discussion of dewatering technologies and dewatering scenarios is included in Appendix H.

- <u>Installation and Testing of Dewatering Network:</u> After installation of the hydraulic flow barrier and associated upgradient capture drain, the dewatering network will be installed and tested. The proposed dewatering network will be a system of dewatering wells (Appendix H). Wells will be installed by the contractor at the locations and to the specifications provided by the engineer. Following installation and development of the dewatering wells, pumps and conveyance lines will be installed and tested. During this phase, each well may be tested individually to assure it can extract groundwater within the range of required dewatering rates.
- <u>SBC Diversion and Phased Removal:</u> Prior to beginning construction dewatering, SBC adjacent the Site will be diverted into a pipe along the SBC channel from above the east tiein to below the west tie-in location. Routing SBC through a hard pipe will facilitate construction at the tie-in areas with the reconstructed stream and minimize stream leakage into the excavation area.

The areas requiring the greatest dewatering are in the west vegetated area and the east stream tiein area. Due to the volume of waste requiring removal, and the distance between the deep dewatering areas, waste excavation will be phased at the Site. Dewatering will commence first in the west vegetated area for the first season of construction, be turned off, and then dewatering will begin in the east tie-in area.

The design of the hydraulic barrier and dewatering network will be accomplished using data collected for the Site along with the numerical flow model generated for the Site. Simulations of construction dewatering can be viewed in Appendix H. Additional details regarding Site dewatering and excavation will be provided in the Intermediate (60%) RD Report.

5.2 Backfill and Site Grading

There are no design recommendations for this design element at this time. Additional design recommendations will be incorporated as additional Site investigations activities are completed.

5.3 Silver Bow Creek Reconstruction

There are no design recommendations for this design element at this time. Additional design recommendations will be incorporated as additional Site investigations activities are completed.

5.4 Hydraulic Control

To prevent discharge of impacted groundwater into the reconstructed SBC, hydraulic control will be installed to maintain gradient away from SBC. Under observed conditions, impacted groundwater travels towards existing capture in BRW-00 and the HCC. Impacted groundwater has the potential to flow towards the reconstructed SBC after RA, when the stream is moved upgradient of its current alignment. Additionally, after RA is complete, groundwater flowing into the Site from upgradient will likely remain impacted with metal COCs and potentially with

organic pollutants which are not identified in the BPSOU CD. Preventing discharge of this impacted groundwater to reconstructed SBC will be important to successful RA.

Evaluation of hydraulic control technologies and simulations of hydraulic control using a numerical flow model are included in Appendix H. Given the design objectives for hydraulic control, the recommended hydraulic control design will include installation of a drain within the shallow aquifer on the north side of the reconstructed SBC. The drain will capture impacted groundwater from upgradient and ensure this groundwater flows beneath SBC. It will also protect the reconstructed SBC from potential discharge of impacted groundwater from the north. Where possible, hydraulic control should be designed with optimization in mind (e.g., multiple independent drain segments allowing for operational adjustments). Captured groundwater will be transmitted to the HCC, and then to BTL for treatment and discharge. Estimates of capture flow are included in Appendix H. Additional detail regarding construction of the capture drain will be included in the Intermediate (60%) RD Report submittal.

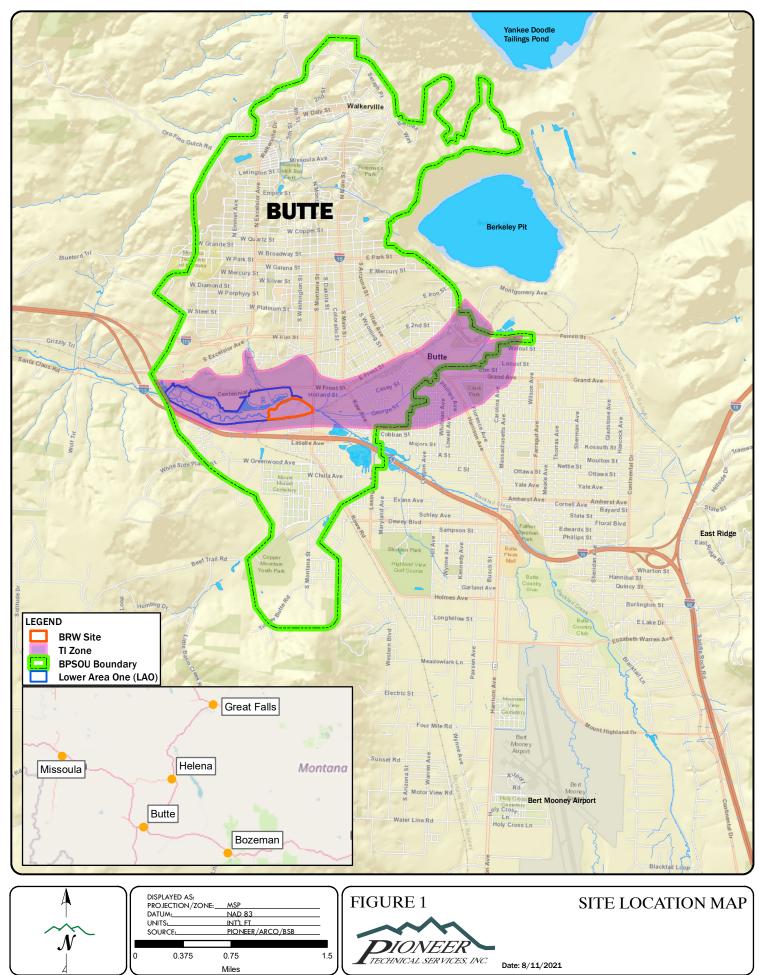
5.5 Management of Soil and Groundwater Impacted with Organic Pollutants

Generally, management of organic pollutants depends on applicable standards for water quality and material disposal.

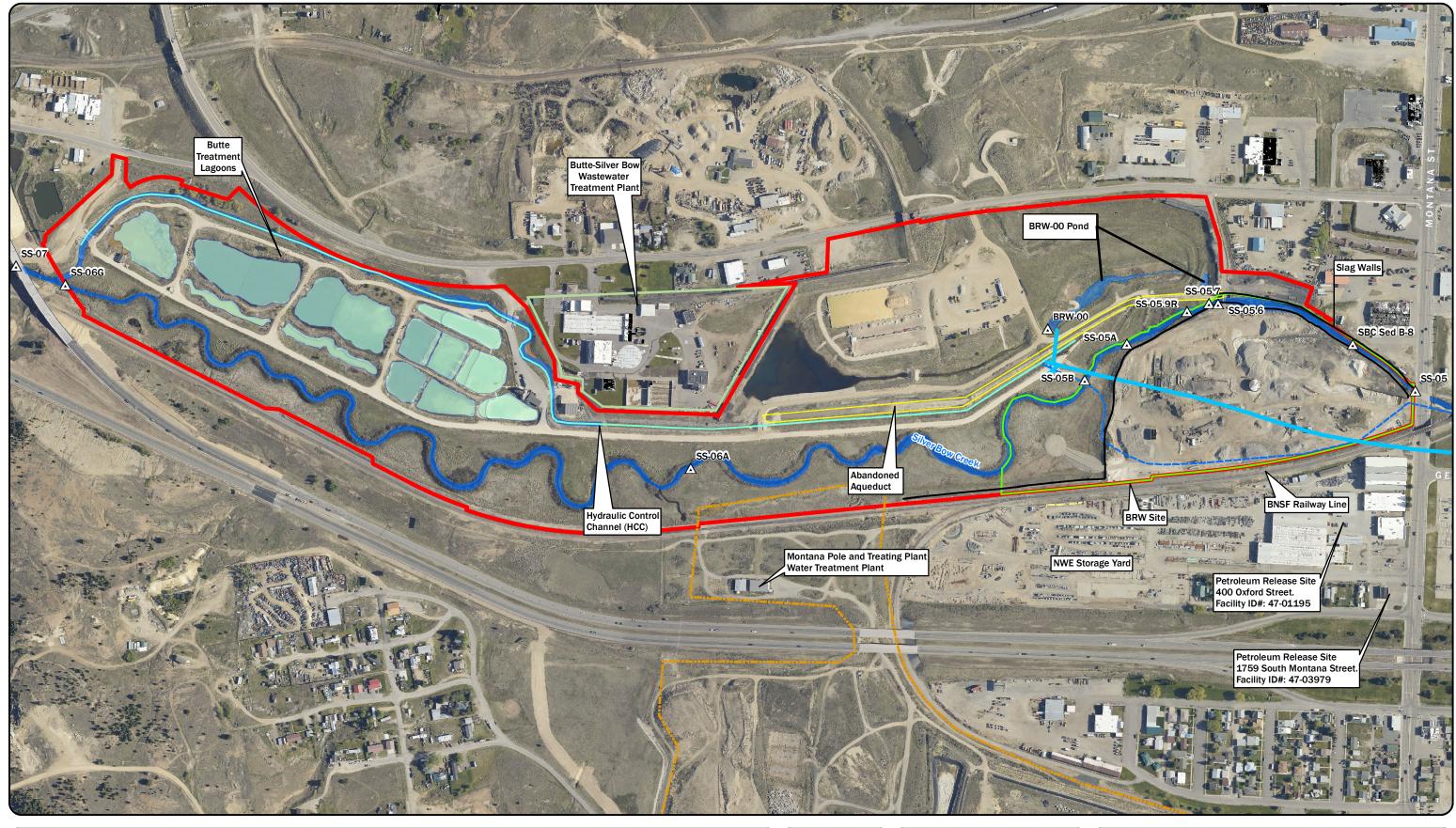
Based on the results from the RBCA evaluation (Appendix F), the preliminary Tier 2 evaluation identified direct contact and leaching to groundwater RBSL soil exceedances. Hydrocarbon-impacted soil will be excavated within the waste removal corridor or capped if it is located outside of the waste removal corridor, eliminating potential exposure pathways. Hydrocarbon-impacted soils exceeding the DEQ RBSLs within the waste removal corridor will need to be segregated during excavation and sampled prior to disposal at a repository. Based on the hydrocarbon compound concentrations, the soils may require treatment prior to disposal.

Hydrocarbon-impacted groundwater would require treatment based on the current sampling results; however, the RA is expected to reduce potential source concentrations remaining within the Site below applicable RBSLs.

Management of soil and groundwater impacted with organic pollutants will be detailed in an updated version of this PDI Evaluation Report after the Phase III QAPP and Biotreatability QAPP field activities have been completed.


6.0 REFERENCES

- Atlantic Richfield Company, 2015. Silver Bow Creek/Butte Area NPL Site Butte Priority Soils Operable Unit Final 2015 Butte Mine Waste Repository Operation and Maintenance (O&M) Manual. Prepared by Pioneer Technical Services, Inc. December 2, 2015.
- Atlantic Richfield Company, 2019. Request for Change (RFC) to the Butte Mine Waste Repository O&M Manual (BPSOU-MWR OMM-RFC-01). September 23, 2019.
- Atlantic Richfield Company, 2021a. Silver Bow Creek/Butte Area NPL Site Butte Priority Soils Operable Unit Final Butte Reduction Works (BRW) Phase I Quality Assurance Project Plan (QAPP) (which includes associated Request for Change documents). Revision 3. Prepared by Pioneer Technical Services, Inc. February 2021.
- Atlantic Richfield Company, 2021b. Silver Bow Creek/Butte Area NPL Site Butte Priority Soils Operable Unit Final Butte Reduction Works (BRW) Phase II Quality Assurance Project Plan (QAPP) (which includes associated Request for Change documents). Revision 2. Prepared by Pioneer Technical Services, Inc. February 2021.
- Atlantic Richfield Company, 2021c. Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Remedial Design Work Plan. Prepared by Pioneer Technical Services, Inc. May 13, 2021.
- Atlantic Richfield Company, 2021d. Silver Bow Creek/Butte Area NPL Site Butte Priority Soils Operable Unit Draft Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Phase III Quality Assurance Project Plan (QAPP). Prepared by Pioneer Technical Services, Inc. April 30, 2021.
- Atlantic Richfield Company, 2021e. Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Quality Assurance Project Plan (QAPP) for Microbial Analysis and Biotreatability Study. Prepared by Pioneer Technical Services, Inc. November 2021.
- DCI Engineers, 2021. Structural Assessment of Existing Bridge and Historic Structures, Butte Reduction Works Smelter Site, Butte, Montana. Submitted to Pioneer, October 11, 2021. Document included as Appendix K.
- DEQ, 2002. Montana Department of Environmental Quality's Geographic Information System Portal. Information search related to Montana Power Storage Yard - Comprehensive Environmental Cleanup and Responsibility Act (CECRA) Site. Site Summary. September 25, 2002. Available at https://gis.deq.mt.gov/portal/home/.
- DEQ, 2018a. PTRCB Claims & Reimbursements Report. Montana Department of Environmental Quality. Updated December 2018. Available at <u>http://svc.mt.gov/deq/dst/#/app/ptrcb</u>.


- DEQ, 2018b. Montana Risk-Based Corrective Action Guidance for Petroleum Releases, Montana Department of Environmental Quality, May 2018. Available at this site <u>http://deq.mt.gov/Land/statesuperfund/rbca_guide</u>.
- DEQ, 2019. LUST (Leaking Underground Storage Tank) Site List. Montana Department of Environmental Quality. Updated May 2019. Available at http://deq.mt.gov/land/lust/lustsites.
- Environmental Laboratory, 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps of Engineers Waterways Experiment Station. Wetlands Research Program Technical Report Y-87-1, p. 1-92.
- EPA, 2017. Five-Year Review Report. Fourth Five-Year Review Report for the Montana Pole and Treating Plant Site. Bute, Silver Bow County, Montana. U.S. Environmental Protection Agency, June 30, 2017. Available at https://semspub.epa.gov/work/08/1818426.pdf.
- EPA, 2020. Consent Decree for the Butte Priority Soils Operable Unit. Partial Remedial Design/Remedial Action and Operation and Maintenance. U.S. Environmental Protection Agency. February 13, 2020. Released to the public in 2020 for public comment and Butte-Silver Bow approval. Available at <u>https://www.co.silverbow.mt.us/2161/Butte-Priority-Soils-Operable-Unit-Conse</u>. Document includes 2006 Record of Decision and 2020 Record of Decision Amendment as Appendix A.
- GCM Services, Inc. 1991. Cultural Resource Inventory of the Lower Area One Operable Unit of Silver Bow Creek/Butte Area NPL Site and the Montana Pole and Treating Plant NPL Site. Butte. Submitted to ARCO, Anaconda. December 1991.
- NRDP, 2016. Butte Reduction Works Smelter Site Draft Test Pit Report. Natural Resource Damage Program, September 2016.
- QSI Corvallis 2020. Silver Bow Creek and Butte Area, Montana Lidar and Imagery Technical Data Report. Prepared for CDM Smith. August 21, 2020.
- Rossillon, Mitzi, 2021. Consulting Archaeologist, LLC. Further Remedial Elements Scope of Work Remedial Design/Remedial Action, Butte Priority Soils Operable Unit: Cultural Resource Inventory, Evaluation, and Recommendations. Submitted to Atlantic Richfield Company, December 6, 2021. Document included as Appendix J.
- Sanborn, 1943. Map of Survey of Defense Plant Corporation, Domestic Manganese and Development Company and Metals Reserve Tracts and Improvements Theron in the N¹/₂ of SW¹/₄ of Section 24 T 3N, R 8W. Silver Bow County, Montana. Surveyed May 4 to 31, 1943, by Francis T. Morris, Surveyor.
- USACE, 2010. U.S. Army Corps of Engineers Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0) ERDC/EL TR-10-3. May 2010. P. 1-136.

FIGURES

Figure 1. Site Location Map Figure 2. Lower Area One and BRW Smelter Area Site Map Figure 3. BRW Smelter Area Conceptual Remedial Action Plan **Figure 4. Previous Investigations Figure 5. BRW Phase I Site Investigation Locations** Figure 6. Existence of Durable Historic Infrastructure within Butte Reduction Works Site Figure 7. Subsurface Flume(s)/Culvert(s) within the Site Figure 8. Phase II Slag Investigation – Stages 1-3 Figure 9. Site Investigation Locations Installed During Phase II Figure 10. Manual Groundwater Elevation Readings Collected for The Phase I and Phase II Site Investigations Figure 11. Groundwater Contours for Low Water Conditions (February 2021) in the Shallow Aquifer Unit Figure 12. Groundwater Contours for Low Water Conditions (February 2021) in the Deep Aquifer Unit Figure 13. GW Quality Analysis of Arsenic Compared to CD Performance Standards Figure 14. GW Quality Analysis of Cadmium Compared to CD Performance Standards Figure 15. GW Quality Analysis of Copper Compared to CD Performance Standards Figure 16. GW Quality Analysis of Mercury Compared to CD Performance Standards Figure 17. GW Quality Analysis of Lead Compared to CD Performance Standards Figure 18. GW Quality Analysis of Zinc Compared to CD Performance Standards Figure 19. Site Survey and Utilities Figure 20. Slag Distribution within the Site Figure 21. Demolition Debris Distribution within the Site Figure 22. Waste Distribution within the Site Figure 23. Unimpacted Materials Distribution within the Site Figure 24. Phase III Site Investigations Points

Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report_PI\BRW_PI_PDIER_001_LocMp_21.mxd

---- BPSOU Subdrain Pump System Primary Force Main

BPSOU Subdrain Pump System Alternative Discharge Line

Hydraulic Control Channel

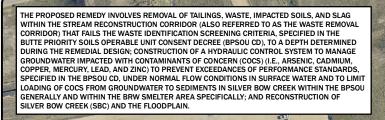
BRW Site Boundary BTL/LAO

-----Slag Walls

LAO Boundary

Butte-Silver Bow Wastewater Treatment Plant Boundary

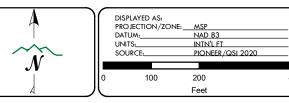
Abandoned Aqueduct MPTP Site Boundary


А N Δ

DISPLAYED AS:	ONE: MSP	—)
DATUM:	NAD 83	
UNITS:	INTERNATIONAL FEET	
SOURCE:	PIONEER/TREC/QSI 2020	
200	400	800
	Feet	J
	PRO JE <u>CTION/ZO</u> DATUM: UNITS: SOURCE:	PRO JE <u>CTION/ZONE; MSP</u> DATUM: <u>NAD 83</u> UNITS: <u>INTERNATIONAL FEET</u> SOURCE: <u>PIONEER/TREC/QSI 2020</u> 200 400

Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_002_SteMp_22.mxd

LOWER AREA ONE AND BRW SMELTER AREA SITE MAP


REGRADE AND CONSTRUCT CAP (AS NEEDED): NORTHERN PORTION OF THE SITE (OUTSIDE OF REMOVAL CORRIDOR) SHALL BE CAPPED WITH A MINIMUM ENGINEERED CAP OF 18" IN AREAS WHERE TAILINGS, WASTES, OR CONTAMINATED SOILS ARE LEFT IN PLACE TO ENSURE PROTECTIVENESS OF HUMAN HEALTH AND THE AREA WILL BE REGRADED AS NEEDED TO FACILITATE FUTURE END LAND USES.

CONCEPTUAL HYDRAULIC CONTROL: A DRAIN WILL BE INSTALLED TO CONTROL DISCHARGE OF COC-IMPACTED GROUNDWATER INTO RECONSTRUCTED SBC. THIS IS ACHIEVED BY ENSURING A GRADIENT TOWARDS THE DRAIN

> CONCEPTUAL RECONSTRUCTED SBO BANKFULL CHANNEL

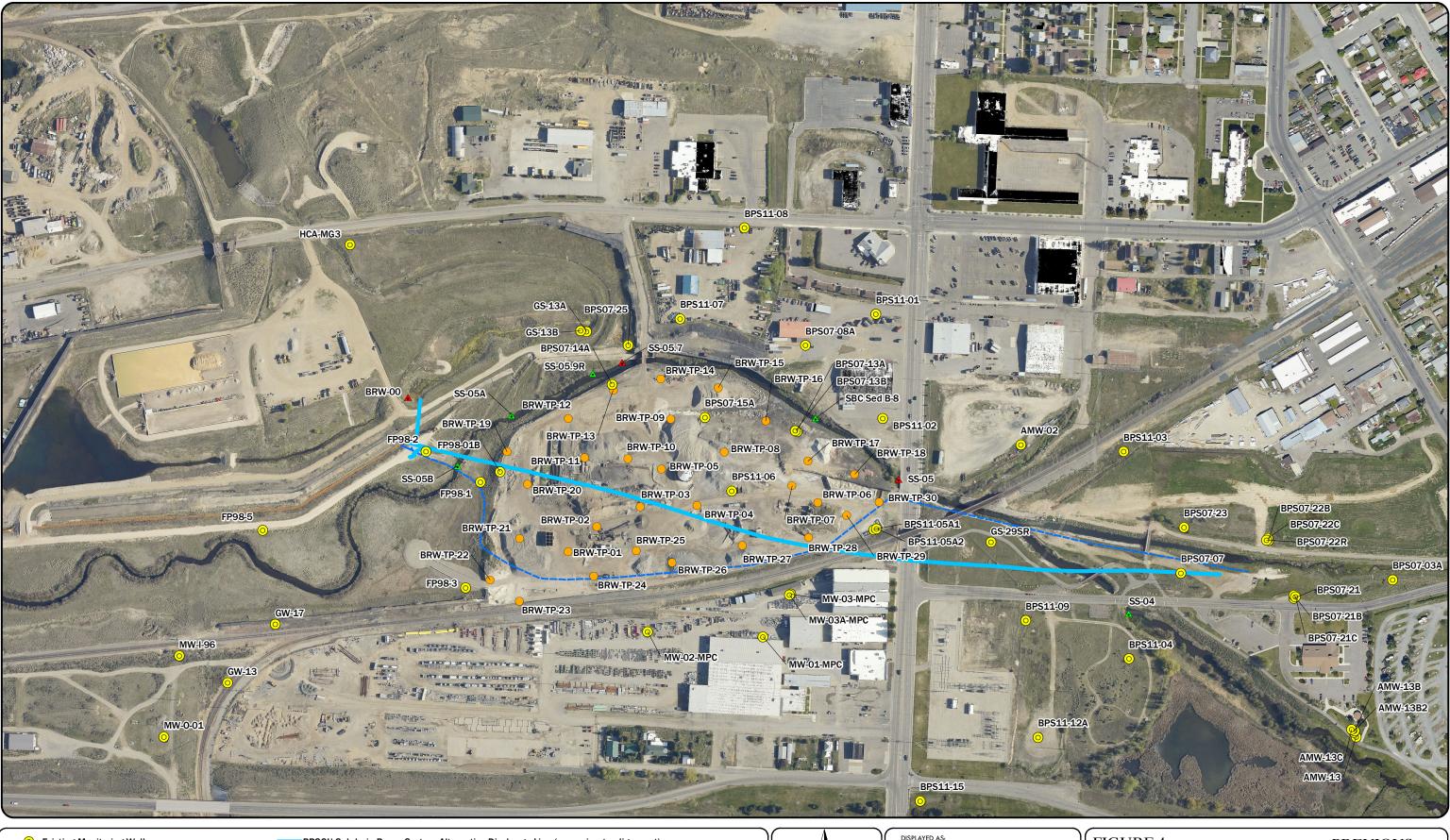
> > STATES AND A DESCRIPTION

LEGEND Engineered Cap Conceptual Hydraulic Control Preliminary Waste Removal Corridor
Conceptual Reconstructed SBC BRW Site Boundary

12 3

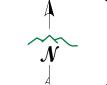
a Central E

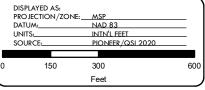
Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_008_RDPIn_22.mxd


Diel and the Contraction of the difference of the

RECONSTRUCT SBC: FOLLOWING EXCAVATION WORK AND INSTALLATION OF THE HYDRAULIC CONTROL, SBC AND THE FLOODPLAIN WILL BE RECONSTRUCTED WITHIN THE EXCAVATION FOOTPRINT THROUGH THE BUTTE REDUCTION WORKS SMELTER AREA. THE REALIGNED SBC AND FLOODPLAIN WOULD BE CONSTRUCTED SOUTH OF THE EXISTING SLAG CANYON AND CONNECT WITH SBC AT LOWER AREA ONE. EXCAVATION AND DISPOSAL: APPROXIMATELY 250,000 CUBIC YARDS OF TAILINGS, WASTE, CONTAMINATED SOILS, AND SLAG WOULD BE EXCAVATED FROM THE WASTE REMOVAL CORRIDOR, THEN HAULED TO AN APPROVED REPOSITORY FOR DISPOSAL. THE EXCAVATION FOOTPRINT WOULD BE AN AVERAGE OF 275 FEET WIDE AND APPROXIMATELY 1,800 FEET LONG. THE FINAL DEPTH, REMOVAL VOLUME AND FOOTPRINT LOCATION WILL BE DETERMINED URING THE DESIGN PHASE OF THE PROJECT.

A7075

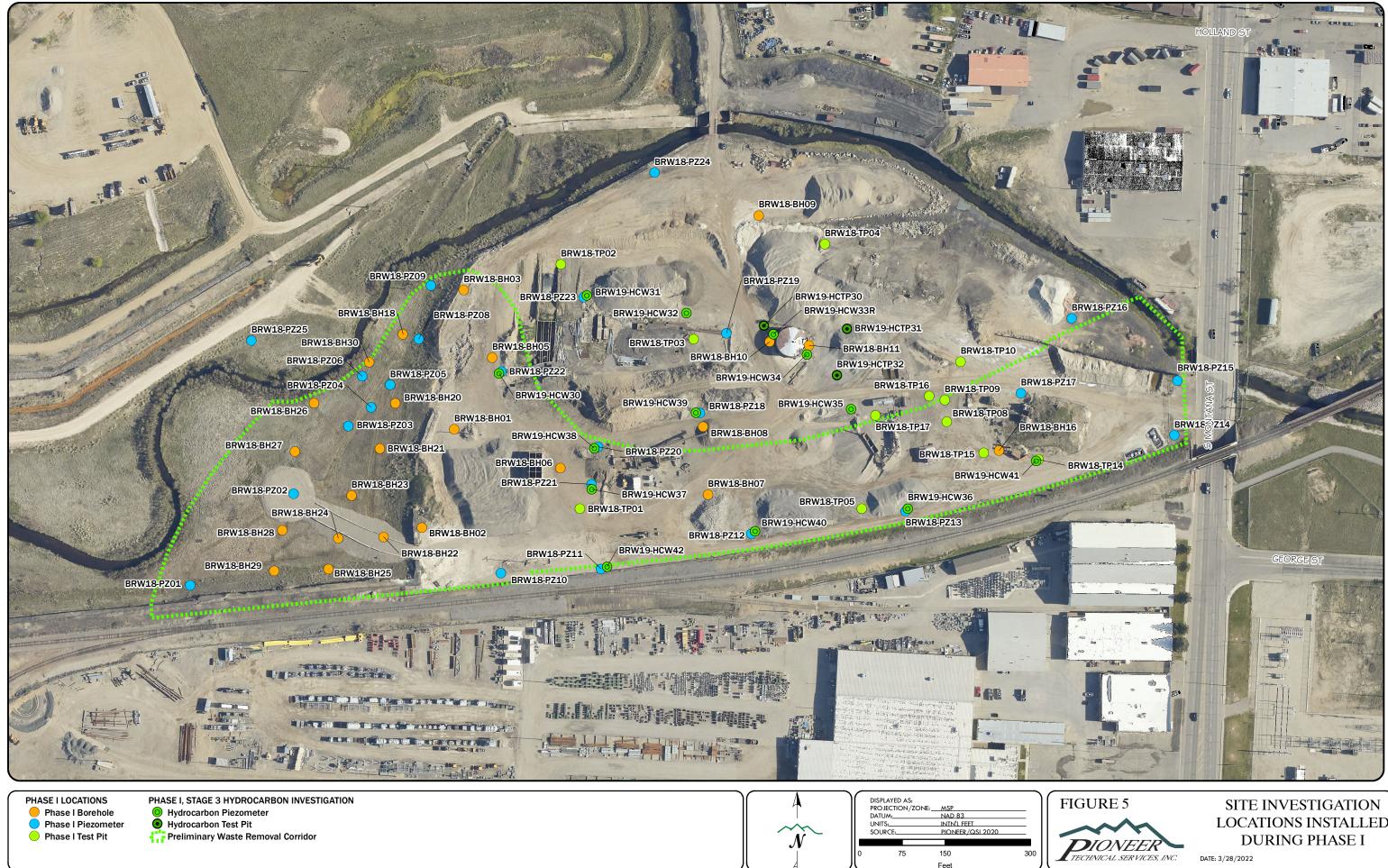

BRW SMELTER AREA CONCEPTUAL REMEDIAL **ACTION PLAN** DATE: 6/8/2022

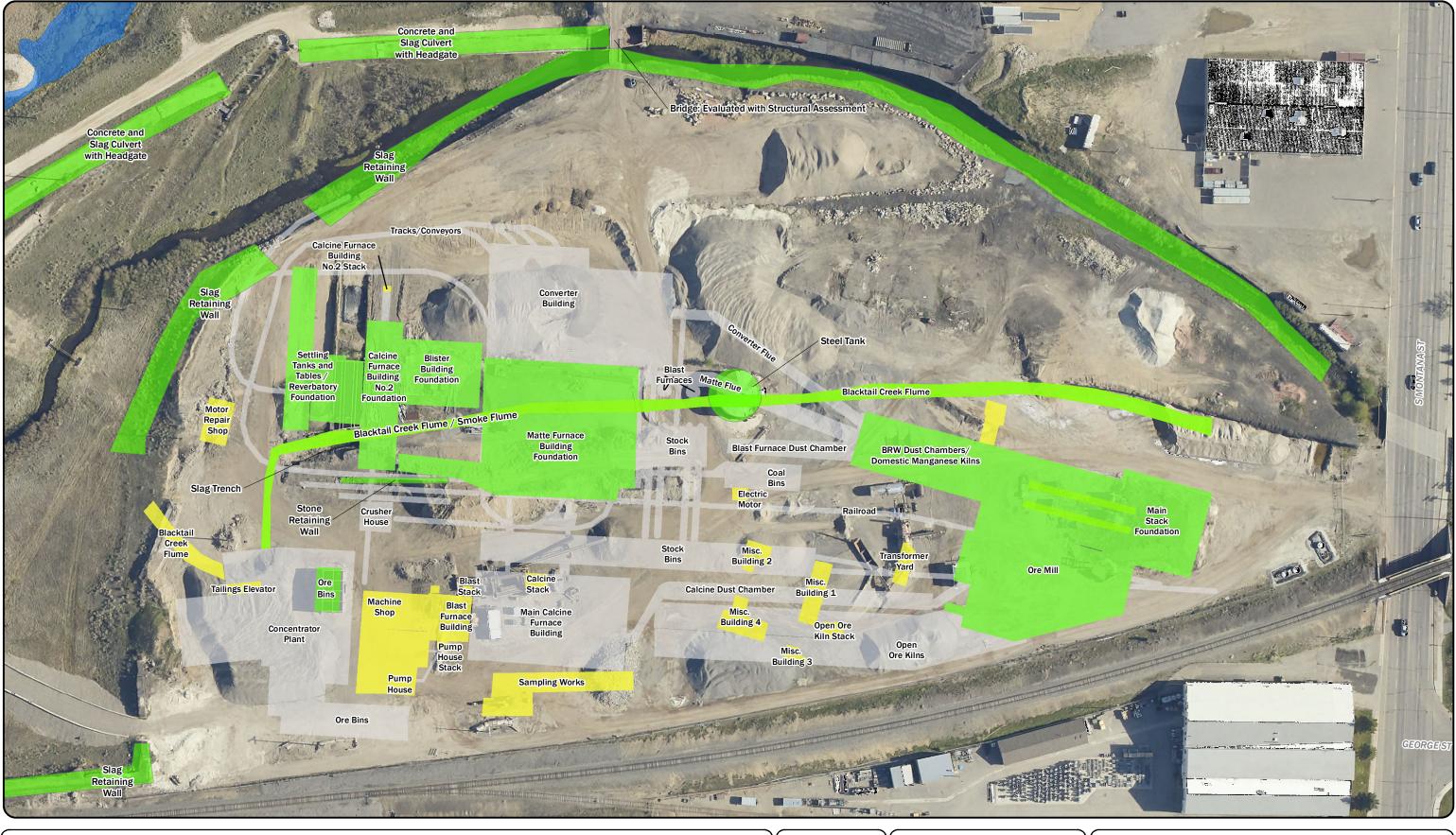


- O Existing Monitoring Wells
- ▲ Staff Gage
- ▲ Staff Gage Equipped with Transducers
- ▲ SBC_SW_Locations
- Test Pits (Natural Resource Damage Program, 2016)

BPSOU Subdrain Pump System Alternative Discharge Line (approximate alignment) BPSOU Subdrain Pump System Primary Force Main (approximate alignment)

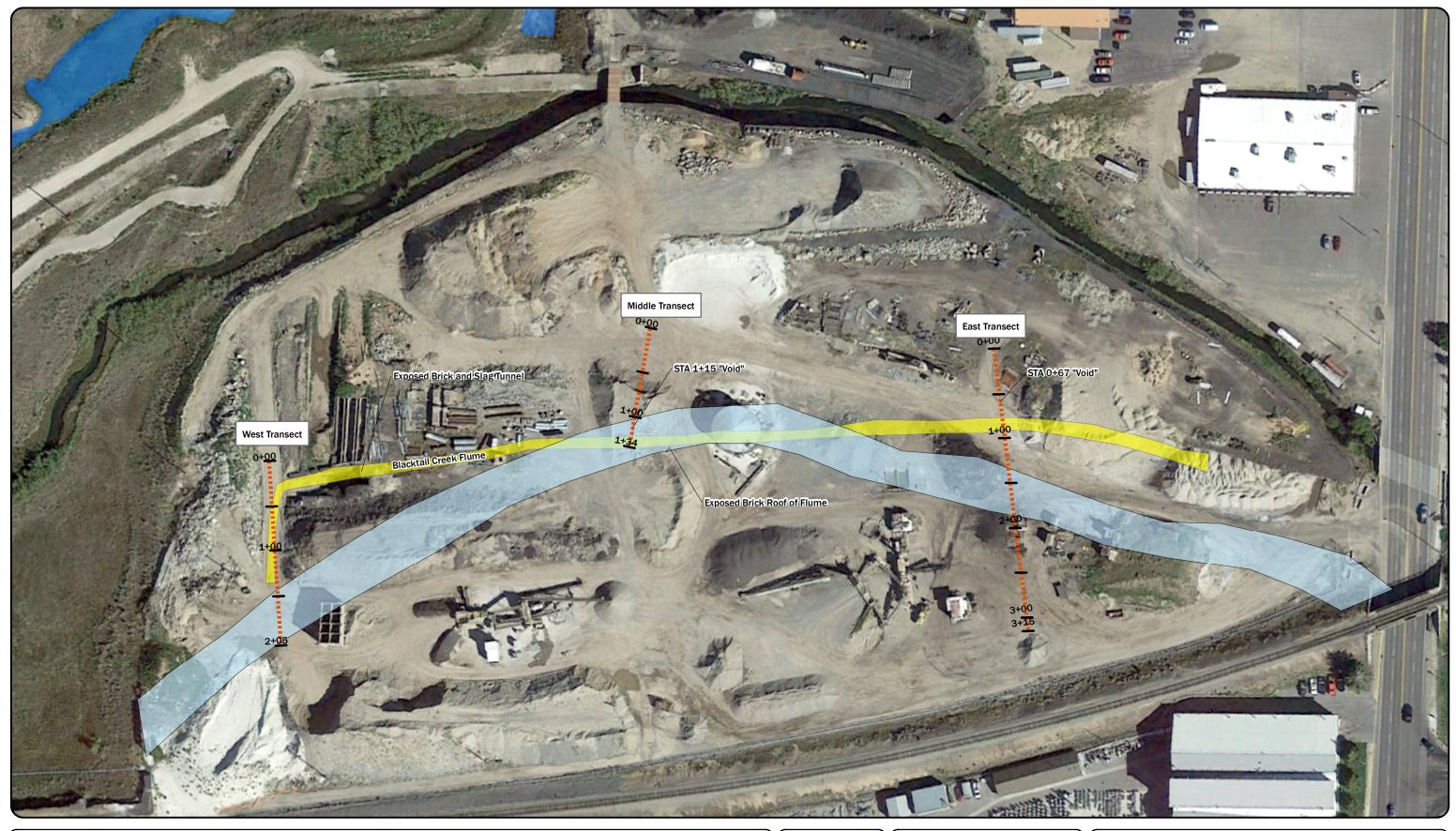
> Note: Locations shown were installed prior to commencing BRW Phase I Site Investigation activites.




Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_005_PrevInv_22.mxd

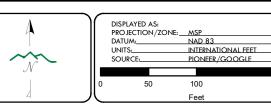
PREVIOUS INVESTIGATIONS

LOCATIONS INSTALLED

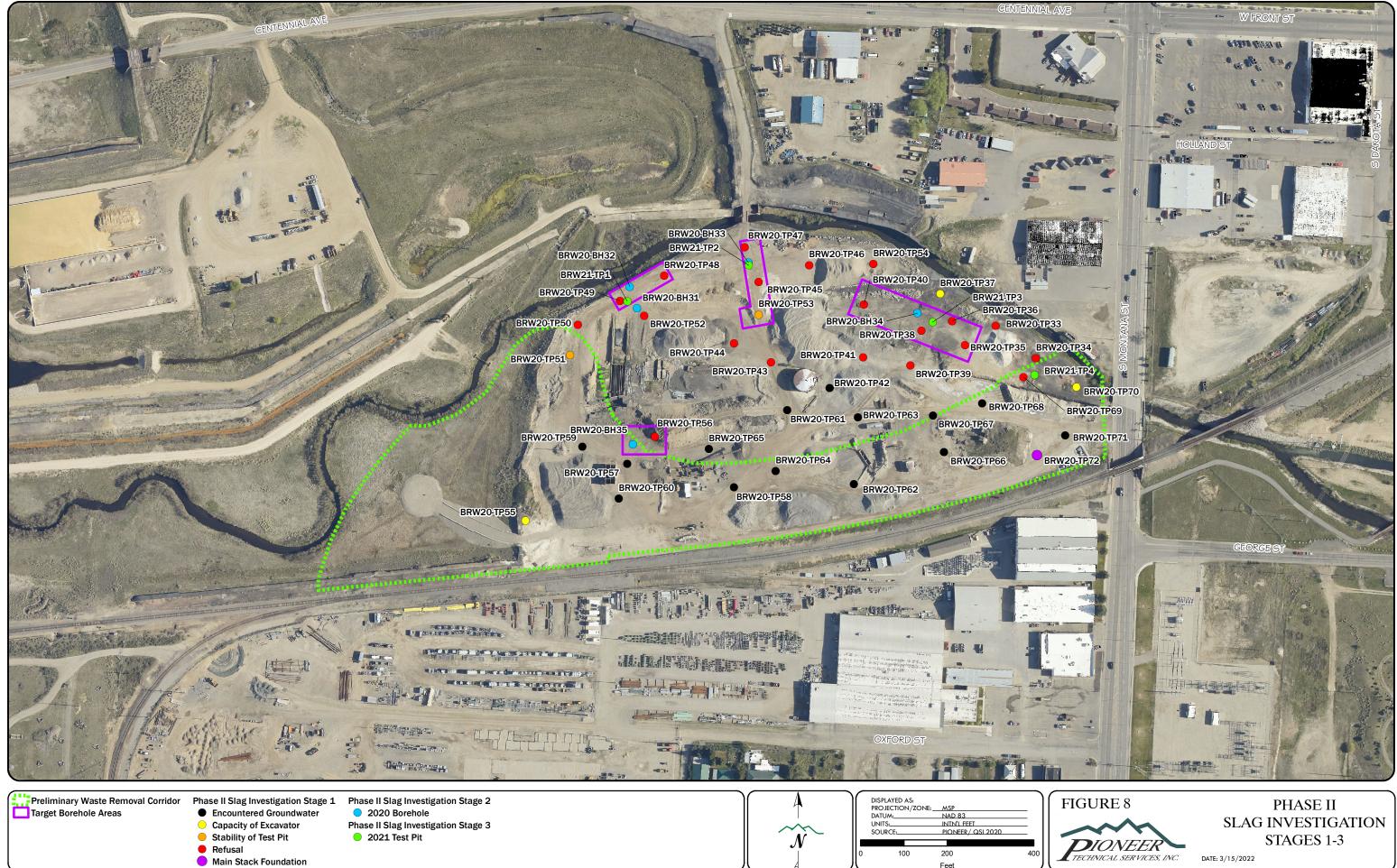


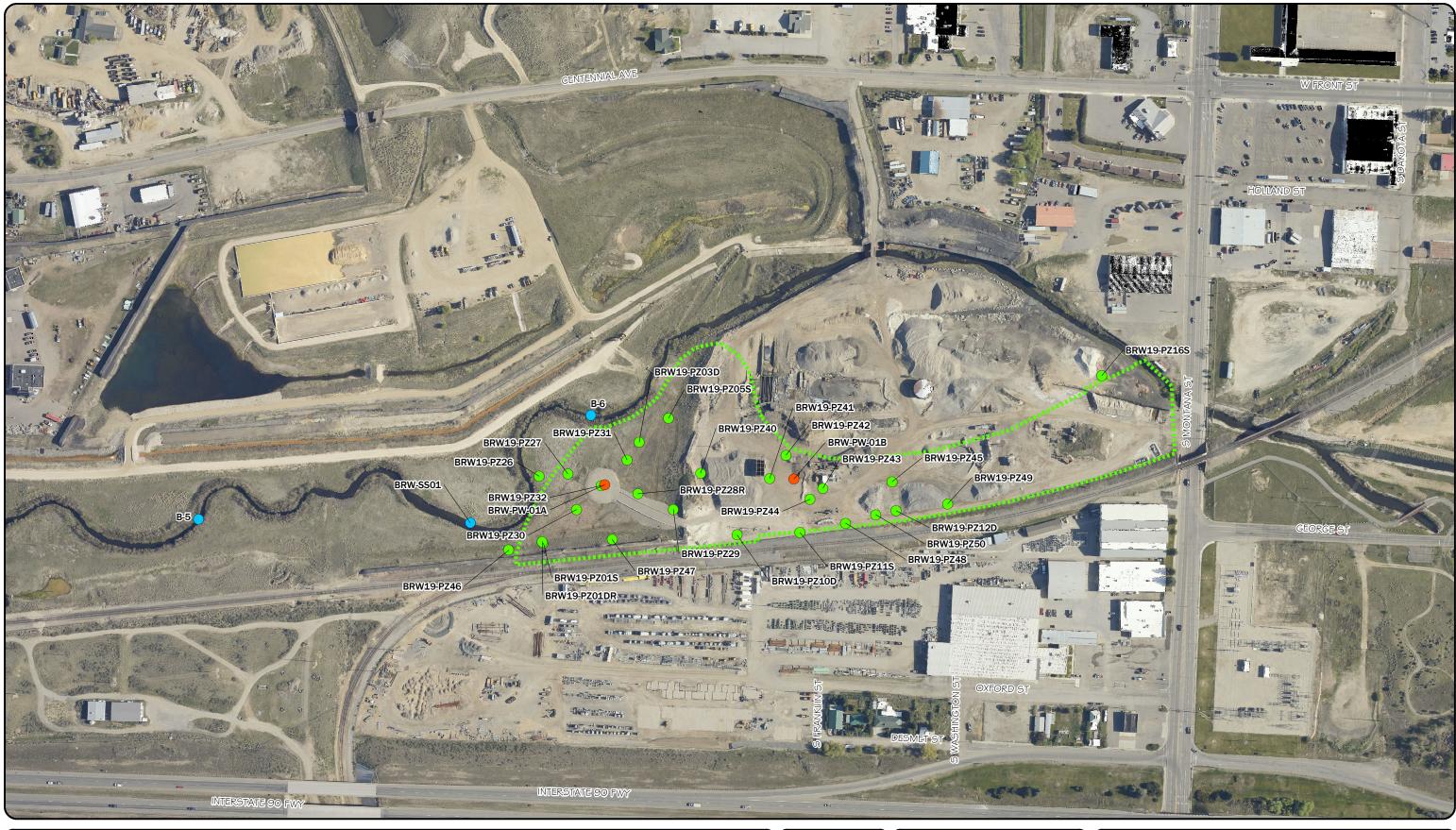
Potentially Remaing Infrastructure	A		DATUM:	TION/ZONE:	NAD 83	=
Demolished Historic Infrastructure			UNITS:		INTERNATIONAL FEET PIONEER/QSI 2020	
Confirmed Remaining Infrastructure			0	50	100	200
	N A	Л			Foot	,

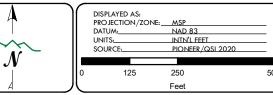
Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_004_Infra_22.mxd


EXISTENCE OF DURABLE HISTORIC INFRASTRUCTURE WITHIN BUTTE REDUCTION WORKS SITE

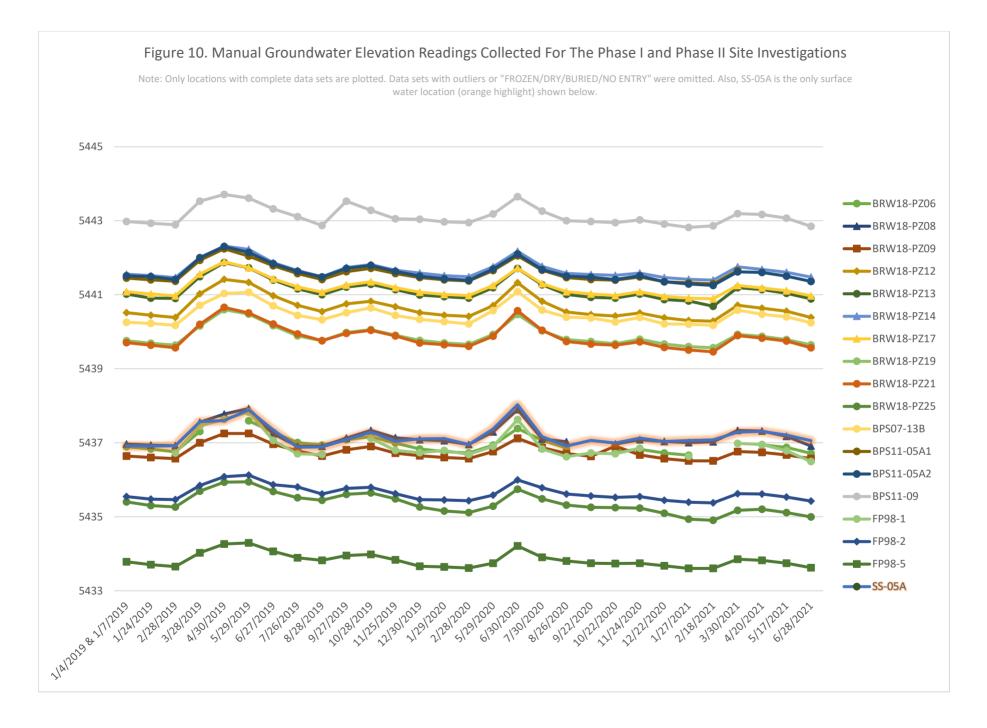
Blacktail Creek Flume (Sanborn, 1890) Historic Silver Bow Creek Channel South Culvert (Baker and Harper, 1889)

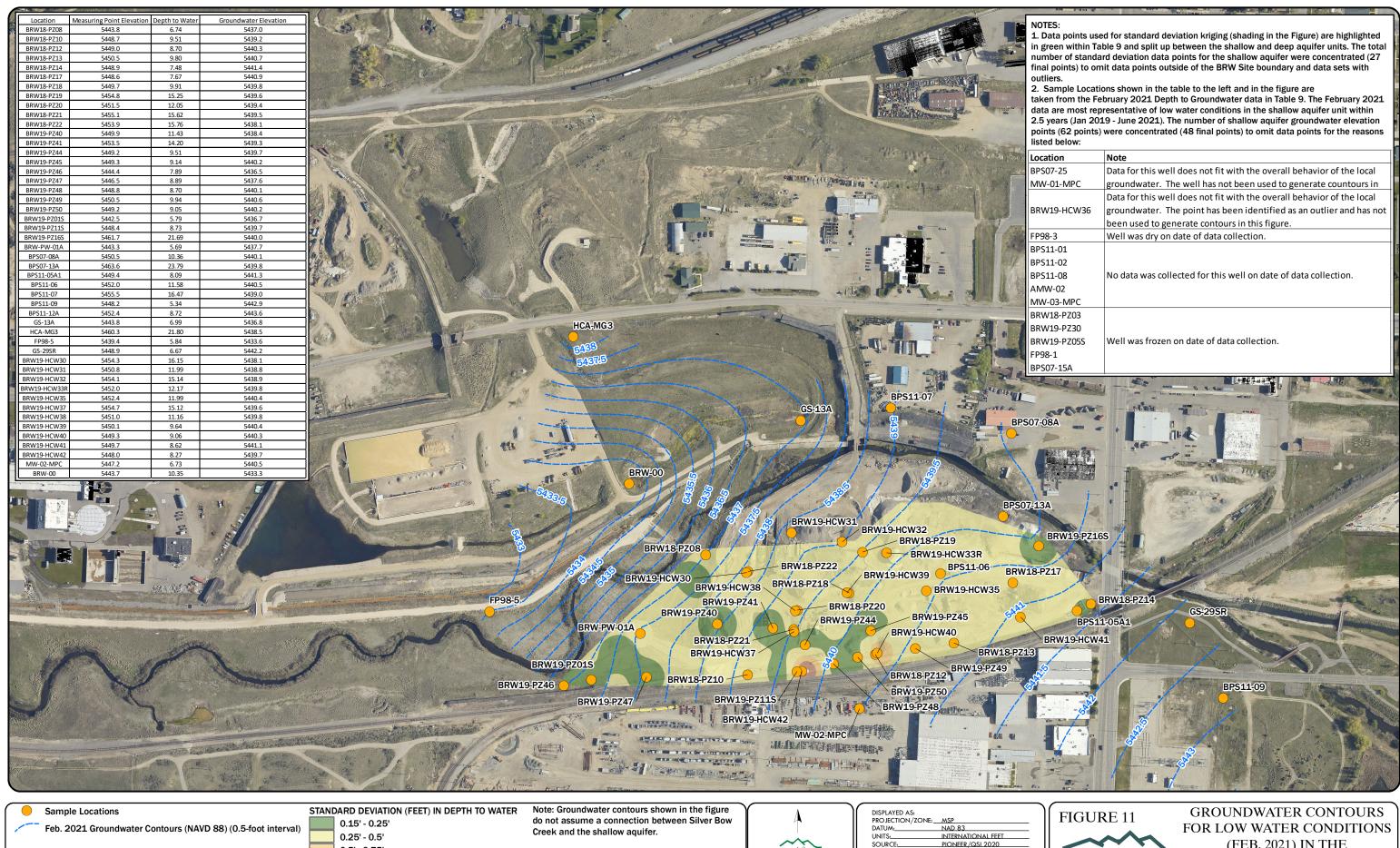

Multichannel Analysis of Surface Waves (MASW) seismic survey alignments


Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_003_Subflume_22.mxd


SUBSURFACE FLUME(S) / CULVERT(S) WITHIN THE SITE

Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_001_SlgDist_22.mxd


😑 Piezometer
Pumping Well
Surface Water Location
Preliminary Waste Removal Corrido



SITE INVESTIGATION LOCATIONS INSTALLED DURING PHASE II

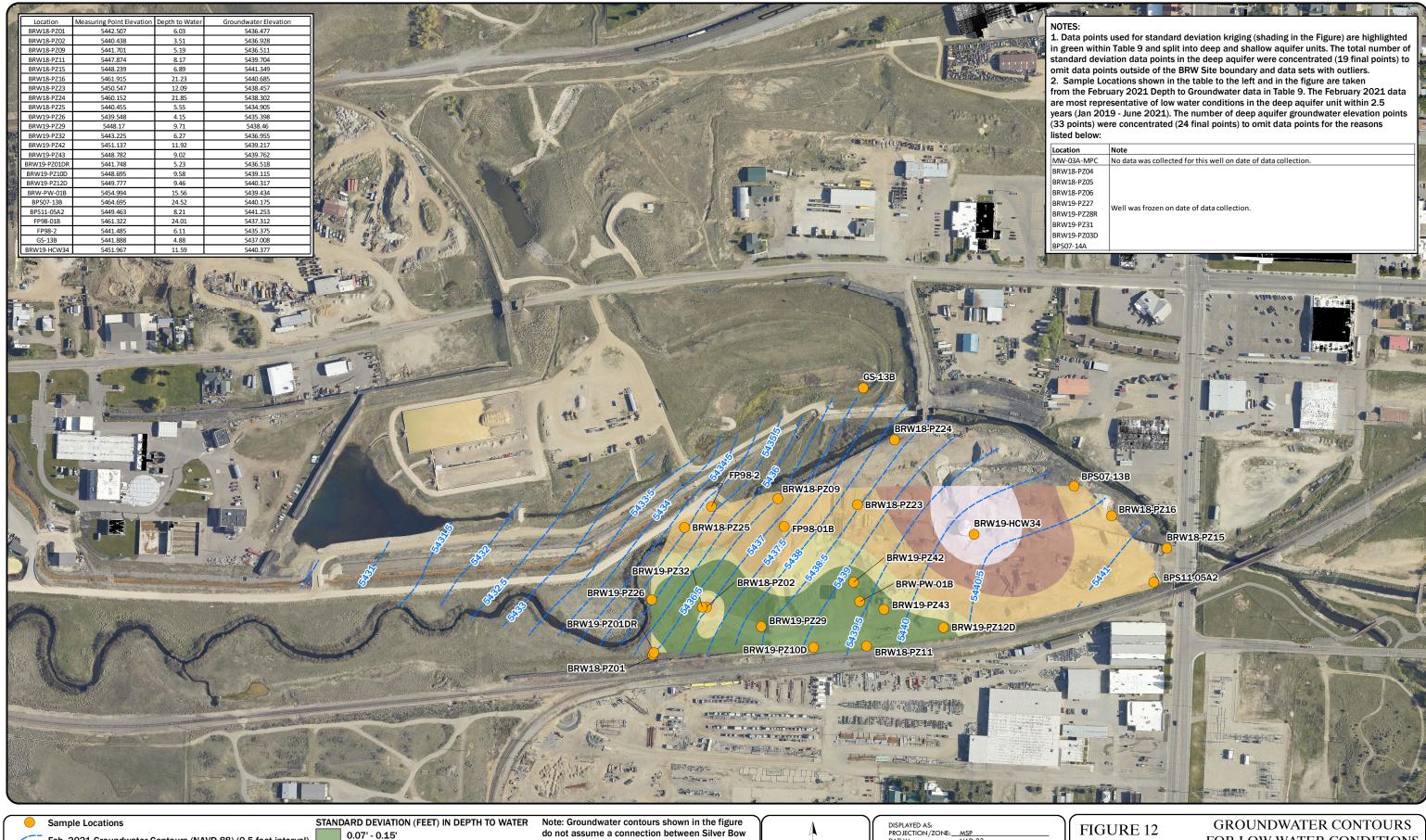
DATE: 3/28/2022

Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_029_H2OLevels_Sh_22.mxd

0.5' - 0.75'

0.75' - 1'

1' - 1.02'


ation	Note
07-25	Data for this well does not fit with the overall behavior of the local
/-01-MPC	groundwater. The well has not been used to generate countours in
	Data for this well does not fit with the overall behavior of the local
V19-HCW36	groundwater. The point has been identified as an outlier and has not
	been used to generate contours in this figure.
8-3	Well was dry on date of data collection.
11-01	
11-02	
11-08	No data was collected for this well on date of data collection.
W-02	
/-03-MPC	
V18-PZ03	
V19-PZ30	
V19-PZ05S	Well was frozen on date of data collection.
8-1	
07-15A	
7.7	

300

Feet

150

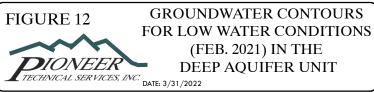
Feb. 2021 Groundwater Contours (NAVD 88) (0.5-foot interval)

0.15' - 0.2' 0.2' - 0.3' 0.3' - 0.4'

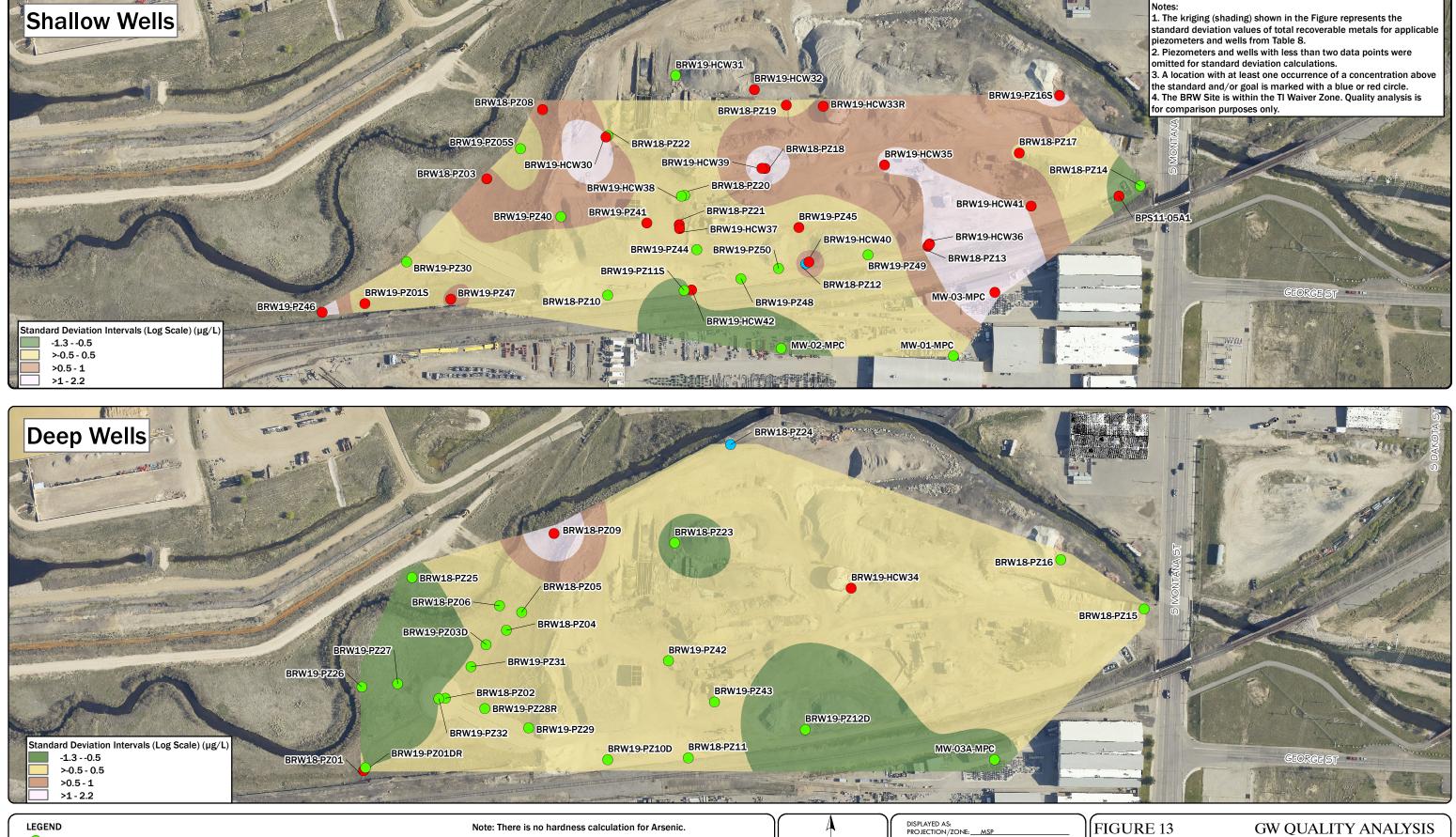
0.4'- 0.6'

do not assume a connection between Silver Bow Creek and the deep aquifer.

	DISFLATED
	PRO JECTION
	DATUM:
	UNITS:
	SOURCE:
0	15
IL I	
	0

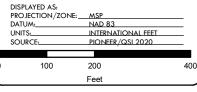

NAD 83

300


Feet

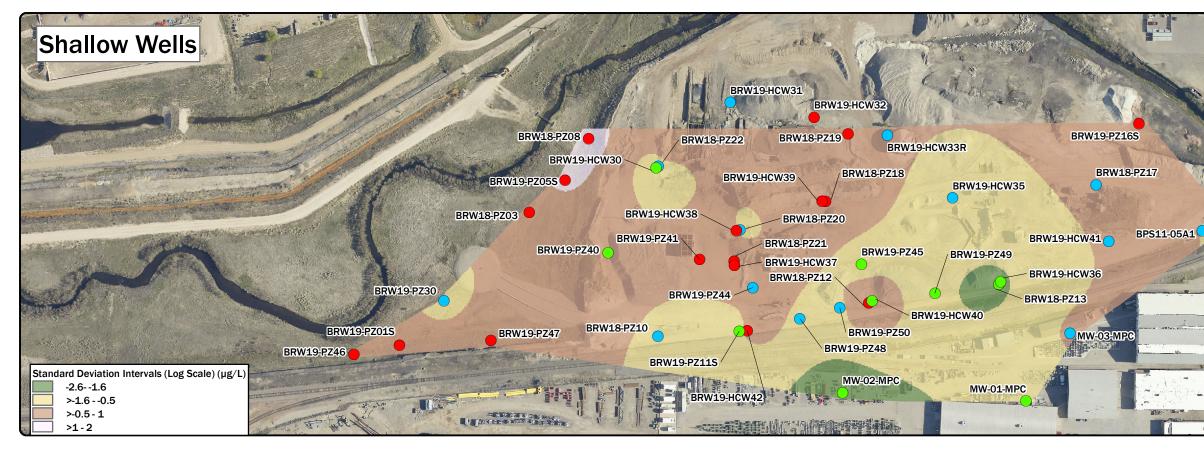
INTERNATIONAL FEET PIONEER/QSI 2020

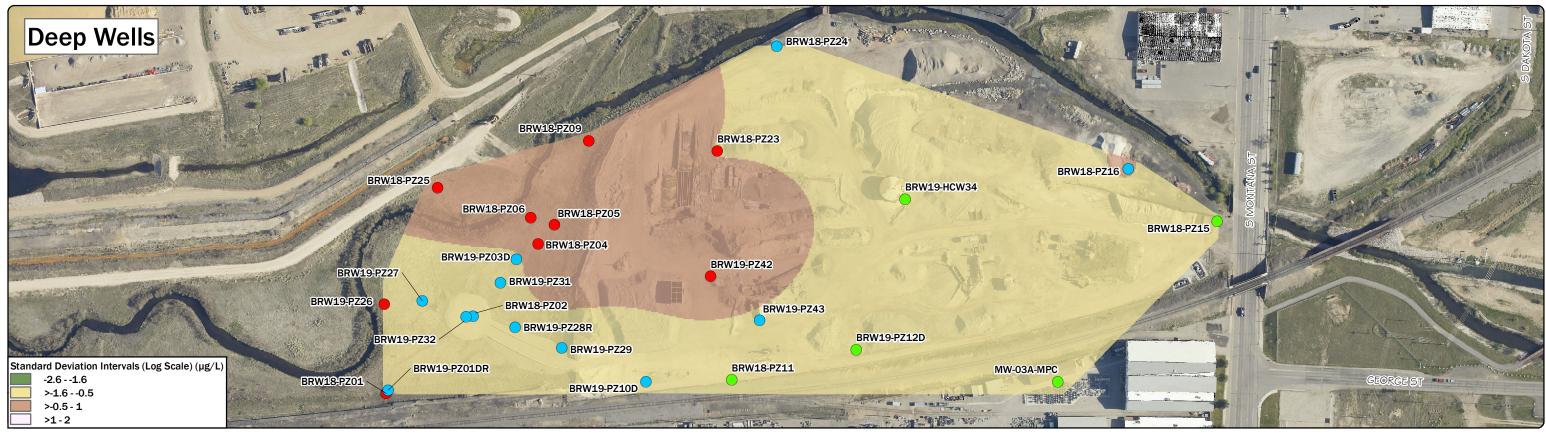
Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z PDI Evaluation Report PII\BRW_PII_PDIER_030_H2OLevels_Dp_22.mxd



Below Arsenic CD Chronic Surface Water Standard (10 $\mu g/L$ - Total Recoverable)

Above Arsenic CD Chronic Surface Water Standard and Below Groundwater Remedial Goal (10 μ g/L - Dissolved)


Above Arsenic CD Chronic Surface Water Standard and Groundwater Remedial Goal (10 µg/L - Dissolved)



Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_012_As_GW_Chem_22.mxd

OF ARSENIC COMPARED TO CD PERFORMANCE TECHNICAL SERVICES, INC. DATE: 6/6/2022 STANDARDS

DIONEER

LEGEND

- Below Cadmium CD Chronic Surface Water Standard (1.0 μ g/L- Total Recoverable) Above Cadmium CD Chronic Surface Water Standard and Below Groundwater Remedial Goal (5 µg/L - Dissolved)
- Above Cadmium CD Chronic Surface Water Standard and Groundwater Remedial Goal (5 µg/L - Dissolved)

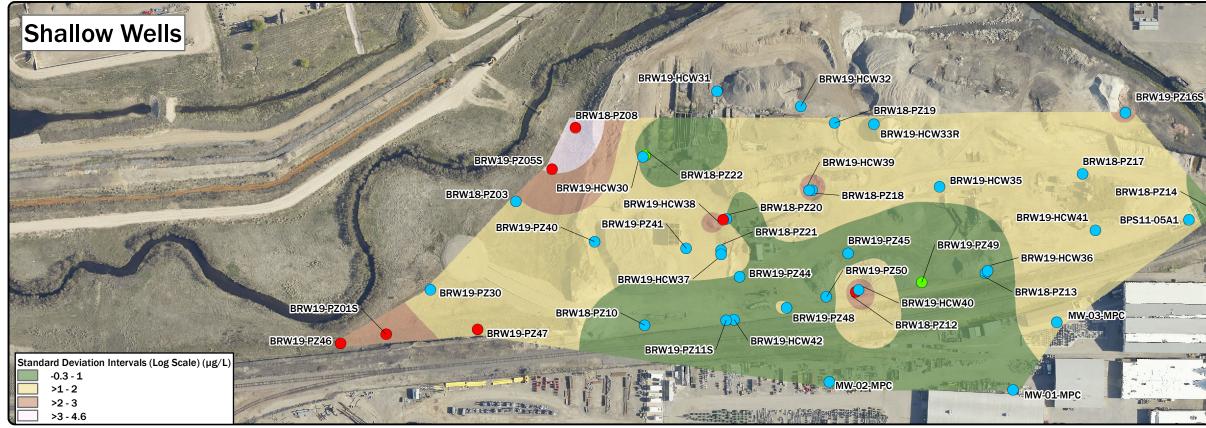
Note: A hardness value of 138 mg/L (reported as CaCO3) was used to calculate the Chronic Surface Water Standard for Cadmium. This hardness value is from USGS Station 12323240 (SS-04), recorded on February 19, 2014.

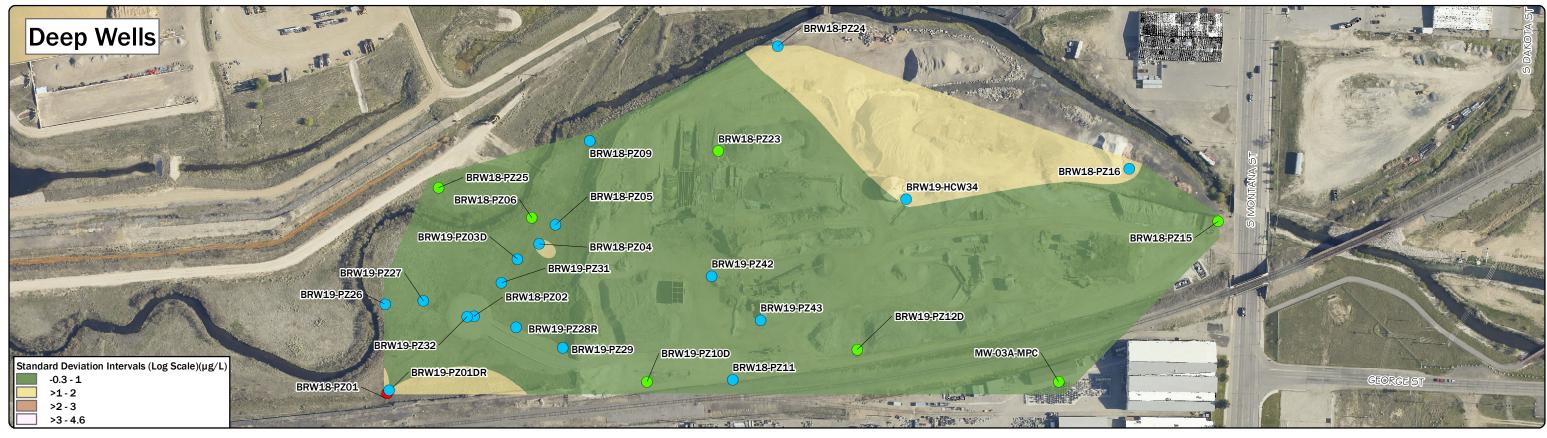
$\neg $	DISPLAYED AS:		
	PROJECTION/ZONE:_		
	DATUM:	NAD 83	
	UNITS:	INTERNATIONAL FEET	
	SOURCE:	PIONEER/QSI 2020	
0	100	200	400
八		Feet	

Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z PDI Evaluation Report PII\BRW_PII_PDIER_013_Cd_GW_Chem_22.mxd

Notes:

1. The kriging (shading) shown in the Figure represents the standard deviation values of total recoverable metals for applicable piezometers and wells from Table 8. 2. Piezometers and wells with less than two data points were


omitted for standard deviation calculations.


3. A location with at least one occurrence of a concentration above the standard and/or goal is marked with a blue or red circle. 4. The BRW Site is within the TI Waiver Zone. Quality analysis is for comparison purposes only.

BRW18-PZ14

GW QUALITY ANALYSIS OF CADMIUM COMPARED TO CD PERFORMANCE

LEGEND

- Below Copper CD Chronic Surface Water Standard (12.3 µg/L Total Recoverable) Above Copper CD Chronic Surface Water Standard and Below Groundwater Remedial Goal (1300 µg/L - Dissolved)
- Above Copper CD Chronic Surface Water Standard and Groundwater Remedial Goal (1300 µg/L - Dissolved)

Note: A hardness value of 138 mg/L (reported as CaCO3) was used to calculate the Chronic Surface Water Standard for Copper. This hardness value is from USGS Station 12323240 (SS-04), recorded on February 19, 2014.

		DISPLAYED PRO JECTIO DATUM: UNITS: SOURCE:	N/ZONE:	1	ASP IAD 83 NTERNATIONAL FEET IONEER/QSI 2020	
	0	10	00	2	00	40
ر				F	eet	

Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z PDI Evaluation Report PII\BRW_PII_PDIER_009_Cu_GW_Chem_22.mxd

1. The kriging (shading) shown in the Figure represents the standard deviation values of total recoverable metals for applicable piezometers and wells from Table 8.

2. Piezometers and wells with less than two data points were omitted for standard deviation calculations.

3. A location with at least one occurrence of a concentration above the standard and/or goal is marked with a blue or red circle. 4. The BRW Site is within the TI Waiver Zone. Quality analysis is for comparison purposes only.

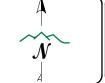
GW QUALITY ANALYSIS

OF COPPER COMPARED

TO CD PERFORMANCE

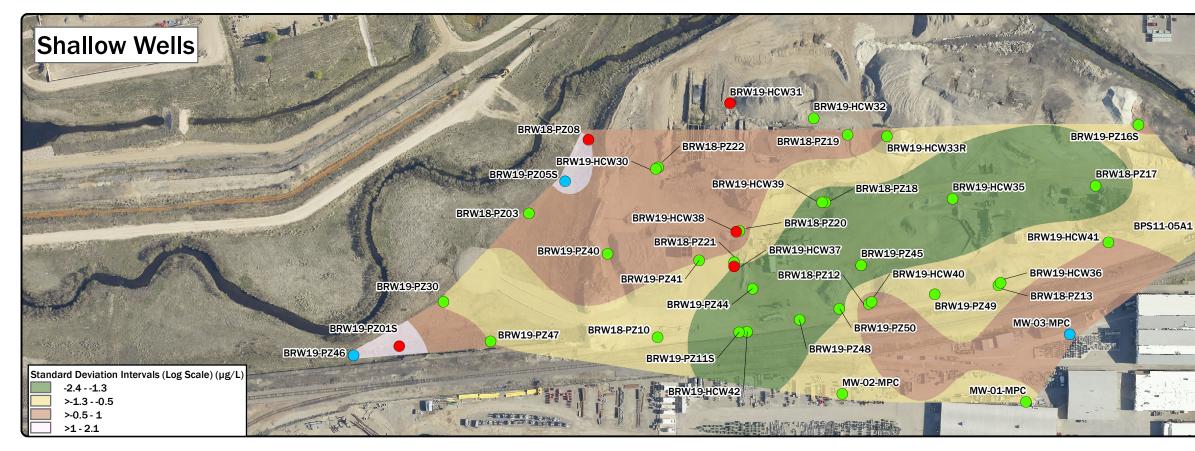
FIGURE 15

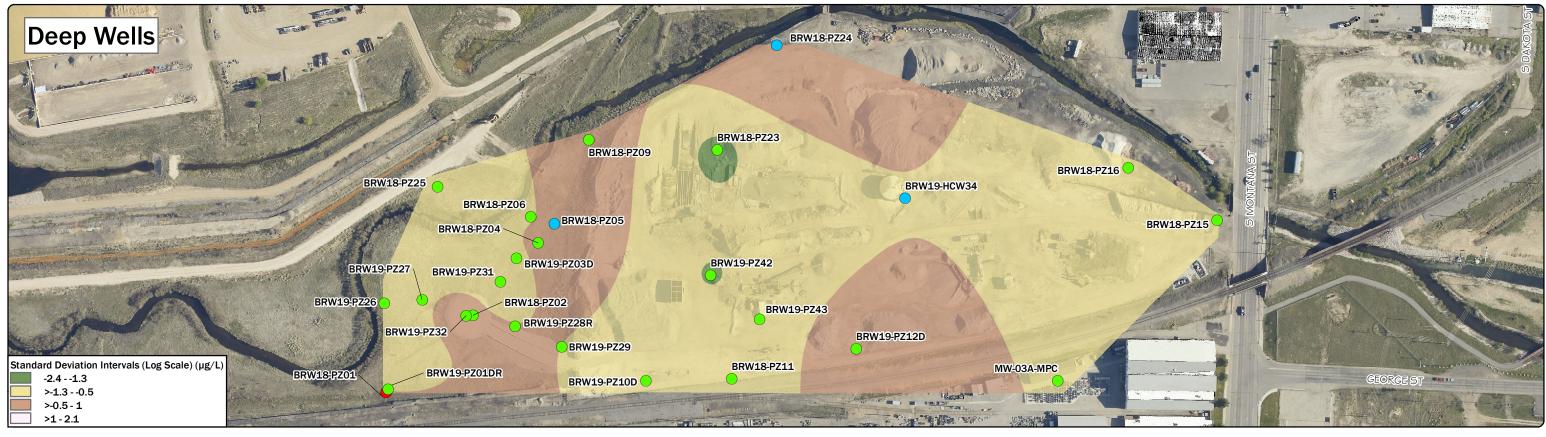
DIONEER


TECHNICAL SERVICES, INC. DATE: 6/6/2022 STANDARDS

LEGEND Note: There is no hardness calculation for Mercury. Below Mercury CD Chronic Surface Water Standard (0.05 μ g/L - Total Recoverable) Above Mercury CD Chronic Surface Water Standard and Below Groundwater Remedial Goal (2 μ g/L - Dissolved)

Above Mercury CD Chronic Surface Water Standard and Groundwater Remedial Goal (2 µg/L - Dissolved))


DISPLAYED AS: PROJECTION/ZONE: DATUM:	MSP NAD 83	=
UNITS: SOURCE:	INTERNATIONAL FEET PIONEER/QSI 2020	
100	200	400
	Feet	


Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z PDI Evaluation Report PII\BRW_PII_PDIER_007_Hg_GW_Chem_22.mxd

GW QUALITY ANALYSIS OF MERCURY COMPARED TO CD PERFORMANCE

LEGEND

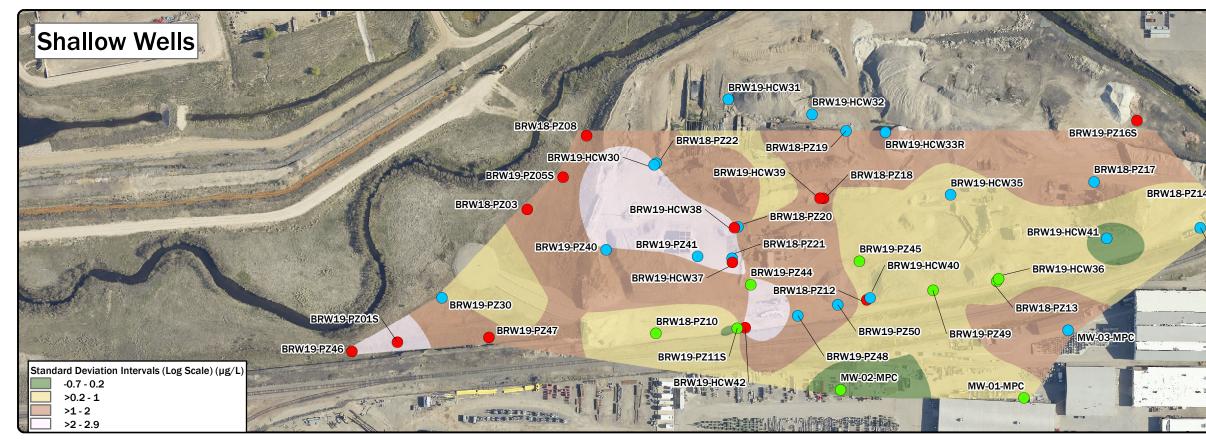
- Below Lead CD Chronic Surface Water Standard (4.79 μg/L Total Recoverable)
 Above Lead CD Chronic Surface Water Standard and Below Groundwater Remedial Goal (15 μg/L Dissolved)
- Above Lead CD Chronic Surface Water Standard and Groundwater Remedial Goal (15 μg/L - Dissolved)

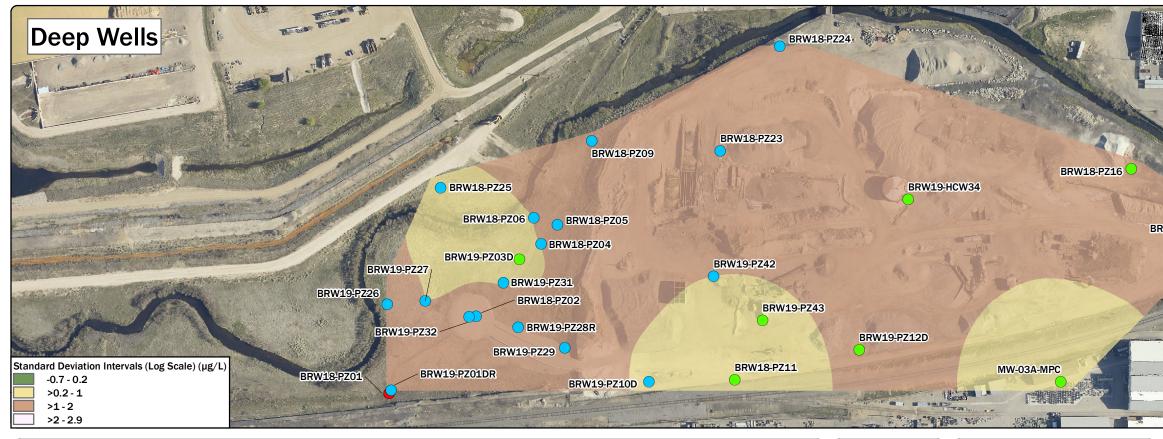
Note: A hardness value of 138 mg/L (reported as CaCO3) was used to calculate the Chronic Surface Water Standard for Lead. This hardness value is from USGS Station 12323240 (SS-04), recorded on February 19, 2014.

\int	DISPLAYED AS: PRO JECTION/ZONE:_ DATUM:_ UNITS: SOURCE:	MSP NAD 83 INTERNATIONAL FEET PIONEER/QSI 2020	-
0	100	200	400
		Feet	

Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_011_Pb_GW_Chem_22.mxd

Notes:


1. The kriging (shading) shown in the Figure represents the standard deviation values of total recoverable metals for applicable piezometers and wells from Table 8.


2. Piezometers and wells with less than two data points were omitted for standard deviation calculations.

3. A location with at least one occurrence of a concentration above the standard and/or goal is marked with a blue or red circle.
4. The BRW Site is within the TI Waiver Zone. Quality analysis is for comparison purposes only.

BRW18-PZ14

LEGEND

- Below Zinc CD Chronic Surface Water Standard (157 μg/L Total Recoverable)
 Above Zinc CD Chronic Surface Water Standard and Below Groundwater Remedial Goal (2000 μg/L Dissolved)
- Above Zinc CD Chronic Surface Water Standard and Groundwater Remedial Goal (2000 μg/L - Dissolved)

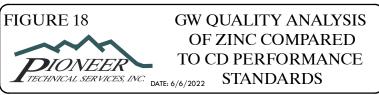
Note: A hardness value of 138 mg/L (reported as CaCO3) was used to calculate the Chronic Surface Water Standard for Zinc. This hardness value is from USGS Station 12323240 (SS-04), recorded on February 19, 2014.

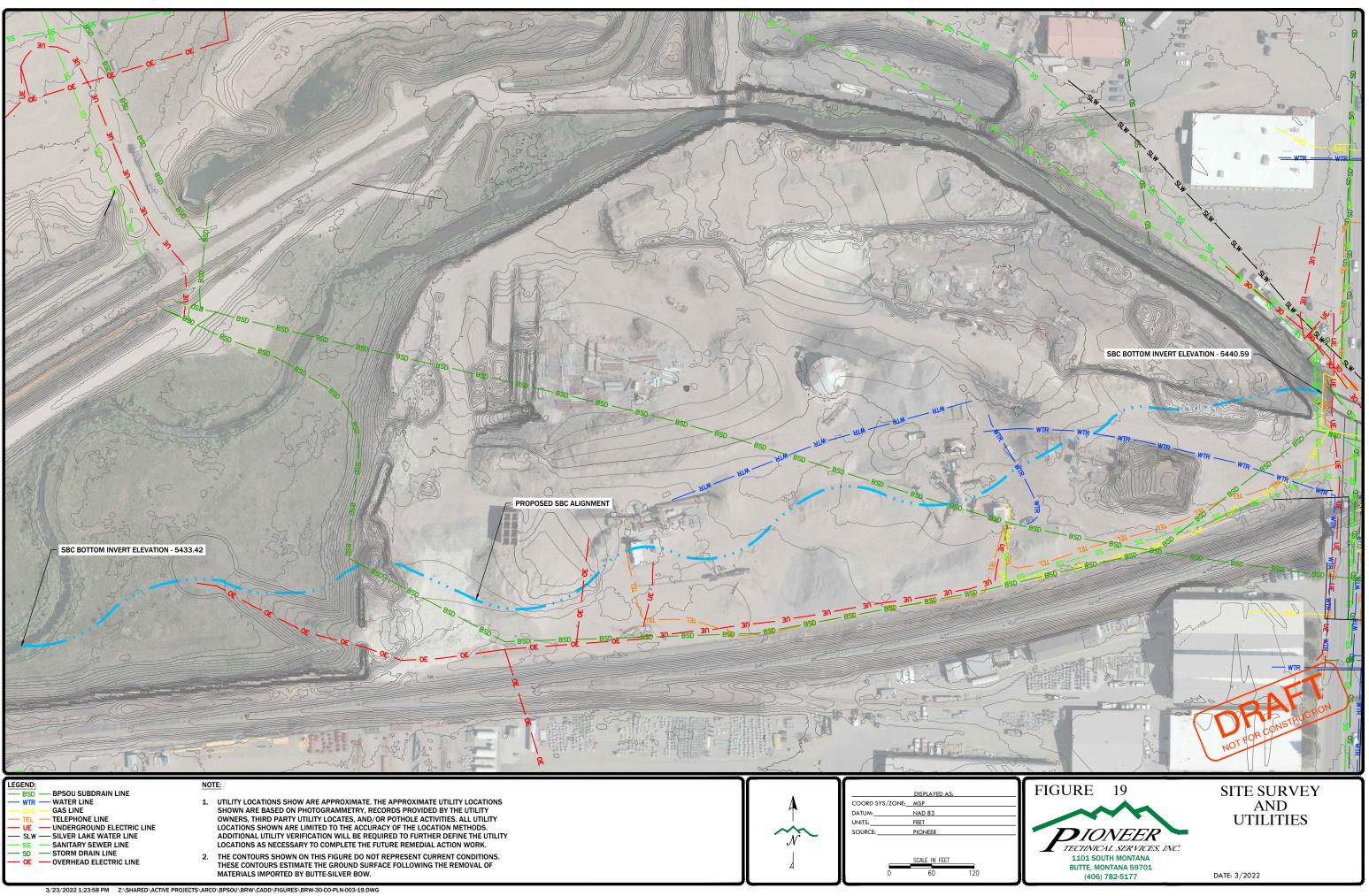
	DISPLAYED PRO JECTIC DATUM: UNITS: SOURCE:	DN/ZONE:	MSP NAD 83 INTERNATIONAL FEET PIONEER/QSI 2020	
	0 1	00	200	400
기	<		Feet	

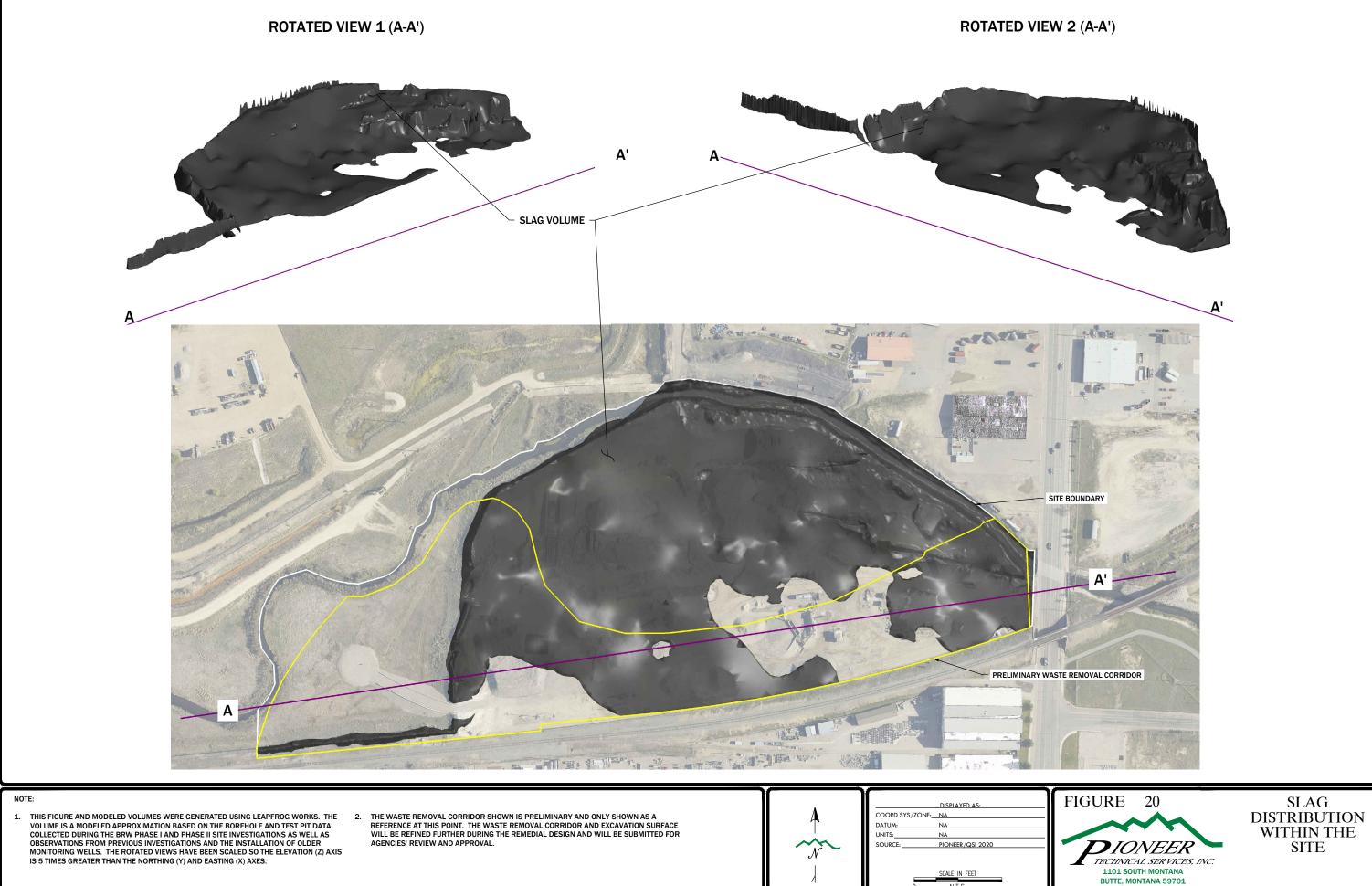
N

Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_006_Zn_GW_Chem_22.mxd

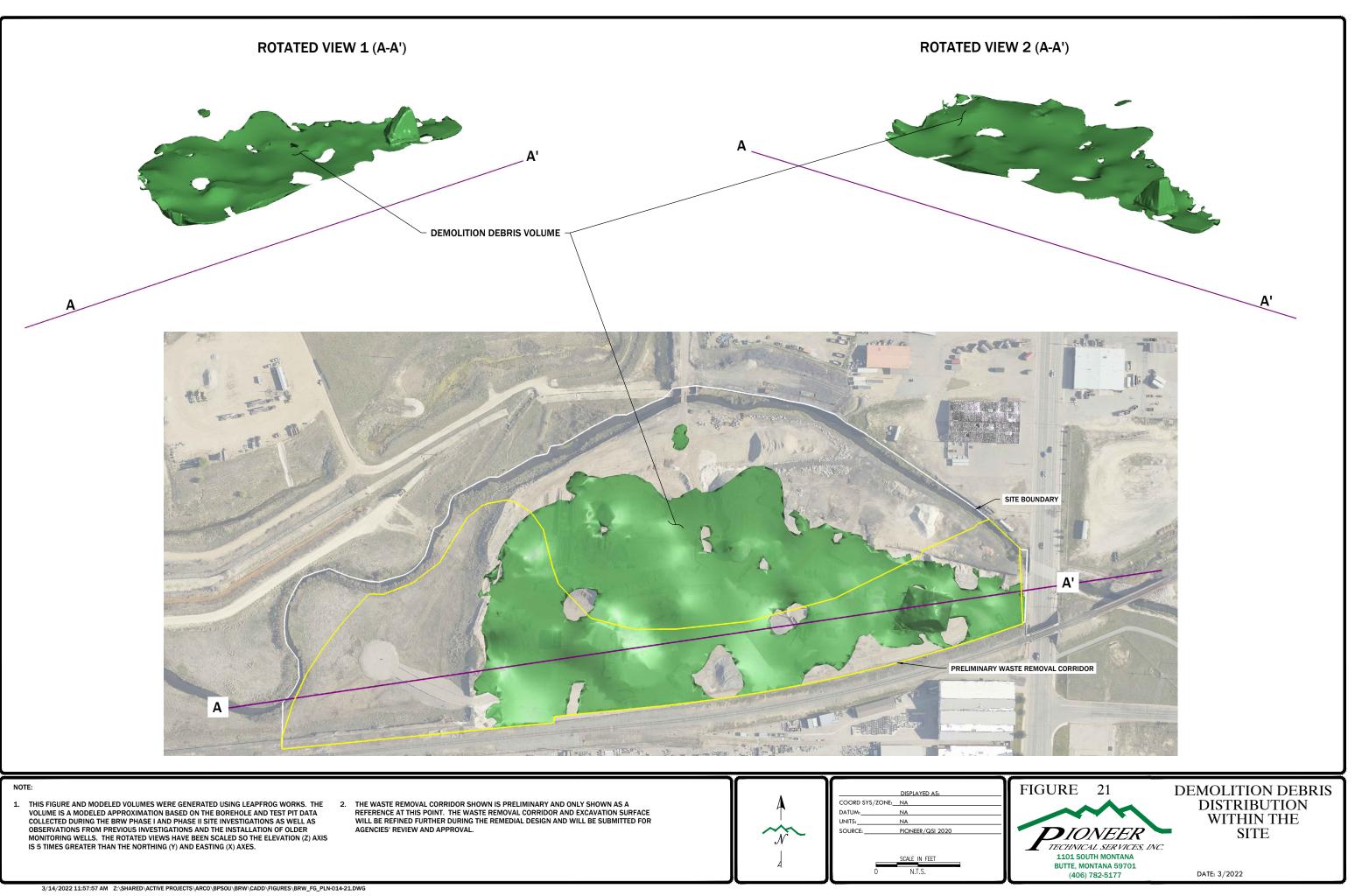
 The kriging (shading) shown in the Figure represents the standard deviation values of total recoverable metals for applicable piezometers and wells from Table 8.
 Piezometers and wells with less than two data points were


2. Plezometers and wells with less than two data points were omitted for standard deviation calculations.

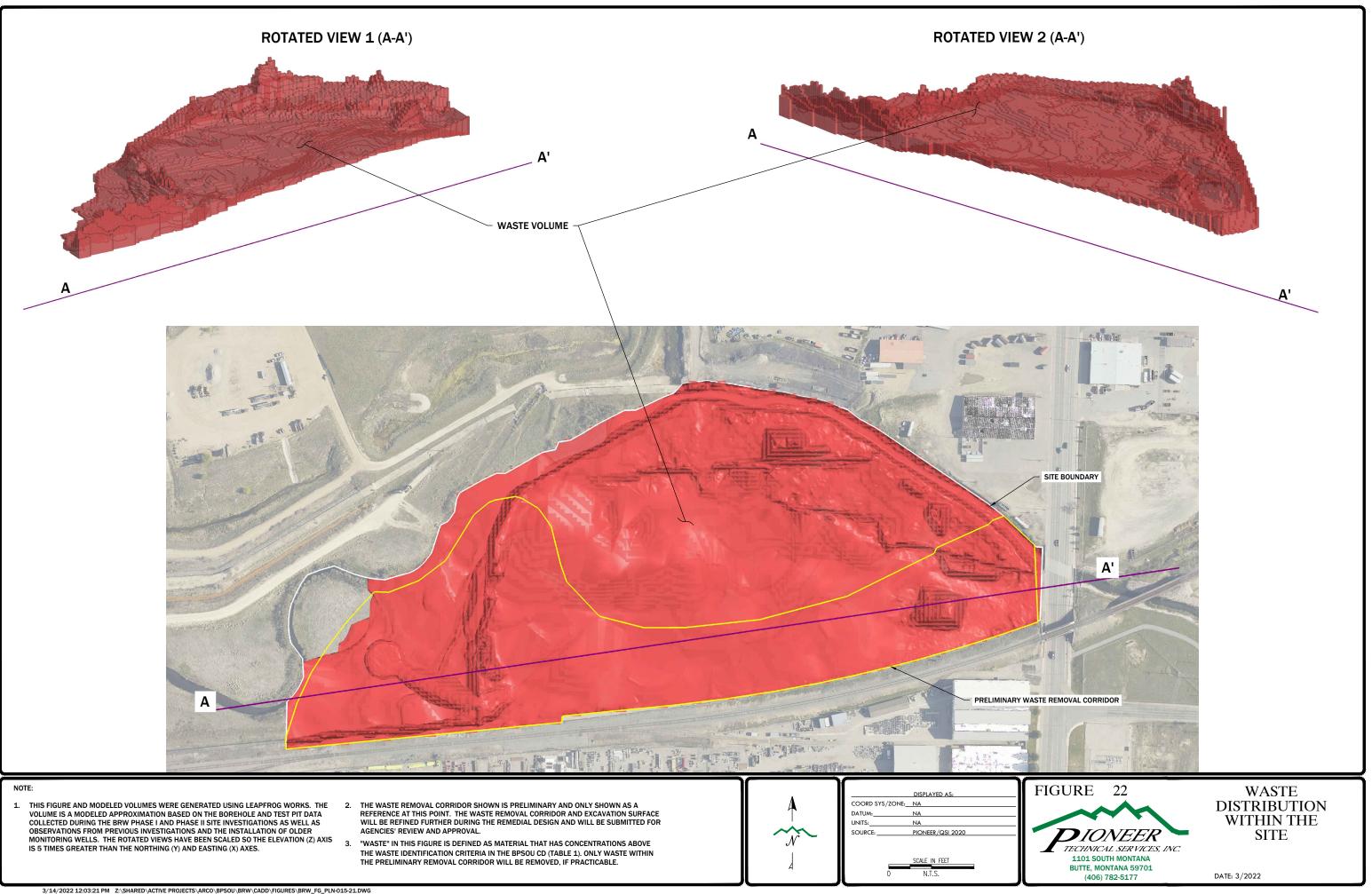

3. A location with at least one occurrence of a concentration above the standard and/or goal is marked with a blue or red circle.
4. The BRW Site is within the TI Waiver Zone. Quality analysis is for comparison purposes only.

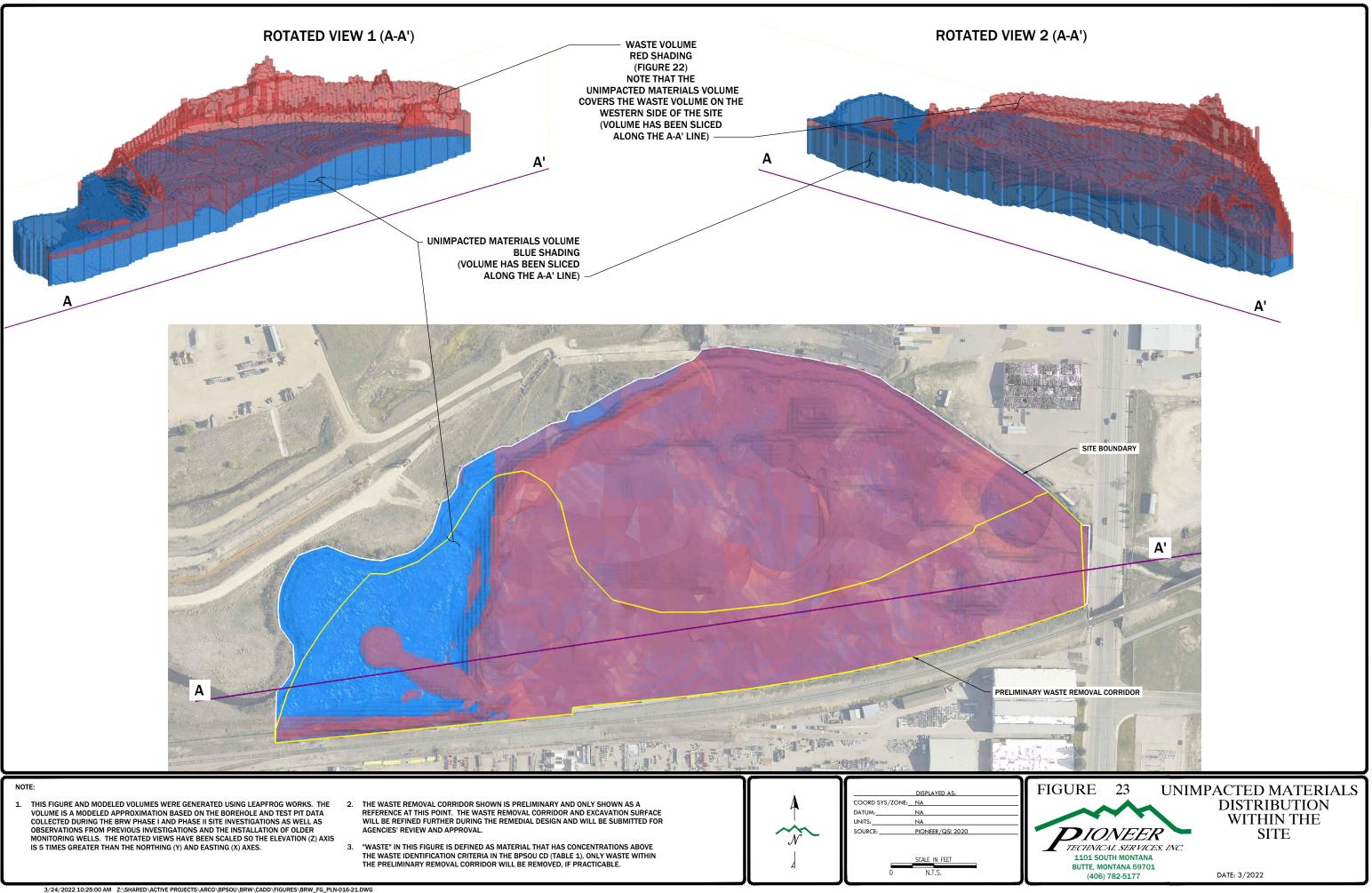

BPS11-05A1

-


BRW18-PZ15







		D
Λ	COORD SYS/ZONE:	N
7	DATUM:	Ν
	UNITS:	N
\sim	SOURCE:	PI
\mathcal{N}^{\cdot} –		
		S
4	0	
	U U	

Preliminary Waste Removal Corridor

- Phase III Waste Characterization Boreholes
- Geotech Analysis Boreholes
- Phase III Piezometers

Note: Phase III locations were installed according to the Phase III QAPP. Data collected has not yet been validated. Once data has been reviewed and validated it will be included in PDI Evaluation Report

Л

DISPLAYED AS:		
PROJECTION/ZONE:_	MSP	
DATUM:	NAD 83	
UNITS:	INTN'L FEET	
SOURCE:	PIONEER/ QSI 2020	
100	200	400
	Feet	

Path: Z:\Shared\Active Projects\ARCO\BPSOU\BRW\GIS\Z_PDI Evaluation Report PII\BRW_PII_PDIER_017_PIII_22.mxd

PHASE III SITE INVESTIGATION POINTS

DATE: 3/15/2022

TABLES

Table 1. Waste Identification Criteria

Table 2. Data Gaps Summary

Table 3. Investigation Points and Analyses for Phase I and Phase II Site Investigations

Table 4. Sample Collection, Preservation, and Holding Times

Table 5. SPLP Analytical Results Summary (Phase I)

Table 6. SPLP Analytical Results Summary (Phase II)

 Table 7. Summary of Historic Infrastructure

Table 8. Summary of Surface Water and Groundwater Analytical Results

 Table 9. Monthly Depths to Groundwater

Table 10 Summary of Groundwater and Surface Water PCB, PCP, and Dioxin Analytical Results

 Table 11. Hydrocarbon Impacted Soil Treatment Results

Table 12. Approximate Volumes of Materials Within BRW Site

Table 13. Depth for Bottom of Waste in Each Investigation Point

Table 1Waste Identification Criteria

If three of the six contaminant criteria listed are exceeded or any one contaminant is above 5,000 milligram per kilogram (mg/kg) then, the material is considered tailings, waste, or contaminated soil.

Arsenic	200 mg/kg
Cadmium	20 mg/kg
Copper	1,000 mg/kg
Lead	1,000 mg/kg
Mercury	10 mg/kg
Zinc	1,000 mg/kg
Any single analyt	e above 5,000 mg/kg

Table 2. Data Ga <u>ps S</u>	Summary										
Carlo	Volume and Distribution of Solid Materials	/*	And Street	dolitional C. Barr	Procession Smaller	Philip Interneting	Acres II Sile In Vertice	Page Star Marken Star	Theat cash of the state of the cash of the state of the state of the state of the state of the cash of	Prate Life Interlieuen	
	Slag Demolition Debris Impacted Materials (including Tailings, Alluvium, and Organic Soils) Unimpacted Materials Properties of Solid Materials	0 ✓ 0		0 + 0 +	+	+ + ✓ +		Laboratory and XRF data, soil lithology logs, and photographic logs from test pits and boreholes were used to determine the volume and distribution of solid materials within the BRW Site.	Laboratory and XRF data, soil lithology logs, and photographic logs from hydrocarbon monitoring well boreholes and test pits were used to augment and refine the volume and distribution of solid materials within the BRW Site.	Laboratory and XRF data, soil lithology logs, and photographic logs from new piezometer boreholes and sla investigation test pits were used to augment and refine the volume and distribution of solid materials within the BRW Site.	A final series of boreholes were construct lithology logs, and photographic logs from related data gaps pertaining to the volu within the BRW site.
Solid Material	Metals Concentrations Leachability of Metals	o o		0		✓ 0		The test pit and borehole samples were analyzed using an XRF field unit. Select samples were sent for laboratory ICP (metals concentrations) and SPLP analysis (leachability).	Test pit and borehole samples were analyzed using an XRF field unit. Select samples were sent for laboratory ICP (metals concentrations) analyses.	Borehole samples were analyzed using an XRF field unit or sent for laboratory ICP analysis. Select samples were sent for laboratory SPLP (leachability) analyses.	Borehole samples were analyzed using a analysis. Select samples were sent for la
Characterization	Constructability Considerations Geotechnical Considerations				o	o	~	NA		The slag investigation collected data on the physical parameters of the slag and examined means of removing the slag.	Additional boreholes were drilled during properties of the underlying soil and the geotechnical requirements of the end-la
	Location of Subsurface Flume/Culvert	*					+	The geophysical MASW Seismic Survey confirmed the existence and location of the subsurface flume/culvert. Measurements and photographs documented the remaining infrastructure at the	NA	NA	
	Remaining Infrastructure Chemistry and Spatial Variability for BPSOU	~						BRW Site. Observations from test pits were used to determine the existence of any durable historic infrastructure.			
	COCs Conductivity and Transmissivity (Impacted Groundwater Volume)	0		0		 ✓ + 		Laboratory results from groundwater samples collected from newly installed plezometers were used to determine the spatial variability of the groundwater chemistry within the BRW Site. Low-flow sampling parameters were used to estimate the hydraulic conductivity of the screened aquifer interval. Monthly groundwater levels and transducer data were used to evaluate groundwater elevations,	Laboratory results from groundwater samples collected from newly installed	New piezometers were installed, and lithology logs from the piezometer construction and manual groundwater level measurements were used to augment and refine the aquifer geometry. Two pumping test(s) were conducted to determine the transmissivity, hydraulic conductivity, stativity, presence of hydraulic barriers and/or sources of storage, preferential flow, anisotropy, and heterogeneity of the aquifer, role of confining and/or less conductive units, well efficiency, specific yield, and other	Groundwater elevations and groundwater elevations and groundwater and uncontering wells durin RFC 01 and 02) groundwater and surfac augment the spatial variability of the gr
Groundwater Characterization and Hydraulic Control	Groundwater Elevations, Potentiometric Surface, and Direction of Flow Seasonal Groundwater Elevation Change	*	_	+		+		potentiometric surfaces, and seasonal groundwater change. Lithology logs from the piezometer construction and groundwater elevations were used to determine the aquifer geometry. Additional groundwater sampling and laboratory analyses of the Phase I piezometers and select upgradient existing monitoring wells were used to augment and refine the spatial variability of the groundwater chemistry, the hydraulic conductivity of the screened aquifer. Manual groundwater level measurements were used to augment	the screened aquifer interval. Lithology logs from the piezometer construction and	Additional groundwater sampling was conducted before and after the pumping test and samples were submitted for laboratory analyses. These samples were used to refine and augment the spatial variability o the groundwater chemitry within the BRW Site. Manual groundwater level measurements collected duirng sampling were used to augment and refine the groundwater elevations, potentiometric surface, and direction of flow.	A network of surface water and ground determine the impact of BRW groundwa low groundwater and surface water con
	Evaluation of Groundwater Impact to SBC Aquifer Geometry	0		0		✓ +		and refine the groundwater elevations, potentiometric surfaces, and seasonal groundwater change.		A network of surface water and groundwater monitoring points were used to determine the impact of BRV groundwater on subsections of SBC as well as assess the potential impacts of the dewatering activities on nearby sites. This work included the installation of additional staff gages in SBC, stream gaging, and sampling for COC and Radon-222 to monitor the groundwater and surface water flux and COC loading.	W stream gages, sampling for COCs, and Ra groundwater flux, surface water flux, an
	Chemistry and Spatial Variability of organic pollutants	o	o	o	*	+		Laboratory analyses and PID screening of soil samples from test pits and boreholes and groundwater samples from select piezometers were used to determine the chemistry and spatial variability of hydrocarbons.		Data was collected to refine the chemistry and spatial variability of organic pollutants and help define appropriate Site-specific action levels and determine the proper management plan for soils and	Data was collected and sent for labortor for soil and groundwater to refine the ch pollutants and help define appropriate S the proper management plan for soils ar
Organic Pollutants	Plan to Manage Impacted Soil and/or Groundwater	ο	o	o	o	0	~	Additional groundwater sampling and laboratory analyses at those piezometers and monitoring wells that previously contained organic pollutants were collected to refine the chemistry and spatial variability of organic pollutants.	and spatial variability of organic pollutants and help define appropriate Site- specific action levels and determine the proper management plan for soils and groundwater impacted with organic pollutants within the BRW Site.	groundwater impacted with organic pollutants within the BRW Site. Soil from the newly installed piezometers were screened with PIDs for the presence of hydrocarbons with select samples sent for laboratory analyses. Groundwater samples were taken and submitted for laboratory analysis.	pollutants within the BRW Site. Soil from screened with PIDs for the presence of h laboratory analyses.
	SBC Bottom Invert at Upstream and Downstream Tie-in Locations	~				Ī		The survey team determined the bottom invert at the upstream and downstream tie- in locations on SBC.	NA	NA	
Silver Bow Creek (SBC) Realignment	Evaluation of Potential Lining of Relocated SBC	o	o	o	o	~		Soil and groundwater chemistry information will be used to determine if a liner will be needed based on the excavation design and the potential impact to the relocated SBC. The additional groundwater data will be used to refine the decision to line the SBC channel.	The additional groundwater data will be used to refine the decision to line the SBC channel.	The additional soil and groundwater chemistry data and the results of the pumping test will be used to determine the excavation design and will guide the decision of whether to line the SBC channel.	The additional groundwater data will be channel.
	Objective not covered during indicated investig	gation	phas	e.							Acronym Table
✓ 0	Objective met during indicated investigation pl Objective partially met during indicated investi		n phas	se.						BRW - Butte Reduction Works	ICP - Inductively Coupled Plasma
+	Additional data gathered during indicated inve				to refir	ne a ci	omple	eted objective.		COC - Contaminant of Concern GW - Groundwater	MASW - Multichannel Analysis of Surface Wav NA - Not applicable
										Green	inoc appliedule

GW - Groundwater

NA - Not applicable

Place III Ster Press	Colicional Internet designed	
e constructed. Laboratory and XRF data, soil ic logs from boreholes will be used to fill any design- the volume and distribution of impacted materials	NA	
ed using an XRF field unit or sent for laboratory ICP ent for laboratory SPLP (leachability) analyses.	As part of the Microbial Analysis and Biotreatability Study, additional samples from test pits will be sent for metals analysis. Additional samples from archived cores will be collected and submitted for SPLP analysis.	
ed during a geotechnical investigation to determine il and then the data will be used to evaluate the he end-land use plan and excavation design.	A final geotechnical survey will be performed on the western portion of the site to characterize a clay layer by drilling boreholes and collecting geotechnical samples (i.e., direct shear, gradation, consolidation testing, Atterberg limits).	
NA	Completion of a primary wave seismic investigation will provide additional data needed to determine if subsurface voids exists within BRW Site where excavation or end-land use structures will be constructed.	
oundwater samples were collected from select ells during high (Phase III QAPP) and low (Phase II di surface water conditions to help refine and of the groundwater chemistry within the BRW Site. will be used to estimate the hydraulic conductivity I. Monthly groundwater levels were recorded and elevations, potentiometric surfaces, and seasonal a groundwater monitoring points will be used to groundwater on subsections of SBC during high and vater conditions. This work included monitoring 5, and Radon-222 tracing tests to monitor r flux, and COC loading.	NA	
r labortory analysis from select wells/piezometers ine the chemistry and spatial variability of organic propriate Site-specific action levels and determine or soils and groundwater impacted with organic .Soil from the newly installed piezometers was ence of hydrocarbons with select samples sent for	Additional organic pollutant data collection will provide more data for the chemistry and spatial variability within BRW Site. Soil samples and analyses for COC's, nutrients, hydrocarbon concentrations/leachability, and microbial quantification will help to determine impacts to both the existing microbial community and inhibited biological processes that naturally occur in soil. Data will also assist with determining if chemical oxidation is a practical treatment method.	
NA	Complete a bathymetric survey of the anticipated tie in locations for the reconstructed SBC.	
ta will be used to refine the decision to line the SBC	The sediment samples will be taken near the tie in locations and submitted for particle sizing analysis to help instruct the design of the SBC channel.	
		I
	PID - Photoionization Detector	
urface Waves	QAPP - Quality Assurance Project Plan	
	SBC - Silver Bow Creek	

Table 3. Investigation Points and Analyses For Phase I and Phase II Site Investigations

			Water Le	evel Monitoring		Phase I Site Investigation	on			Phase II Site Inve	estigation	
Location	Date of Soil Sampling	Date of Groundwater Sampling	Monthly Manual Water Levels	Transducer	Initial Phase I Site Investigation (August 2018 to 2019)	Additional Groundwater Sampling: RFC BRW 2019-01 (October to November 2019)	Hydrocarbon Investigation: RFC BRW-2019-03 (December 2019 to February 2020)	Pre-Pumping Test (August 2020)	Pumping Test (October 2020)	Post-Pumping Test (November 2020)	Silver Bow Creek Metals Load Analysis*** (October to November 2020)	Slag Investigation (September 2020 and March 2021)
Phase I Site Investigation - Bo	rehole and Piezometer Installa	ation	<u>.</u>		<u>.</u>			<u> </u>				
BRW18-PZ01	9/20/2018	12/4/2018 10/22/2019 7/16/2020 8/24/2020 11/10/2020	x	-	1-A, 2-A, 3-A, 4-A, 6A, 7-A	1-B, 2-B	-	1-D, 2-D, 3-D 5-D, 7-D	-	1-D, 2-D, 3-D, 5-D, 7-D	-	-
BRW18-PZ02	9/20/2018	12/5/2018 10/24/2019 10/1/2020 10/12/2020 11/5/2020	x	-	1-A, 2-A, 3-A, 4-A, 6-A, 6b-A, 6c-A, 7-A, 12-A	1-B, 2-B, 5-B	-	-	1-D	-	1-D, 2-D, 3-D, 8-D	-
BRW18-PZ03	9/19/2018 5/12/2020	12/4/2018 10/22/2019 10/1/2020 10/12/2020 11/4/2020	x	-	1-A, 2-A, 3-A, 4-A, 6-A, 6b-A, 6c-A, 7-A, 12-A	1-B, 2-B	-	-	1-D	-	1-D, 2-D, 3-D, 8-D	-
BRW18-PZ04	9/19/2018	12/4/2018 10/22/2019 11/12/2020	х	-	1-A, 2-A, 3-A, 4-A, 6-A, 7-A	1-B, 2-B	-	-	-	1-D, 2-D, 3-D	-	-
BRW18-PZ05	9/17/2018	12/4/2018 10/18/2019	х	Х	1-A, 2-A, 3-A, 4-A, 6-A, 6b-A, 6c-A, 7-A, 12-A	1-B, 2-B, 5-B	-	-	1-D	-	-	-
BRW18-PZ06	9/18/2018 5/12/2020	12/3/2018 10/18/2019	х	-	1-A, 2-A, 3-A, 4-A, 6-A, 6b-A, 6c-A, 7-A, 12-A	1-B, 2-B	-	-	-	-	-	-
BRW18-PZ07*	-	-	-	-	-	-	-	-	-	-	-	-
BRW18-PZ08	9/18/2018	12/3/2018 10/17/2019 10/1/2020 10/12/2020 11/4/2020	x	-	1-A, 2-A, 3-A, 4-A, 6-A, 6b-A, 6c-A, 7-A, 12-A	1-B, 2-B, 5-B	-	-	-		1-D, 2-D, 3-D, 8-D	-
BRW18-PZ09	9/19/2018	12/3/2018 10/17/2019 10/1/2020 10/12/2020 11/4/2020	X	х	1-A, 2-A, 3-A, 4-A, 6-A, 6b-A, 6c-A, 7-A, 12-A	1-B, 2-B, 5-B	-	-	-		1-D, 2-D, 3-D, 8-D	-
BRW18-PZ10	9/28/2018	11/28/2018 10/21/2019	Х	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 7-A	1-B, 2-B, 5-B	-	-	1-D	-	-	-

*Proposed investigation point wasn't installed. Table 1 of BRW Phase I DSR (Appendix A) details these points.

**Water levels only.

***Groundwater samples were collected before and after the pumping test.

			Water Lev	el Monitoring		Phase I Site Investigatio	n			Phase II Site Inve	estigation	
Location	Date of Soil Sampling	Date of Groundwater Sampling	Monthly Manual Water Levels	Transducer	Initial Phase I Site Investigation (August 2018 to 2019)	Additional Groundwater Sampling: RFC BRW- 2019-01 (October to November 2019)	Hydrocarbon Investigation: RFC BRW-2019-03 (December 2019 to February 2020)	Pre-Pumping Test (August 2020)	Pumping Test (October 2020)	Post-Pumping Test (November 2020)	Silver Bow Creek Metals Load Analysis*** (October to November 2020)	Slag Investigation (September 2020 and Mar 2021)
BRW18-PZ11	10/8/2018	11/29/2018 10/21/2019	х	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A,7-A	1-B, 2-B, 5-B	-	-	1-D	-	-	-
BRW18-PZ12	10/5/2018 5/12/2020	11/28/2018 10/21/2019	x	Х	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 7-A, 10-A, 11-A, 12-A	1-B, 2-B, 5-B	-	-	1-D	-	-	-
BRW18-PZ13	10/11/2018 5/12/2020	11/28/2018 10/21/2019	x	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 6b-A, 6c-A, 7-A, 12-A	1-B, 2-B, 5-B	-	-	-	-	-	-
BRW18-PZ14	10/8/2018 5/12/2020	11/29/2018 10/15/2019 11/16/2020	x	-	1-A, 2-A, 3-A, 4-A, 6-A, 7-A	1-B, 2-B	-	-	-	1-D, 2-D, 3-D	-	-
BRW18-PZ15	10/5/2018 5/12/2020	11/29/2018 10/15/2019 11/16/2020	x	Х	1-A, 2-A, 3-A, 4-A, 6-A, 6b-A, 6c-A, 7-A, 12-A	1-B, 2-B	-	-	-	1-D, 2-D, 3-D	-	-
BRW18-PZ16	10/10/2018	11/29/2018 10/21/2019	X	-	1-A, 2-A, 3-A, 4-A, 6-A, 7-A	1-B, 2-B	-	-	1-D	-	-	-
BRW18-PZ17	10/15/2018 5/13/2020	11/29/2018 10/15/2019 11/16/2020	X	-	1-A, 2-A, 3-A, 4-A, 6-A, 7-A	1-B, 2-B	-	-	-	1-D, 2-D, 3-D	-	-
BRW18-PZ18	10/3/2018 5/12/2020 5/13/2020	11/27/2018 10/25/2019 11/17/2020	x	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 7-A, 10-A, 11-A	1-B, 2-B, 5-B	-	-	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW18-PZ19	9/27/2018	11/27/2018 10/23/2019	x	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 6b-A, 6c-A, 7-A, 10-A, 11-A, 12-A	1-B, 2-B, 5-B	-	-	-	-	-	-
BRW18-PZ20	10/3/2018	11/30/2018 10/25/2019	х	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 7-A, 10-A, 11-A, 12-A	1-B, 2-B, 5-B	-	-	1-D	-	-	-
BRW18-PZ21	10/4/2018 5/12/2020	11/26/2018 10/25/2019 2/14/2020	x	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 6b-A, 6c-A, 7-A, 10-A, 11-A, 12-A	1-B, 2-B, 5-B	1-C, 2-C, 4-C	-	1-D	-	-	-
BRW18-PZ22	9/26/2018 5/12/2020	11/30/2018 10/25/2019	x	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 6b-A, 6c-A, 7-A, 10-A, 11-A, 12-A	1-B, 2-B, 5-B	-	-	1-D	-	-	-
BRW18-PZ23	10/9/2018 5/13/2020	11/27/2018 10/24/2019	X	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 6b-A, 6c-A, 7-A, 10-A, 11-A, 12-A	1-B, 2-B, 5-B	-	-	-	-	-	-
BRW18-PZ24	10/9/2018	11/28/2018 10/24/2019 11/13/2020	х	-	1-A, 2-A, 3-A, 4-A, 5-A, 6-A, 6b-A, 6c-A, 7-A, 10-A, 11-A, 12-A	1-B, 2-B, 5-B	-	-	-	1-D, 2-D, 3-D, 6-D	-	-
BRW18-PZ25	10/10/2018	12/5/2018 10/22/2019	X	-	1-A, 2-A, 3-A, 4-A, 6-A, 7-A	1-B, 2-B	-	-	1-D	-	-	-

*Proposed investigation point wasn't installed. Table 1 of BRW Phase I DSR (Appendix A) details these points. **Water levels only.

^{****}Due to field conditions, multiple boreholes were drilled for this location. The second borehole is indicated with a "R" in the location name. The official location name is the borehole in which the piezometer was installed. Sample names reported within this report include the borehole location name that the sample was collected from.

			Water Le	vel Monitoring		Phase I Site Investigatio	n			Phase II Site Inve	estigation	
Location	Date of Soil Sampling	Date of Groundwater Sampling	Monthly Manual Water Levels	Transducer	Initial Phase I Site Investigation (August 2018 to 2019)	Additional Groundwater Sampling: RFC BRW- 2019-01 (October to November 2019)	Hydrocarbon Investigation: RFC BRW-2019-03 (December 2019 to February 2020)	Pre-Pumping Test (August 2020)	Pumping Test (October 2020)	Post-Pumping Test (November 2020)	Silver Bow Creek Metals Load Analysis*** (October to November 2020)	Slag Investigation (September 2020 and March 2021)
Phase I Site Investigation - Borel												
BRW18-BH01	10/12/2018 05/12/2020		-	-	6-A, 7-A, 10-A, 11-A, 12-A	-	-	-	-	-	-	-
BRW18-BH02	10/12/2018 10/17/2018		-	-	6-A, 6b-A, 6c-A, 7-A, 12-A	-	-	-	-	-	-	-
BRW18-BH03	9/24/2018 9/25/2018		-	-	6-A, 6b-A, 6c-A, 7-A, 12-A	-	-	-	-	-	-	-
	5/12/2020				/-A, 12-A							
BRW18-BH04* BRW18-BH05	9/25/2018		-	-	- 6-A, 6b-A, 6c-A, 7-A, 10-A, 11-A, 12-A	-	-	-	-	-	-	-
BRW18-BH06	10/2/2018		-	_	6-A, 6b-A, 6c-A, 7-A, 12-A	-	-	-	_	_	-	-
BRW18-BH07	10/2/2018	-	-	-	6-A, 7-A	-	-	-			-	_
BRW18-BH08	9/28/2018 10/1/2018 5/12/2020		-	-	6-A, 7-A, 10-A, 11-A	-	-	-	-	-	-	-
BRW18-BH09	9/24/2018 5/12/2020	•	-	-	6-A, 6b-A, 6c-A, 7-A, 12-A	-	-	-	-	-	-	-
BRW18-BH10	9/27/2018 9/28/2018 5/12/2020		-	-	6-A, 6b-A, 6c-A, 7-A, 12-A	-	-	-	-	-	-	-
BRW18-BH11	10/11/2018 5/12/2020	•	-	-	6-A, 6b-A, 6c-A, 7-A, 10-A, 11-A, 12-A	-	-	-	-	-	-	-
BRW18-BH12*	-	NA	-	-	-	-	-	-	-	-	-	-
BRW18-BH13*	-	NA	-	-	-	-	-	-	-	-	-	-
BRW18-BH14*	-		-	-	-	-	-	-	-	-	-	-
BRW18-BH15* BRW18-BH16			-	-		-	-	-	-	-	-	-
BRW18-BH17*	5/12/2020		-	_	7-A, 12-A	_	_	_	_	_	_	_
BRW18-BH18	9/18/2018		-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-BH19*	-]	-	-	-	-	-	-	-	-	-	-
BRW18-BH20	9/17/2018		-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-BH21	9/13/2018	4	-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-BH22	9/13/2018 5/12/2020		-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-BH23	9/13/2018	1	-	_	6-A, 7-A	-	-	_	-	-	_	-
BRW18-BH24	9/13/2018 5/12/2020	1	-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-BH25	9/13/2018	1	-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-BH26	9/14/2018		-	-	6-A, 6b-A, 6c-A, 7-A, 12-A	-	-	-	-	-	-	-
BRW18-BH27	9/14/2018		-	-	6-A, 6b-A, 6c-A, 7-A, 12-A	-	-	-	-	-	-	-
BRW18-BH28	9/14/2018		-	-	6-A, 6b-A, 6c-A, 7-A, 12-A	-	-	-	-	-	-	-
BRW18-BH29	9/17/2018 5/12/2020		-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-BH30	9/17/2018		-	-	6-A, 7-A	-	-	-	-	-	-	-

*Proposed investigation point wasn't installed. Table 1 of BRW Phase I DSR (Appendix A) details these points. **Water levels only.

^{****}Due to field conditions, multiple boreholes were drilled for this location. The second borehole is indicated with a "R" in the location name. The official location name is the borehole in which the piezometer was installed. Sample names reported within this report include the borehole location name that the sample was collected from.

			Water Le	vel Monitoring	1	Phase I Site Investigatio	n			Phase II Site Inve	stigation	
Location	Date of Soil Sampling	Date of Groundwater Sampling	Monthly Manual Water Levels	Transducer	Initial Phase I Site Investigation (August 2018 to 2019)	Additional Groundwater Sampling: RFC BRW- 2019-01 (October to November 2019)	Hydrocarbon Investigation: RFC BRW-2019-03 (December 2019 to February 2020)	Pre-Pumping Test (August 2020)	Pumping Test (October 2020)	Post-Pumping Test (November 2020)	Silver Bow Creek Metals Load Analysis*** (October to November 2020)	Slag Investigation (September 2020 and March 2021)
Phase I Site Investigation - Tes	t Pit		<u> </u>									
BRW18-TP01	10/26/2018		-	-	6-A, 7-A, 10-A	-	-	-	-	-	-	-
BRW18-TP02	10/25/2018		-	-	6-A, 10-A	-	-	-	-	-	-	-
BRW18-TP03	10/25/2018		-	-	6-A	-	-	-	-	-	-	-
BRW18-TP04	10/25/2018		-	-	6-A, 7-A, 8-A	-	-	-	-	-	-	-
BRW18-TP05	10/25/2018		-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-TP06*	-		-	-	-	-	-	-	-	-	-	-
BRW18-TP07*	-		-	-	-	-	-	-	-	-	-	-
BRW18-TP08	10/24/2018 5/12/2020		-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-TP09	10/24/2018	NA	-	-	6-A, 6b-A, 6c-A, 7-A, 8-A, 12-A	-	-	-	-	-	-	-
BRW18-TP10	10/24/2018 5/12/2020	1	-	-	6-A, 6b-A, 6c-A, 7-A, 8-A	-	-	-	-	-	-	-
BRW18-TP11*	-	1	-	-	-	-	-	-	-	-	-	-
BRW18-TP12*	-	1	-	-	-	-	-	-	-	-	-	-
BRW18-TP13*	-	1	-	-	-	-	-	-	-	-	-	-
BRW18-TP14	10/23/2018	1	-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-TP15	10/24/2018		-	-	6-A, 7-A	-	-	-	-	-	-	-
BRW18-TP16	10/24/2018		-	-	6-A, 7-A, 8-A	-	-	-	-	-	-	-
BRW18-TP17	10/25/2018	1	-	-	6-A, 7-A, 10-A		_	-	-	-	-	-

*Proposed investigation point wasn't installed. Table 1 of BRW Phase I DSR (Appendix A) details these points.
**Water levels only.
***Groundwater samples were collected before and after the pumping test.

Location Date of Soil Sampling Date of Ground Sampling hase I Site Investigation - Hydrocarbon Investigation Monitoring Wells (bor BRW19-HCW30 12/18/2019 2/4/2021 11/18/2019 BRW19-HCW31 12/17/2019 1/28/2022 BRW19-HCW32 12/19/2019 5/12/2020 1/30/2022 BRW19-HCW33 1/14/2020 2/5/2024 BRW19-HCW34 1/10/2020 2/5/2024 BRW19-HCW35 1/9/2020 2/4/2024 BRW19-HCW36 - 2/5/2024 BRW19-HCW36 - 2/5/2024 BRW19-HCW36 - 2/5/2024 BRW19-HCW37 1/6/2020 2/5/2024 BRW19-HCW38 1/7/2020 2/5/2024 BRW19-HCW39 1/9/2020 2/5/2024 BRW19-HCW40 12/17/2019 1/28/202	IgMonth Manu Water Lrehole and piezomet020202020X0X020X020X020X	al evels rinstallation) - - - - - - - -	Initial Phase I Site Investigation (August 2018 to 2019) 	Additional Groundwater Sampling: RFC BRW 2019-01 (October to November 2019) - - - - - - - - - -	Characteria (December 2019 to February	Pre-Pumping Test (August 2020) -	Pumping Test (October 2020) - - - - - - - -	Post-Pumping Test (November 2020) 1-D, 2-D, 3-D, 6-D - - - - - - - - - - - -	Silver Bow Creek Metals Load Analysis*** (October to November 2020) - - - - - - - - - -	Slag Investigation (September 2020 and Marc 2021) - - - - - - -
BRW19-HCW30 12/18/2019 2/4/202/ 11/18/201 BRW19-HCW31 12/17/2019 1/28/202 BRW19-HCW32 12/19/2019 1/30/202 BRW19-HCW33R**** 1/14/2020 2/5/2020 BRW19-HCW33R**** 1/10/2020 2/5/2020 BRW19-HCW34 1/10/2020 2/4/2020 BRW19-HCW35 1/9/2020 2/4/2020 BRW19-HCW36 - 2/5/2020 BRW19-HCW37 1/6/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW37 1/6/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW40 12/17/2019 1/28/202	0 X 20 X 20 X 20 X 0 X 0 X 0 X 0 X	- - - - - -	- - - -	- - - -	7-C, 9-C 1-C, 2-C, 4-C, 7-C, 9-C 1-C, 2-C, 4-C, 6-C, 7-C, 8-C, 9-C 1-C, 2-C, 4-C, 6-C, 7-C, 8-C, 9-C 1-C, 2-C, 4-C, 7-C, 9-C 1-C, 2-C, 4-C, 6-C, 1-C, 2-C, 4-C, 6-C,	- - - -	-	6-D -	- - -	
BRW19-HCW30 12/18/2019 11/18/2019 BRW19-HCW31 12/17/2019 1/28/202 BRW19-HCW32 12/19/2019 1/30/202 BRW19-HCW33R**** 1/14/2020 2/5/2024 BRW19-HCW33R**** 1/14/2020 2/5/2024 BRW19-HCW34 1/10/2020 2/5/2024 BRW19-HCW35 1/9/2020 2/4/2024 BRW19-HCW36 - 2/5/2024 BRW19-HCW37 1/6/2020 2/5/2024 BRW19-HCW38 1/7/2020 2/5/2024 BRW19-HCW37 1/6/2020 2/5/2024 BRW19-HCW38 1/7/2020 2/5/2024 BRW19-HCW38 1/7/2020 2/5/2024 BRW19-HCW38 1/21/7/2019 1/28/202 BRW19-HCW39 1/9/2020 2/5/2024 BRW19-HCW39 1/9/2020 2/5/2024 BRW19-HCW40 12/17/2019 1/28/202	20 X 20 X 20 X 0 X 0 X 0 X 0 X	- - - - -	- - - -	- - - -	7-C, 9-C 1-C, 2-C, 4-C, 7-C, 9-C 1-C, 2-C, 4-C, 6-C, 7-C, 8-C, 9-C 1-C, 2-C, 4-C, 6-C, 7-C, 8-C, 9-C 1-C, 2-C, 4-C, 7-C, 9-C 1-C, 2-C, 4-C, 6-C, 1-C, 2-C, 4-C, 6-C,	- - - -	-	6-D -	- - -	-
BRW19-HCW32 12/19/2019 5/12/2020 1/30/202 BRW19-HCW33R**** 1/14/2020 2/5/2020 BRW19-HCW33R**** 1/10/2020 2/5/2020 BRW19-HCW34 1/10/2020 2/4/2020 BRW19-HCW35 1/10/2020 2/4/2020 BRW19-HCW36 - 2/5/2020 BRW19-HCW37 1/6/2020 2/5/2020 BRW19-HCW38 1/10/2020 2/5/2020 BRW19-HCW37 1/6/2020 2/5/2020 BRW19-HCW38 1/17/2020 2/5/2020 BRW19-HCW38 1/17/2020 2/5/2020 BRW19-HCW38 1/17/2020 2/5/2020 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW40 12/17/2019 1/28/202	20 X 0 X 0 X 0 X 0 X	- - -	- - - -		7-C, 9-C 1-C, 2-C, 4-C, 6-C, 7-C, 8-C, 9-C 1-C, 2-C, 4-C, 6-C, 7-C, 8-C, 9-C 1-C, 2-C, 4-C, 7-C, 9-C 1-C, 2-C, 4-C, 6-C, 1-C, 2-C, 4-C, 6-C,	- - -	-	-		-
BRW19-HCW32 5/12/2020 1/30/202 BRW19-HCW33R**** 1/14/2020 2/5/2020 BRW19-HCW34 1/10/2020 2/5/2020 BRW19-HCW35 1/9/2020 2/4/2020 BRW19-HCW35 1/10/2020 2/4/2020 BRW19-HCW36 - 2/5/2020 BRW19-HCW36 - 2/5/2020 BRW19-HCW37 1/6/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW38 1/17/2020 2/5/2020 BRW19-HCW38 1/1/2020 2/5/2020 BRW19-HCW39 1/2/17/2019 1/28/202	20 X 0 X 0 X 0 X 0 X	- -	-	- - -	1-C, 2-C, 4-C, 6-C, 7-C, 8-C, 9-C 1-C, 2-C, 4-C, 6-C, 7-C, 8-C, 9-C 1-C, 2-C, 4-C, 7-C, 9-C 1-C, 2-C, 4-C, 1-C, 2-C, 4-C, 6-C,	-	-	- - -		-
BRW19-HCW33R**** 5/12/2020 2/5/2020 BRW19-HCW34 1/10/2020 2/5/2020 BRW19-HCW35 1/9/2020 2/4/2020 BRW19-HCW35 1/10/2020 1/1/19/2020 BRW19-HCW36 - 2/5/2020 BRW19-HCW37 1/6/2020 2/5/2020 BRW19-HCW37 1/6/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW38 1/2/12/020 2/5/2020 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW40 12/17/2019 1/28/202	0 X 0 20 X				7-C, 8-C, 9-C 1-C, 2-C, 4-C, 7-C, 9-C 1-C, 2-C, 4-C, 6-C,	-		-		
BRW19-HCW35 1/9/2020 1/10/2020 5/12/2020 2/4/2020 11/19/2020 BRW19-HCW36 - 2/5/2020 BRW19-HCW37 1/6/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/6/2020 11/18/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW40 12/17/2019 1/28/2020	0 20 X	-			1-C, 2-C, 4-C, 7-C, 9-C 1-C, 2-C, 4-C, 6-C,		-	-	-	-
BRW19-HCW35 1/10/2020 5/12/2020 11/19/2020 BRW19-HCW36 - 2/5/2020 BRW19-HCW37 1/6/2020 2/5/2020 BRW19-HCW38 1/7/2020 2/6/2020 BRW19-HCW38 1/7/2020 2/5/2020 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW40 12/17/2019 1/28/2020	20 X		-	-		_			1	1
BRW19-HCW37 1/6/2020 2/5/2024 BRW19-HCW38 1/7/2020 2/6/2024 BRW19-HCW38 1/7/2020 2/5/2024 BRW19-HCW39 1/9/2020 2/5/2024 BRW19-HCW40 12/17/2019 1/28/2024	0 X				1		1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-HCW37 1/6/2020 BRW19-HCW38 1/7/2020 BRW19-HCW39 1/9/2020 BRW19-HCW40 12/17/2019		-	-	-	1-C, 2-C, 3-C, 4-C, 7-C	-	-	-	-	-
BRW19-HCW38 1/7/2020 11/18/202 BRW19-HCW39 1/9/2020 2/5/2020 BRW19-HCW40 12/17/2019 1/28/202	0 x	-	-	-	1-C, 2-C, 4-C, 7-C, 9-C	-	-	-	-	-
BRW19-HCW40 12/17/2019 1/28/202		-	-	-	1-C, 2-C, 4-C, 7-C, 9-C	-	1-D	1-D, 2-D, 3-D, 6-D	-	-
	0 X	-	-	-	1-C, 2-C, 4-C, 7-C, 9-C	-	-	-	-	-
1/00/000	20 X	-	-	-	1-C, 2-C, 3-C, 4-C, 7-C, 9-C	-	-	-	-	-
BRW19-HCW41 1/8/2020 11/28/202 5/13/2020 11/18/202		-	-	-	1-C, 2-C, 3-C, 4-C, 6-C, 7-C, 8-C, 9-C	-	-	1-D, 2-D, 3-D, 6-D	-	-
BRW19-HCW42 1/6/2020 11/13/202		-	-	-	1-C, 2-C, 3-C, 4-C, 7-C, 9-C	-	-	1-D, 2-D, 3-D, 6-D	-	-
hase I Site Investigation - Hydrocarbon Investigation Test Pits										
BRW19-HCTP30 1/16/2020		-	-		6-C, 7-C, 9-C	-	-	-	-	-
BRW19-HCTP31 1/16/2020 NA BRW19-HCTP32 1/16/2020	-	-		-	6-C, 7-C, 9-C 6-C, 7-C, 9-C	-	-	-	-	-

			Water Lev	vel Monitoring		Phase I Site Investigatio	n			
Location	Date of Soil Sampling	Date of Groundwater Sampling	Monthly Manual Water Levels	Transducer	Initial Phase I Site Investigation (August 2018 to 2019)	Additional Groundwater Sampling: RFC BRW- 2019-01 (October to November 2019)	Hydrocarbon Investigation: RFC BRW-2019-03 (December 2019 to February 2020)	Pre-Pumping Test (August 2020)	Pumping Test (October 2020)	
Phase I and Phase II Site Invest	tigations - Existing Monitorin	g Wells								
AMW-02			Х	-	-	-	-	-	-	
BPS07-08A			Х	-	-	-	-	-	-	
BPS07-13A			Х	Х	-	-	-	-	-	
BPS07-13B			Х	Х	-	-	-	-	-	
BPS07-14A		-	Х	Х	-	-	-	-	-	
BPS07-15A	_		Х	Х	-	-	-	-	-	\downarrow
BPS07-25			X	Х	-	-	-	-	-	_
BPS11-01			X	-	-	-	-	-	-	_
BPS11-02			X	-	-	-	-	-	-	+
BPS11-05A1		1/27/2020	X	X	-	-	1-C, 2-C, 4-C	-	-	+
BPS11-05A2			X	X	-	-	-	-	-	┿
BPS11-06			X	Х	-	-	-	-	-	_
BPS11-07			X	-	-	-	-	-	-	+
BPS11-08		-	X	-	-	-	-	-	-	┿
BPS11-09			X	-	-	-	-	-	-	+
BPS11-12A FP98-01B			X	- V	-	-	-	-	-	┿
FP98-01B		2/2/2021	Х	Х	-	-	-	-	-	+
FP98-1		3/2/2021 6/1/2021	Х	Х	-	-	-	-	1-D	
FP98-2	NA		Х	-	-	-	-	-	1-D	
GS-13A			Х	-	-	-	-	-	-	_
GS-13B			Х	-	-	-	-	-	-	_
HCA-MG3		-	Х	-	-	-	-	-	-	_
FP98-3			Х	-	-	-	-	-	-	_
FP98-5	_		X	-	-	-	-	-	-	+
GS-29SR	_		Х	-	-	-	-	-	-	+
MW-01-MPC		10/23/2019 11/14/2019 1/30/2020	Х	-	-	1-B, 2-B, 3-B, 4-B, 5-B	1-C, 2-C, 3-C, 4-C	-	-	
MW-02-MPC		10/23/2019 11/14/2019 1/30/2020	Х	-	-	1-B, 2-B, 3-B, 4-B, 5-B	1-C, 2-C, 3-C, 4-C	-	-	
MW-03A-MPC		10/23/2019 11/14/2019 1/30/2020	Х	-	-	1-B, 2-B, 3-B, 4-B, 5-B	1-C, 2-C, 3-C, 4-C	-	-	
MW-03-MPC		10/23/2019 11/14/2019 1/30/2020 11/19/2020	х	-	-	1-B, 2-B, 3-B, 4-B, 5-B	1-C, 2-C, 3-C, 4-C	-	-	

*Proposed investigation point wasn't installed. Table 1 of BRW Phase I DSR (Appendix A) details these points. **Water levels only.

***Groundwater samples were collected before and after the pumping test.

Phase II Site Inves	stigation	
Post-Pumping Test (November 2020)	Silver Bow Creek Metals Load Analysis*** (October to November 2020)	Slag Investigation (September 2020 and March 2021)
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-		-
_	-	_
-	-	-
-	-	_
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
_	-	-
-	-	-
-	-	-
1-D, 2-D, 3-D, 6-D	-	-

Location	Date of Soil Sampling	Date of Groundwater Sampling	Water Level Monitoring		Phase I Site Investigation			Phase II Site Investigation				
			Monthly Manual Water Levels	Transducer	Initial Phase I Site Investigation (August 2018 to 2019)	Additional Groundwater Sampling: RFC BRW- 2019-01 (October to November 2019)	Hydrocarbon Investigation: RFC BRW-2019-03 (December 2019 to February 2020)	Pre-Pumping Test (August 2020)	Pumping Test (October 2020)	Post-Pumping Test (November 2020)	Silver Bow Creek Metals Load Analysis*** (October to November 2020)	Slag Investigation (September 2020 and March 2021)
Phase I and Phase II Site Invest	igations - Existing Surface W	Vater Locations	.									
SS-04			Х	Х	10-A	-	-	-	-	-	-	-
SS-05			Х	Х	10-A	-	-	-	-	-	-	-
SS-05.6			Х	-	-	-	-	-	-	-	-	-
SS-05.7			Х	Х	-	-	-	-	-	-	-	-
SS-05.9R			Х	Х	-	-	-	-	-	-	-	-
SBC Sed B-8	NA		Х	Х	-	-	-		-	-	-	-
SS-05A		10/01/2020 10/06/2020 10/14/2020 10/28/2020 11/04/2020	х	Х	-	-	-	-	-	-	1-D, 2-D, 3-D, 8-D	-
SS-05B		10/01/2020 10/06/2020 10/14/2020 10/28/2020 11/04/2020	x	Х	-	-	-	-	-	-	1-D, 2-D, 3-D, 8-D	-
SS-06A		10/01/2020 10/06/2020 10/14/2020 10/28/2020 11/04/2020	X	-	-	-	-	-	-	-	1-D, 2-D, 3-D, 8-D	-
BRW-00		_	Х	Х	-	-	-	_	1-D	-	-	-
Phase II Site Investigation - Bor	ehole and Piezometer Install	lation										
BRW19-PZ01DR****	7/20/2020	8/12/2020 11/11/2020	X	-	-	-	-	1-D, 2-D, 3-D, 11-D, 12-D, 13-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ01S	7/20/2020	8/12/2020 11/10/2020	X		-	-	-	1-D, 2-D, 3-D, 11-D, 13-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ03D	7/23/2020	8/4/2020 11/11/2020	x			-	-	1-D, 2-D, 3-D, 11-D, 12-D, 13-D	1-D	1-D, 2-D, 3-D, 6-D		
BRW19-PZ05S	7/22/2020	8/4/2020 11/11/2020	X	-	-	-	-	1-D, 2-D, 3-D, 11-D, 13-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ10D	-	8/13/2020 11/12/2020	x	-	-	-	-	1-D, 2-D, 3-D, 11-D	1-D	1-D, 2-D, 3-D, 6-D	-	-

*Proposed investigation point wasn't installed. Table 1 of BRW Phase I DSR (Appendix A) details these points. **Water levels only.

***Groundwater samples were collected before and after the pumping test.

			Water Lev	el Monitoring		Phase I Site Investigatio	n			Phase II Site Inve	stigation	
Location	Date of Soil Sampling	Date of Groundwater Sampling	Monthly Manual Water Levels	Transducer	Initial Phase I Site Investigation (August 2018 to 2019)	Additional Groundwater Sampling: RFC BRW- 2019-01 (October to November 2019)	Hydrocarbon Investigation: RFC BRW-2019-03 (December 2019 to February 2020)	Pre-Pumping Test (August 2020)	Pumping Test (October 2020)	Post-Pumping Test (November 2020)	Silver Bow Creek Metals Load Analysis*** (October to November 2020)	Slag Investigation (September 2020 and March 2021)
BRW19-PZ11S	-	8/13/2020 11/12/2020	x	-	-	-	-	1-D, 2-D, 3-D, 11-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ12D	-	8/13/2020 11/16/2020	X	-	-	-	-	1-D, 2-D, 3-D, 11-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ16S	7/6/2020	8/17/2020 11/13/2020	x	-	-	-	-	1-D, 2-D, 3-D, 6-D, 13-D, 11-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ26	7/23/2020	8/4/2020 11/9/2020	X	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 12-D, 13-D, 14-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ27	7/27/2020	8/4/2020 11/9/2020	x	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 12-D, 13-D, 14-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ28R****	7/28/2020	8/11/2020	X	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 12-D, 13-D, 14-D	1-D	-	-	-
BRW19-PZ29	7/28/2020	8/4/2020	х	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 12-D, 13-D	1-D	-	-	-
BRW19-PZ30	7/29/2020	8/12/2020 11/9/2020	х	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 14-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ31	7/29/2020	8/11/2020	x	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 12-D, 14-D	1-D	-	-	-
BRW19-PZ32	7/30/2020	8/11/2020 11/12/2020	х	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 12-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ40	7/14/2020	8/17/2020	X	-	-	-	-	1-D, 2-D, 3-D, 6-D, 11-D, 12-D, 13-D, 14-D	1-D	-	-	-

			Water Le	evel Monitoring		Phase I Site Investigatio	n			Phase II Site Inve	stigation	
Location	Date of Soil Sampling	Date of Groundwater Sampling	Monthly Manual Water Levels	Transducer	Initial Phase I Site Investigation (August 2018 to 2019)	Additional Groundwater Sampling: RFC BRW- 2019-01 (October to November 2019)	Hydrocarbon Investigation: RFC BRW-2019-03 (December 2019 to February 2020)	Pre-Pumping Test (August 2020)	Pumping Test (October 2020)	Post-Pumping Test (November 2020)	Silver Bow Creek Metals Load Analysis*** (October to November 2020)	Slag Investigation (September 2020 and March 2021)
BRW19-PZ41	7/8/2020	8/14/2020	х	-	-	-	-	1-D, 2-D, 3-D, 6-D, 11-D, 12-D, 13-D, 14-D	1-D	-	-	-
BRW19-PZ42	7/13/2020	8/14/2020 11/16/2020	х	-	-	-	-	1-D, 2-D, 3-D, 6-D, 11-D, 12-D, 13-D, 14-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ43	7/13/2020	8/13/2020	Х	-	-	-	-	1-D, 2-D, 3-D, 11-D, 12-D, 14-D	1-D	-	-	-
BRW19-PZ44	7/7/2020	8/14/2020	х	-	-	-	-	1-D, 2-D, 3-D, 11-D, 12-D, 13-D, 14-D	1-D	-	-	-
BRW19-PZ45	7/7/2020	8/13/2020 11/16/2020	x	-	-	-	-	1-D, 2-D, 3-D, 11-D, 12-D, 13-D, 14-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ46	7/21/2020 8/19/2020	8/12/2020 10/1/2020 10/12/2020 11/4/2020	x	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 12-D, 13-D, 14-D	1-D	-	1-D, 2-D, 3-D, 5-D, 6-D, 7-D, 8-D	-
BRW19-PZ47	7/22/2020 8/19/2020	8/12/2020 11/11/2020	х	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 12-D, 13-D, 14-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ48	8/20/2020	8/24/2020 11/17/2020	x	-	-	-	-	1-D, 2-D, 3-D, 6-D, 10-D, 11-D, 12-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ49	8/18/2020	8/24/2020 11/18/2020	X	-	-	-	-	1-D, 2-D, 3-D, 6-D, 10-D, 11-D, 12-D, 14-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
BRW19-PZ50	7/31/2020	8/13/2020 11/18/2020	X	-	-	-	-	1-D, 2-D, 3-D, 10-D, 11-D, 12-D	1-D	1-D, 2-D, 3-D, 6-D	-	-
Phase II Site Investigation - Pum	ping Wells						1					
BRW-PW-01A	-	7/16/2020 10/5/2020 10/6/2020 10/7/2020 10/8/2020	х	-	-	-	-	5-D, 7-D	1-D, 2-D, 3-D, 4-D, 5-D, 6-D, 7-D	-	-	-
BRW-PW-01B	-	7/16/2020 10/27/2020 10/28/2020 10/29/2020 10/30/2020	X	-	-	-	-	5-D, 7-D	1-D, 2-D, 3-D, 4-D, 5-D, 6-D, 7-D	-	-	-

*Proposed investigation point wasn't installed. Table 1 of BRW Phase I DSR (Appendix A) details these points. **Water levels only.

***Groundwater samples were collected before and after the pumping test.

^{****}Due to field conditions, multiple boreholes were drilled for this location. The second borehole is indicated with a "R" in the location name. The official location name is the borehole in which the piezometer was installed. Sample names reported within this report include the borehole location name that the sample was collected from.

			Water Lev	el Monitoring		Phase I Site Investigatio	n			Phase II Site Inve	estigation	
Location	Date of Soil Sampling	Date of Groundwater Sampling	Monthly Manual Water Levels	Transducer	Initial Phase I Site Investigation (August 2018 to 2019)	Additional Groundwater Sampling: RFC BRW 2019-01 (October to November 2019)	Hydrocarbon Investigation: RFC BRW-2019-03 (December 2019 to February 2020)	Pre-Pumping Test (August 2020)	Pumping Test (October 2020)	Post-Pumping Test (November 2020)	Silver Bow Creek Metals Load Analysis*** (October to November 2020)	Slag Investigation (September 2020 and March 2021)
Phase II Site Investigation - Insta	alled Surface Water Locatio											
B-5		7/16/2020 10/01/2020 10/06/2020 10/14/2020 10/28/2020 11/04/2020	x	-	-	-	-	-	-	-	1-D, 2-D, 3-D, 5-D, 7-D, 8-D	-
B-6	NA	7/16/2020 10/01/2020 10/06/2020 10/14/2020 10/28/2020 11/04/2020	x	-	-	-	-	-	-	1-D	1-D, 2-D, 3-D, 5-D, 7-D, 8-D	-
BRW-SS-01		10/01/2020 10/06/2020 10/14/2020 10/28/2020 11/04/2020	x	-	-	-	-	-	-	-	1-D, 2-D, 3-D, 8-D	-
Phase II Site Investigation - Slag	Investigation Test Pits											
BRW20-TP33			-	-	-	-	-	-	-	-	-	11-D
BRW20-TP34	-		-	-	-	-	-	-	-	-	-	11-D
BRW20-TP35	-		-	-	-	-	-	-	-	-	-	11-D
BRW20-TP36	-		-	-	-	-	-	-	-	-	-	11-D
BRW20-TP37	-		-	-	-	-	-	-	-	-	-	11-D
BRW20-TP38	-		-	-	-	-	-	-	-	-	-	11-D
BRW20-TP39 BRW20-TP40	-		-	-	-	-	-	-	-	-	-	11-D 11-D
BRW20-TP40 BRW20-TP41	-		-	-	-	-	-	-	-	-	-	11-D 11-D
BRW20-TP41 BRW20-TP42			-		-	-	-	-	-	-	-	11-D
BRW20-TP42 BRW20-TP43	1		-	-	-			-	-	-		11-D
BRW20-TP44			_	_	_	-	-	-	-	_	-	11-D
BRW20-TP45	1		-	-	-	-	-	-	-	-	_	11-D
BRW20-TP46		NA	-	-	-	-	-	-	-	-	-	11-D
BRW20-TP47			-	-	_	-	-	-	-	-	-	11-D
BRW20-TP48	1		-	-	-	-	-	-	-	-	-	11-D
BRW20-TP49	1		-	-	-	-	-	-	-	-	-	11-D
BRW20-TP50	1		-	-	-	-	-	-	-	-	-	11-D
BRW20-TP51]		-	-	-	-	-	-	-	-	-	11-D
BRW20-TP52			-	-	-	-	-	-	-	-	-	11-D
BRW20-TP53			-	-	-	-	-	-	-	-	-	11-D
BRW20-TP54		4	-	-	-	-	-	-	-	-	-	11-D
BRW20-TP55	9/4/2020	4	-	-	-	-	-	-	-	-	-	11-D, 12-D
BRW20-TP56	9/4/2020	4	-	-	-	-	-	-	-	-	-	11-D, 12-D
BRW20-TP57	9/4/2020	4	-	-	-	-	-	-	-	-	-	11-D, 12-D, 13-D, 14-D
BRW20-TP58	9/4/2020	4	-	-	-	-	-	-	-	-	-	11-D, 12-D
BRW20-TP59	9/8/2020		-	-	-	-	-	-	-	-	-	11-D, 12-D, 13-D, 14-D

*Proposed investigation point wasn't installed. Table 1 of BRW Phase I DSR (Appendix A) details these points. **Water levels only.

***Groundwater samples were collected before and after the pumping test.

Image: second				Water Le	vel Monitoring		Phase I Site Investigatio	n			Phase II Site Inve	stigation	
Image: problemImage: problemImage	Location	Date of Soil Sampling		Manual	Transducer	Investigation	Groundwater Sampling: RFC BRW- 2019-01 (October to November	Investigation: RFC BRW-2019-03 (December 2019 to February			Post-Pumping Test	Load Analysis*** (October to November	Slag Investigation (September 2020 and March 2021)
Image: state of the state o	BRW20-TP60	9/8/2020		-	-	-	-	-	-	-	-	-	11-D, 12-D, 13-D, 14-D
Image: stateStateImage: stateImage: state <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>11-D, 12-D, 13-D</td></th<>				-	-	-	-	-	-	-	-	-	11-D, 12-D, 13-D
DRNS TM95289528BRNS TM95289226				-	-	-	-	-	-	-	-	-	11-D, 12-D
Involution BRNN 1764Second 					-								11-D, 12-D, 13-D
BX207976 \$100207 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100307 \$100707													11-D, 12-D, 13-D
ImageImageImageImageImageImageImageImageImage910300910300910300910300Image													11-D, 12-D, 13-D 11-D, 12-D, 13-D
BRND:1089103000910300091030009103000910300091030009103000 <td></td> <td>11-D, 12-D, 13-D</td>													11-D, 12-D, 13-D
Image: state of the state o			NA										11-D, 12-D
Image: state of the state o							-		1 1		-		11-D, 12-D
Image: problemImage: problemImage]					_					11-D, 12-D, 14-D
Image: stand i		9/11/2020		-	-	-	-	-	-	-	-	-	11-D, 12-D, 14-D
Image: non-partial part of the second sec		-		-	-	-	-	-	-	-	-	-	11-D
BRW1.FP1				-	-	-	-		-	-	-	-	11-D
BRU1174OO </td <td></td> <td>11-D, 13-D</td>													11-D, 13-D
Phase Inscriçution Nay Investigation Romolog Na I <thi< th=""> I<td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>11-D 11-D</td></thi<>		-		-	-	-	-		-	-	-	-	11-D 11-D
BRU20811 BRU208173 NA I		- avertigation Boreholes		-	-		-	-	-	-	-	-	II-D
ImageImageImageImageImageImageImageImageImageImageBRV208131NAImageImag		Ivestigation borenoies	[-	-	<u> </u>		<u> </u>			_	. .	11-D
BRV20BH34 NA NA NA I <					-		-						11-D
BRV208113 <td></td> <td>NA</td> <td>NA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11-D</td>		NA	NA										11-D
BRX04013OO<					-								11-D
BRW TP01 BRW TP02 BRW TP03 BRW TP03 BRW TP04 BRW TP04 BRW TP05 BRW TP05 BRW TP06 BRW TP06 BRW TP06 BRW TP06 BRW TP06 				-	-	-	-	-	-	-	-	-	11-D
BRWTP01BRWTP04BRWTP04BRWTP05BRWTP06BRWTP06BRWTP07BRWTP07BRWTP07BRWTP08BRWTP08BRWTP08BRWTP08BRWTP08BRWTP08BRWTP08BRWTP08BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP09BRWTP11BRWTP12BRWTP12BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP17BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP16BRWTP20BRWTP21BRWTP21BRWTP21BRWTP24BRWTP24BRWTP26BRWTP26BRWTP26BRWTP26BRWTP28BRWTP28	reviously Installed Test Pits (BRW	W Smelter Site Test Pit Re	port [NRDP, 2016a])										
BRW-TP-04BRW-TP-04Image: second				-	-	-	-	-	-	-	-	-	-
BRWTP-04 BRWTP-05 - </td <td></td> <td></td> <td></td> <td>-</td>				-	-	-	-	-	-	-	-	-	-
IRR/TP.06 IRR/TP.06 IRR/TP.07 BR/TP.07 BR/TP.07 BR/TP.07 IRR/TP.08 BR/TP.07 IRR/TP.08 BR/TP.08 IRR/TP.09 BR/TP.09 IRR/TP.09 BR/TP.10 IRR/TP.10 BR/TP.11 IRR/TP.11 BR/TP.12 IRR/TP.14 BR/TP.13 IRR/TP.16 BR/TP.14 IRR/TP.16 BR/TP.16 IRR/TP.16 BR/TP.17 IRR/TP.16 BR/TP.16 IRR/TP.16 BR/TP.16 IRR/TP.16 BR/TP.16 IRR/TP.16 BR/TP.16 IRR/TP.16 BR/TP.16 IRR/TP.16 BR/TP.17 IRR/TP.16 BR/TP.18 IRR/TP.16 BR/TP.17 IRR/TP.16 BR/TP.18 IRR/TP.16 BR/TP.17 IRR/TP.16 BR/TP.18 IRR/TP.20 BR/TP.21 IRR/TP.21 BR/TP.21 IRR/TP.21 BR/TP.21 IRR/TP.21 BR/TP.23 IRR/TP.24 BR/TP.24 IRR/TP.24 BR/TP.25				-	-	-	-	-	-	-	-	-	-
BRW-TP-06 BRW-TP-07 BRW-TP-07 BRW-TP-07 BRW-TP-08							-		ł – – ł		-		-
BRW-TP-07BRW-TP-09IIIIIIBRW-TP-09BRW-TP-10BRW-TP-11BRW-TP-12BRW-TP-12BRW-TP-13BRW-TP-14BRW-TP-14BRW-TP-15BRW-TP-16BRW-TP-16BRW-TP-17BRW-TP-17BRW-TP-18BRW-TP-19BRW-TP-19BRW-TP-19BRW-TP-12BRW-TP-14BRW-TP-15BRW-TP-16BRW-TP-17BRW-TP-17BRW-TP-18BRW-TP-19BRW-TP-19BRW-TP-12BRW-TP-14BRW-TP-14BRW-TP-15BRW-TP-15BRW-TP-16BRW-TP-17BRW-TP-17BRW-TP-18BRW-TP-19BRW-TP-19BRW-TP-19BRW-TP-19BRW-TP-12BRW-TP-12BRW-TP-12BRW-TP-12BRW-TP-12BRW-TP-21BRW-TP-21BRW-TP-23BRW-TP-24BRW-TP-25BRW-TP-25BRW-TP-26BRW-TP-26BRW-TP-27BRW-TP-27BRW-TP-26BRW-TP-26BRW-TP-27BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-2													-
BRW-TP-08 BRW-TP-09													-
BRW.TP-09BRW.TP-10I.<													-
BRWTP.10BRWTP.11BRWTP.12BRWTP.13BRWTP.13BRWTP.14BRWTP.15BRWTP.16BRWTP.16BRWTP.17BRWTP.18BRWTP.19BRWTP.21BRWTP.21BRWTP.21BRWTP.21BRWTP.23BRWTP.23BRWTP.23BRWTP.24BRWTP.24BRWTP.25BRWTP.25BRWTP.26BRWTP.26BRWTP.27BRWTP.27BRWTP.27BRWTP.26BRWTP.27BRWTP.26<													-
BRW-TP-11BRW-TP-12BRW-TP-13BRW-TP-14BRW-TP-15BRW-TP-16BRW-TP-16BRW-TP-16BRW-TP-17BRW-TP-18BRW-TP-19BRW-TP-20BRW-TP-21BRW-TP-23BRW-TP-25BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-27BRW-TP-27BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-27BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-26BRW-TP-27BRW-TP-26BRW-T							-		1		-		-
BRW-TP-12 BRW-TP-13 Image: Constraint of the second of th													-
BRW-TP-13 BRW-TP-14 Image: Constraint of the second of th													-
BRW-TP-14 BRW-TP-15 BRW-TP-16 BRW-TP-16 BRW-TP-17 BRW-TP-18 BRW-TP-19 BRW-TP-10 BRW-TP-10 BRW-TP-20 BRW-TP-21 BRW-TP-23 BRW-TP-24 BRW-TP-26 BRW-TP-26 BRW-TP-28													-
BRW-TP-16 IAA I				-	-	-			- 1	-	-	-	-
BRW-TP-16 -	BRW-TP-15	NA	NA	-	-	-	-	-	-	-	-	-	-
BRW-TP-18 .	BRW-TP-16	1 12 1	1.12.2	-	-	-	-	-	-	-	-	-	-
BRW-TP-19 I				-	-	-	-	-	-	-	-	-	-
BRW-TP-20 BRW-TP-21 BRW-TP-22 BRW-TP-23 BRW-TP-23 BRW-TP-24 BRW-TP-25 BRW-TP-26 BRW-TP-26 BRW-TP-26 BRW-TP-27 BRW-TP-28				-	-	-	-	-	-	-	-	-	-
BRW-TP-21 -				-	-	-	-	-	-	-	-	-	-
BRW-TP-22 -				-	-		-		-	-	-	-	-
BRW-TP-23 BRW-TP-24 BRW-TP-25 BRW-TP-26 BRW-TP-27 BRW-TP-28													-
BRW-TP-24 BRW-TP-25 BRW-TP-26 BRW-TP-27 BRW-TP-28													-
BRW-TP-25 BRW-TP-26 - - BRW-TP-27 BRW-TP-28													-
BRW-TP-26 -													-
BRW-TP-27 -													-
BRW-TP-28													-
													-
BRW-TP-29													-
BRW-TP-30				-	-				-	-	-	-	-

*Proposed investigation point wasn't installed. Table 1 of BRW Phase I DSR (Appendix A) details these points. **Water levels only.

***Groundwater samples were collected before and after the pumping test.

^{****}Due to field conditions, multiple boreholes were drilled for this location. The second borehole is indicated with a "R" in the location name. The official location name is the borehole in which the piezometer was installed. Sample names reported within this report include the borehole location name that the sample was collected from.

undwater Fi	Lab/Company		Analytical Method	Lab Reporting Limit/CRQL	Limit ²	Time	Container Size	Preservation ¹
ndwater Fi		August 2018 to 2019)	<u> </u>	l	Limit	1 mit	l	
г-а) Р	ield Parameters							
	ioneer	Water level Temperature	NA	NA	NA	NA	NA	NA
		Specific conductance (SC)]					
		Dissolved Oxygen (DO) pH	_					
		Oxidation Reduction Potential (ORP)						
		Ferrous iron and total iron (Chemetrics V-2000 Photometer)	NA			NA	NA	NA
	aboratory Samples ACE	Total recoverable and dissolved arsenic (As)	EPA 200.8 (Rev 5.4)	NA	NA	6 Months	250-mL high-density polyethylene (HDPE) bottle	Acidified with HNO3, field filter
		Total recoverable and dissolved cadmium (Cd)					()	0.45 µm filter (dissolved).
		Total recoverable and dissolved copper (Cu)						
		Total recoverable and dissolved lead (Pb) Total recoverable and dissolved zinc (Zn)	_					
		Total recoverable and dissolved zinc (Zil)	_					
3-A) E	Energy Laboratories	Dissolved Calcium (Ca)	EPA 200.7 (Rev 4.4)/	1		6 Months	250-mL high-density polyethylene (HDPE) bottle	Acidified with HNO3, field filter
		Dissolved Potassium (K) Dissolved Silica (SiO ₂)	EPA 200.8 (Rev 5.4)					0.45 µm filter (dissolved).
		Dissolved Sodium (Na)	_					
		Dissolved Aluminum (Al)						
		Dissolved Barium (Ba) Dissolved Boron (B)	_					
		Dissolved Bolon (B) Dissolved Cobalt (Co)	-					
		Dissolved Magnesium (Mg)						
		Dissolved Manganese (Mn)						
		Dissolved Molybdenum (Mo) Dissolved Nickel (Ni)	_					
		Dissolved Nicker (NI) Dissolved Strontium (Sr)	_					
		Dissolved Vanadium (V)						
		Dissolved Cerium (Ce) Dissolved Lithium (Li)	-					
		Dissolved Palladium (Pd)						
		Dissolved Rubidium (Rb)						
		Dissolved Tungsten (W) Dissolved Uranium (U)	-					
		Dissolved Uranium (U) Bicarbonate (HCO ₃)	SM 2320B	1		14 Days	250-mL HDPE bottle	Raw
		Carbonate (ICO ₃)						
		Alkalinity, Total (as CaCO ₃)						
		Bromide (Br)	EPA 300.1 (Rev 1.0)			28 Days		
		Chloride (Cl) Sulfate (SO4)	_					
		Fluoride (F)	A4500-F C			28 Days	250-mL HDPE bottle	Raw
		Total Hardness	Calculation			None	None	None
-A) E	Energy Laboratories	Total Dissolved Solids (TDS) Dissolved Arsenic [As (III)]	EPA 1632A	-		28 Days	250-mL HDPE bottle	Acidified with HCl, field filtere
· -		Dissolved Arsenic [As (V)]						0.45 µm filter (dissolved).
		Total Arsenic (As)	EPA 200.8 (Rev 5.4)	-		6 Months	250-mL HDPE bottle	Unfiltered, acidified with HNO
-A) E	Energy Laboratories	Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	MAVPH (Rev 1.1) Montana Method EPH	4		14 Days 14 Days	3, 40-mL clear glass VOA vials	Unfiltered, acidified with HCl. Unfiltered, acidified with H ₂ SO
		EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	(PAHs: 8270C or			14 Days	2, 1-L amber glass	Unintered, acidined with H ₂ SO
			8270D)					
			8270D)					
eld Readii				N14		NT A		N.4
eld Readii	ngs 'ioneer Laboratory XRF		NA	NA	NA	NA	NA	NA
eld Readin -A) P *t	vioneer Laboratory XRF used to field screen, however	Cadmium (Cd)		NA	NA	NA	NA	NA
eld Readin A) P *t th	ioneer Laboratory XRF			NA	NA	NA	NA	NA
eld Readin A) P *t th	tioneer Laboratory XRF used to field screen, however his analytical group refers to	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu)		NA	NA	NA	NA	NA
eld Readin A) P *t th	tioneer Laboratory XRF used to field screen, however his analytical group refers to	Cadmium (Cd) Calcium (Ca) Chronium (Cr) Copper (Cu) Iron (Fe)		NA	NA	NA	NA	NA
eld Readin A) P *t th	tioneer Laboratory XRF used to field screen, however his analytical group refers to	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn)		NA	NA	NA	NA	NA
eld Readin A) P *t th Pi	tioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only.	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn)	NA	NA	NA			
eld Readin A) P: *t th Pi b-A) P	tioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only.	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soi Nirate Test	NA	NA	NA	NA	NA	NA
eld Readii -A) P *t th p; -A) P A) P M	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. ioneer PID ininRAE (PID MR) -	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn)	NA	NA	NA			
eld Readin -A) P +t th Pi -A) P A) P N 1	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer Dioneer PID ImiRAE (PID MR) - 0.6 eV Imp	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zinc (Zn) Soil Nitrate Test Volatile Organic Compounds	NA	NA	NA	NA	NA	NA
eld Readin -A) P +A) P + Pi -A) P M 1 U	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer Dioneer PID JimiRAE (PID MR) - 0.6 eV Jamp JimaRAE (PID UR) - 9.8	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zinc (Zn) Soil Nitrate Test Volatile Organic Compounds	NA	NA	NA	NA	NA	NA
eld Readin -A) P +t th Pi -A) P -A) P -A) P -A) P -A -A) P A) P A) P A) P A) P A) P 	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. ¹ ioneer PID JimRAE (PID MR) - 0. 6 eV Jamp JImRAE (PID UR) - 9.8 V Jamp SampleS	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zinc (Zn) Soil Nitrate Test Volatile Organic Compounds	NA NA NA NA			NA	NA	NA
-A) P -A) P -A) P -A) P M U U c' boratory A) P	ioneer Laboratory XRF used to field screen, however iis analytical group refers to ioneer Laboratory XRF only. 'ioneer PID MimRAE (PID MR) - 0.6 eV lamp JimRAE (PID UR) - 9.8 V lamp Samples ACE	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zinc (Zn) Soil Nitrate Test Volatile Organic Compounds	NA	NA	NA	NA NA	NA	NA
-A) P -A) P -A) P -A) P M U U c' boratory A) P	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. ¹ ioneer PID JimRAE (PID MR) - 0. 6 eV Jamp JImRAE (PID UR) - 9.8 V Jamp SampleS	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds pH	NA NA NA NA Method 9045D		NA	NA NA	NA NA 4 oz. amber glass container	NA NA None
Eld Reading -A) P * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	ioneer Laboratory XRF used to field screen, however iis analytical group refers to ioneer Laboratory XRF only. 'ioneer PID MimRAE (PID MR) - 0.6 eV lamp JimRAE (PID UR) - 9.8 V lamp Samples ACE	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds	NA NA NA NA		NA	NA NA	NA NA	NA NA
eld Readin -A) P +t th Pi -A) P M U U c boratory -A) P -A	ioneer Laboratory XRF used to field screen, however iis analytical group refers to ioneer Laboratory XRF only. 'ioneer PID MimRAE (PID MR) - 0.6 eV lamp JimRAE (PID UR) - 9.8 V lamp Samples ACE	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds pH SC Arsenic (As)	NA NA NA NA Method 9045D		NA	NA NA	NA NA 4 oz. amber glass container	NA NA None
eld Readin -A) P +L -A) P -A) P M U U U C -boratory -A) P -A	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer PID MimiRAE (PID MR) - 0.6 eV lamp ImraRAE (PID UR) - 9.8 V lamp Samples ACE General Parameters	Cadmium (Cd) Calcium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds pH SC Arsenic (As) Cadmium (Cd)	NA NA NA NA NA Method 9045D Method ASA10-3.3		NA	NA NA 15 Minutes 28 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container	NA NA None
eld Readin -A) P +L -A) P -A) P M U U U C -boratory -A) P -A	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer PID MimiRAE (PID MR) - 0.6 eV lamp ImraRAE (PID UR) - 9.8 V lamp Samples ACE General Parameters	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds pH SC Arsenic (As)	NA NA NA NA NA Method 9045D Method ASA10-3.3		NA	NA NA 15 Minutes 28 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container	NA NA None
eld Readin -A) P +L -A) P -A) P M U U U C -boratory -A) P -A	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer PID MimiRAE (PID MR) - 0.6 eV lamp ImraRAE (PID UR) - 9.8 V lamp Samples ACE General Parameters	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fo) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nirate Test Volatile Organic Compounds PH SC Arsenic (As) Cadeium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu)	NA NA NA NA NA Method 9045D Method ASA10-3.3		NA	NA NA 15 Minutes 28 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container	NA NA None
eld Readin -A) P +t th Pi -A) P M U U c th C A P A P A P A P A P A P A A P A A A A A A A A A A A A A	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer PID MimiRAE (PID MR) - 0.6 eV lamp ImraRAE (PID UR) - 9.8 V lamp Samples ACE General Parameters	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds PH SC Arsenic (As) Cadmium (Cd) Cadmium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe)	NA NA NA NA NA Method 9045D Method ASA10-3.3		NA	NA NA 15 Minutes 28 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container	NA NA None
eld Readin -A) P +L -A) P -A) P M U U U C -boratory -A) P -A	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer PID MimiRAE (PID MR) - 0.6 eV lamp ImraRAE (PID UR) - 9.8 V lamp Samples ACE General Parameters	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds	NA NA NA NA NA Method 9045D Method ASA10-3.3		NA	NA NA 15 Minutes 28 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container	NA NA None
both P *-A) P *-A) P *-A) P *-A) P b P b P b P b P b P b P b P b P b P b P b D b D b D b D b D b D b D b D b D b D b D b D b D c D c D c D c D c D c D c D c	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. Fioneer PID finirRAE (PID MR) - 0.6 eV lamp JitraRAE (PID UR) - 9.8 V lamp Samples ACE General Parameters CP-OES	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds PH SC Arsenic (As) Calcium (Ca) Chromium (Cr) Caper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn)	NA NA NA NA NA NA Method 9045D Method ASA10-3.3 SW-846 6010D		NA	NA NA 15 Minutes 28 Days 6 Months	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container	NA NA None None
eld Reading P -A) P	ioneer Laboratory XRF used to field screen, however ioneer Laboratory XRF only. 'ioneer Dioneer PID MiniRAE (PID MR) - 0.6 eV lamp MarkAE (PID MR) - 0.6 eV lamp Core and the screen scr	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fo) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds PH SC Cadeium (Ca) Cadeium (Ca) Cadeium (Ca) Cadeium (Ca) Cadeium (Ca) Copper (Cu) Iron (Fo) Lead (Pb) Manganese (Mn) Zine (Zn) Absetos	NA NA NA NA NA Method 9045D Method ASA10-3.3 SW-846 6010D EPA 600		NA	NA NA 15 Minutes 28 Days 6 Months None	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container	NA NA None None None
eld Readii	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer PID finiRAE (PID MR) - 0.6 eV lamp finiRAE (PID UR) - 9.8 V lamp Samples ACE General Parameters CP-OES CP-OES ACE CP-OES	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds PH SC Arsenic (As) Cadeium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Asbestos Polychlorinated Biphenyl (PCB)	NA NA NA NA NA NA Method 9045D Method ASA10-3.3 SW-846 6010D		NA	NA NA 15 Minutes 28 Days 6 Months 6 Months 14 Days 7 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container	NA NA None None None None None
add Reading P sq.1 P sq.1 sq.1 bt bt	ioneer Laboratory XRF used to field screen, however ioneer Laboratory XRF only. 'ioneer Dioneer PID MiniRAE (PID MR) - 0.6 eV lamp MarkAE (PID MR) - 0.6 eV lamp Core and the screen scr	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fo) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds PH SC Cadeium (Ca) Cadeium (Ca) Cadeium (Ca) Cadeium (Ca) Cadeium (Ca) Copper (Cu) Iron (Fo) Lead (Pb) Manganese (Mn) Zine (Zn) Absetos	NA NA NA NA NA NA NA EPA 600 EPA 8082A EPA 600 EPA 8082A EPA 8082A MAVPH (Rev 1.1) Montana Method EPH		NA	NA NA 15 Minutes 28 Days 6 Months None	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container	NA NA None None None
add Reading P sq.1 P sq.1 sq.1 bt bt	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer PID finiRAE (PID MR) - 0.6 eV lamp finiRAE (PID UR) - 9.8 V lamp Samples ACE General Parameters CP-OES CP-OES ACE CP-OES	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soli Nirate Test Volatile Organic Compounds PH SC Calcium (Ca) Calnum (Cd) Calcium (Ca) Chromium (Cd) Calnum (Ca) Chromium (Cf) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Asbestos Polychorinated Biphenyl (PCB) Volatile Peroleum Hydrocarbons (VPH)	NA NA NA NA NA NA Method 9045D Method 9045D Method ASA10-3.3 SW-846 6010D EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 827C or		NA	NA NA 15 Minutes 28 Days 6 Months 6 Months 14 Days 7 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container	NA NA None None None None None
Idd Reading P et al. p	ioneer Laboratory XRF used to field screen, however is analytical group refers to ioneer Laboratory XRF only. 'ioneer PID finiRAE (PID MR) - 0.6 eV lamp finiRAE (PID UR) - 9.8 V lamp Samples ACE General Parameters CP-OES CP-OES ACE CP-OES	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soli Nirate Test Volatile Organic Compounds PH SC Calcium (Ca) Calnum (Cd) Calcium (Ca) Chromium (Cd) Calnum (Ca) Chromium (Cf) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Asbestos Polychorinated Biphenyl (PCB) Volatile Peroleum Hydrocarbons (VPH)	NA NA NA NA NA NA NA EPA 600 EPA 8082A EPA 600 EPA 8082A EPA 8082A MAVPH (Rev 1.1) Montana Method EPH		NA	NA NA 15 Minutes 28 Days 6 Months 6 Months 14 Days 7 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container	NA NA None None None None None
edd Reading P -A) P state b b b b P b P b b b P b P b P b P b P b P b P b P b P b P b P b P b P b P b P b P b P c P c P c P c P c P c P c P c P c P c P c P c P<	ioneer Laboratory XRF used to field screen, however ioneer Laboratory XRF only. ioneer PID ioneer	Cadmium (Cd) Calcium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds pH SC Arsenic (As) Cadmium (Cd) Calcium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Asbestos Polychlorinated Biphenyl (PCB) Volatile Petroleum Hydrocarbons (PAHs) High Resolution Gas Chromatography with Flame Ionization Detector (Pristane/Phytane Ratio)	NA NA NA NA NA NA NA EPA 60045D Method 9045D Method ASA10-3.3 SW-846 6010D EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015M		NA	NA NA 15 Minutes 28 Days 6 Months 6 Months 14 Days 14 Days 14 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container	NA NA None None None None None None None
eld Readiant P -A) P -bA) P -bA) P -b P	ioneer Laboratory XRF used to field screen, however is analytical group refers to isoneer Laboratory XRF only. 'ioneer 'ioneer PID dinitRAE (PID MR) - 0.6 eV lamp 'ACE General Parameters CP-OES CP-OES ACE inergy Laboratories inergy Laboratories 'orkelson Geochemistry inergy Laboratories	Cadmium (Cd) Calcium (Ca) Calcium (Ca) Cohromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds pH SC Arsenic (Aa) Cadmium (Cd) Calcium (Cd) Calcium (Cd) Calcium (Cd) Calcium (Cd) Calcium (Cd) Calcium (Cd) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Asbestos Polychlorinated Biphenyl (PCB) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) High Resolution Gas Chromatography with Flame Ionization Detector	NA NA NA NA NA NA NA EPA 600 EPA 600 EPA 600 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C) or 8270D)		NA	NA NA 15 Minutes 28 Days 6 Months 6 Months 14 Days 7 Days 14 Days	NA NA 4 oz. amber glass container 4 oz. amber glass container	NA NA None None None None None None
eld Readiant P -A) P -bA) P -bA) P -b P	ioneer Laboratory XRF used to field screen, however ioneer Laboratory XRF only. ioneer PID ioneer	Cadmium (Cd) Calcium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Sc in (Zn) Soil Nitrate Test Volatile Organic Compounds pH SC Cadmium (Cd) Calcium (Cd) Calcium (Cd) Calcium (Cd) Calcium (Cd) Calcium (Cd) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Asbestos Polychlorinated Biphenyl (PCB) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) High Resolution Gas Chromatography with Flame Ionization Detector (Pristanc/Phytane Ratio) SPLP solids to be analyzed for (7), above.	NA NA NA NA NA NA NA EPA 60045D Method 9045D Method ASA10-3.3 SW-846 6010D EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015M		NA	NA NA 15 Minutes 28 Days 6 Months 6 Months 14 Days 14 Days 14 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container	NA NA None None None None None None None
ield Readii i-A) P *-A) P *-b-A) P *-c-A) P *-c-A) P *-domain P *-a) P *-a) P *-a) P *-a) P *-a) P *-a) E *-a) E *-a) E *-a) E *-a) E *-a) E	ioneer Laboratory XRF used to field screen, however is analytical group refers to isoneer Laboratory XRF only. 'ioneer 'ioneer PID dinitRAE (PID MR) - 0.6 eV lamp 'ACE General Parameters CP-OES CP-OES ACE inergy Laboratories inergy Laboratories 'orkelson Geochemistry inergy Laboratories	Cadmium (Cd) Calcium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds pH SC Arsenic (As) Cadmium (Cd) Calcium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Polychlorinated Biphenyl (PCB) Volatile Petroleum Hydrocarbons (PAHs) High Resolution Gas Chromatography with Flame Ionization Detector (Pristane/Phytane Ratio)	NA NA NA NA NA NA NA EPA 60045D Method 9045D Method ASA10-3.3 SW-846 6010D EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015M		NA	NA NA 15 Minutes 28 Days 6 Months 6 Months 14 Days 14 Days 14 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container	NA NA None None None None None None None
edd Readii A) P -b-A) P -A) P -A) <	ioneer Laboratory XRF used to field screen, however is analytical group refers to isoneer Laboratory XRF only. 'ioneer 'ioneer PID dinitRAE (PID MR) - 0.6 eV lamp 'ACE General Parameters CP-OES CP-OES ACE inergy Laboratories inergy Laboratories 'orkelson Geochemistry inergy Laboratories	Cadmium (Cd) Calcium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds PH SC Arsenic (As) Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Zine (Zn) Asbestos Polychlorinated Biphenyl (PCB) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) High Resolution Gas Chromatography with Flame Ionization Detector (Pristane/Phytane Ratio) SPLP solids to be analyzed for (2) (dissolved only) and (3) (only for EPA 200.7/200.8), above.	NA NA NA NA NA NA NA EPA 60045D Method 9045D Method ASA10-3.3 SW-846 6010D EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015M		NA	NA NA 15 Minutes 28 Days 6 Months 6 Months 14 Days 14 Days 14 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container	NA NA None None None None None None None
Edd Result Result A) P -rA) E -rA) T	ioneer Laboratory XRF used to field screen, however is analytical group refers to isoneer Laboratory XRF only. 'ioneer 'ioneer PID dinitRAE (PID MR) - 0.6 eV lamp 'ACE General Parameters CP-OES CP-OES ACE inergy Laboratories inergy Laboratories 'orkelson Geochemistry inergy Laboratories	Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu) Iron (Fo) Lead (Pb) Manganese (Mn) Zine (Zn) Soil Nitrate Test Volatile Organic Compounds PH SC Arsenic (As) Cadmium (Cd) Cadmium (Cd) Cadmium (Ca) Chronium (Cr) Copper (Cu) Iron (Fo) Lead (Pb) Manganese (Mn) Zine (Zn) Asbestos Polychlorinated Biphenyl (PCB) Volatili Percloum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) High Resolution Gas Chromatography with Flame Ionization Detector (Pristanc/Phytane Ratio) SPLP leachate to be analyzed for (2) (dissolved only) and (3) (only for EPA	NA NA NA NA NA NA NA EPA 60045D Method 9045D Method ASA10-3.3 SW-846 6010D EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015M		NA	NA NA 15 Minutes 28 Days 6 Months 6 Months 14 Days 14 Days 14 Days	NA NA 4 oz. amber glass container 8 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container 4 oz. amber glass container	NA NA None None None None None None

a mixture of LNAPL and water - collect all of the follow μg/L - Microgram per liter S.U. - Standard Unit umhos/cm or μS/cm - microsiemen per centimeter mg/L - milligram per kilogram pCi/L - picoceurie per liter pg/L - picograms per liter TBD - To Be Determined CRQL - Contract Required Quantitation Limit

Analytical	Groundwater Samplin Analytical				Lab Method Detection	1 Holding	<i>~ ~</i>	_ •
Group	Lab/Company	Analyte	Analytical Method	Lab Reporting Limit/CRQL	Limit ²	Time	Container Size	Preservation ¹
oundwater	Field Parameters Pioneer	Water level	NA	NA	NA	NA	NA	NA
(1-1)	rioneer	Temperature	INA	INA	INA	INA	INA	INA
		Specific conductance (SC)	_					
		Dissolved Oxygen (DO) pH						
		Oxidation Reduction Potential (ORP)						
undwater	Laboratory Samples	Ferrous iron and total iron (Chemetrics V-2000 Photometer)	NA	NA	NA	NA	NA	NA
	PACE		EPA 200.8 (Rev 5.4)	Total / Dissolved	NA	6 Months	2, 250-mL high-density polyethylene (HDPE) bottles	Acidified with HNO3, field filtered
		Total recoverable and dissolved arsenic (As)		0.5 μg/L / 1.0 μg/L ²				0.45 µm filter (dissolved).
		Total recoverable and dissolved cadmium (Cd)		0.08 µg/L / 1.0 µg/L ²				
		Total recoverable and dissolved copper (Cu) Total recoverable and dissolved iron (Fe)		1.0 μg/L / 2.0 μg/L ²				
		Total recoverable and dissolved lead (Pb)		50.0 μg/L / 200.0 μg/L ² 0.1 μg/L / 1.0 μg/L ²				
		Total recoverable and dissolved zinc (Zn)		0.2 µg/L / 0.15 µg/L ²				
		Total recoverable and dissolved silver (Ag)		5.0 µg/L / 2.0 µg/L ²				
		Total recoverable and dissolved mercury (Hg)	EPA 245.1	0.01 µg/L / 2.0 µg/L ²		28 Days		
		Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3)	EPA 365.1 EPA 300.0	50 µg/L ²	NA	29 Days 48 hour	1, 250-mL high-density polyethylene (HDPE) bottle 1, 125-mL high-density polyethylene (HDPE) bottle	Acidified with H2SO4. Raw
(3-B)	Energy Laboratories	Dissolved Calcium (Ca)	EPA 300.0 EPA 200.7 (Rev 4.4)/	100 μg/L ² 5000 μg/L ²	NA	6 Months	250-mL HDPE bottle	Acidified with HNO ₃ , field filtered
		Dissolved Potassium (K)	EPA 200.8 (Rev 5.4)	5000 µg/L ²				0.45 µm filter (dissolved).
		Dissolved Silica (SiO ₂)		200 µg/L ³				
		Dissolved Sodium (Na)		5000 µg/L ²				
		Dissolved Aluminum (Al) Dissolved Barium (Ba)		9.0 μg/L ⁴				
		Dissolved Barlum (Ba) Dissolved Boron (B)		3.0 μg/L ⁴ 50 μg/L ³				
		Dissolved Bolol (B) Dissolved Cobalt (Co)		50 μg/L ²				
		Dissolved Magnesium (Mg)		5000 µg/L ²				
		Dissolved Manganese (Mn)		15 µg/L ²				
		Dissolved Molybdenum (Mo)		1 µg/L ³				
		Dissolved Nickel (Ni) Dissolved Strontium (Sr)		2.0 μg/L ⁴ 20.0 μg/L ⁴				
		Dissolved Strontum (Sr) Dissolved Vanadium (V)	-	20.0 μg/L ² 50 μg/L ²				
		Dissolved Validual (V) Dissolved Cerium (Ce)	-	1 μg/L ³	-			
		Dissolved Lithium (Li)		100 µg/L ³				
		Dissolved Palladium (Pd)		10 µg/L ³	_			
		Dissolved Rubidium (Rb)	_	10 µg/L ³	_			
		Dissolved Tungsten (W) Dissolved Uranium (U)		100 µg/L ³ 0.2 чиг/L ⁴				
		Dissolved Uranium (U) Bicarbonate (HCO ₃)	SM 2320B	0.2 μg/L ⁴ 4 mg/L ³		14 Days	250-mL HDPE bottle	Raw
		Carbonate (CO ₃)		4 mg/L ³		- / - ujo		
		Alkalinity, Total (as CaCO ₃)		4 mg/L^3				
		Bromide (Br)	EPA 300.1 (Rev 1.0)	0.5 mg/L ³		28 Days		
		Chloride (Cl) Sulfate (SO4)		1 mg/L ³				
		Fluoride (F)	A4500-F C	1 mg/L ³ 0.2 mg/L ⁴		28 Days	250-mL HDPE bottle	Raw
		Total Hardness	Calculation	1 mg/L ³		None	None	None
		Total Dissolved Solids (TDS)		1 mg/L ³				
4-B)	Energy Laboratories	Dissolved Arsenic [As (III)]	EPA 1632A	5 µg/L ³	NA	28 Days	250-mL HDPE bottle	Acidified with HCl, field filtered v
		Dissolved Arsenic [As (V)]		5 μg/L ³	NA			0.45 µm filter (dissolved).
		Total Arsenic (As)	EPA 200.8 (Rev 5.4)	1 μg/L ⁴	NA	6 Months	250-mL HDPE bottle	Unfiltered, acidified with HNO3.
5-B)	Energy Laboratories	Volatile Petroleum Hydrocarbons (VPH)	MAVPH (Rev 1.1)	Various depending on analyte detected. ³	NA	14 Days	3, 40-mL clear glass VOA vials	Unfiltered, acidified with HCl.
		EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	Montana Method EPH	Various depending on analyte detected.3		14 Days	2, 1-L amber glass	Unfiltered, acidified with H2SO4.
			(PAHs: 8270C or 8270D)		NA			
		Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane)		Various depending on analyte detected.3	NA	14 Days	6, 40-mL clear glass VOA vials	Unfiltered, acidified with HCl.
lucculu	- Investigations DEC	BRW-2019-03 (October to November 2019)			114			
alytical	Analytical							
Froup	Lab/Company	Analyte			Lab Method Detection	Holding		
		-	Analytical Method	Lab Reporting Limit/CRQL	Lab Method Detection Limit ²	Holding Time	Container Size	Preservation ¹
	Field Parameters	Weter Local			Limit ²	Time		
	Pioneer	Water level Temperature	NA NA	Lab Reporting Limit/CRQL			Container Size	Preservation ¹
		Temperature Specific conductance (SC)			Limit ²	Time		
		Temperature Specific conductance (SC) Dissolved Oxygen (DO)			Limit ²	Time		
		Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH			Limit ²	Time		
I-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO)	NA		Limit ²	Time		NA
I-C) ndwater	Pioneer	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP)		NA Total and Dissolved	Limit ²	Time		NA Acidified with HNO3, field filtere
I-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As)	NA	NA Total and Dissolved 1.0 μg/L ²	Limit ²	NA	NA	NA
1-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd)	NA	NA Total and Dissolved 1.0 μg/L ² 0.03 μg/L ²	Limit ²	NA	NA	NA Acidified with HNO3, field filtere
I-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved copper (Cu)	NA	NA Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ²	Limit ²	NA	NA	NA Acidified with HNO3, field filtere
1-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb)	NA	Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ² 0.3 μg/L ²	Limit ²	NA	NA	NA Acidified with HNO3, field filtere
1-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved action (Cu)	NA	Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 8.0 μg/L ²	Limit ²	NA	NA	NA Acidified with HNO3, field filtere
1-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved sinc (Zn) Total recoverable and dissolved silver (Ag)	NA	Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.3 μg/L ² 0.2 μg/L ² 0.2 μg/L ²	Limit ²	NA	NA	NA Acidified with HNO3, field filtered
1-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved since (Zn) Total recoverable and dissolved since (Xg) Total recoverable and dissolved rine (Fe)	EPA 200.8 (Rev 5.4)	Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.2 μg/L ² 0.2 μg/L ² 0.2 μg/L ²	Limit ²	Time	NA	NA Acidified with HNO3, field filtered
1-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved zinc (Zn) Total recoverable and dissolved silver (Ag) Total recoverable and dissolved silver (Ag) Total recoverable and dissolved silver (Ag) Total recoverable and dissolved ron (Fe) Total recoverable and dissolved ron (Fe)	EPA 200.8 (Rev 5.4)	Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.2 μg/L ² 0.2 μg/L ² 0.2 μg/L ² 0.1 μg/L ³	NA Limit ²	Time NA	NA 2, 250-mL high-density polyethylene (HDPE) bottles	NA Acidified with HNO ₃ , field filtere 0.45 μm filter (dissolved).
1-C) ndwater	Pioneer Laboratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved since (Zn) Total recoverable and dissolved since (Xg) Total recoverable and dissolved rine (Fe)	EPA 200.8 (Rev 5.4)	Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.2 μg/L ² 0.2 μg/L ² 0.2 μg/L ² 0.0 μg/L ² 0.0 μg/L ³ 50 μg/L ³	Limit ²	Time	NA	NA Acidified with HNO3, field filtere
ndwater 2-C)	Pioneer Laboratory Samples PACE Energy Laboratories	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved ren (Ca) Total recoverable and dissolved ren (Fe) Total recoverable and dissolved rencury (Hg)	EPA 200.8 (Rev 5.4)	Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.2 μg/L ² 0.2 μg/L ² 0.2 μg/L ² 0.1 μg/L ³	Limit ²	Time NA	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle	NA Acidified with HNO3, field filtere 0.45 µm filter (dissolved). Acidified with H2SO4.
ndwater 2-C)	Pioneer Laboratory Samples PACE	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved silver (Ag) Total recoverable and dissolved rion (Fe) Total recoverable and dissolved rion (Fo) Total recoverable and dissolved	EPA 200.8 (Rev 5.4)	Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.3 μg/L ² 0.1 μg/L ² 0.01 μg/L ³ 20 μg/L ³ 20 μg/L ³	Limit ²	Time NA NA 6 Months 28 Days 29 Days 28 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle	NA Acidified with HNO ₃ , field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4.
ndwater 2-C) 3-C)	Pioneer Laboratory Samples PACE Energy Laboratories	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved intervention (Xg) Total recoverable and dissolved intervention (Yg) Total recoverable and dissolved intervention (Yg) Total recoverable and dissolved recury (Hg) Total recoverable and dissolved mercury (Hg) Total recoverable mod dissolved mercury (Hg) Total recoverable model model mercury (Hg) Total recoverable model mercury (Hg) PCB	EPA 200.8 (Rev 5.4)	NA $\frac{\text{Total and Dissolved}}{1.0 \ \mu g/L^2}$ 0.03 \ \mu g/L^2 2.0 \ \mu g/L^2 0.3 \ \mu g/L^2 0.3 \ \mu g/L^2 0.2 \ \mu g/L^2 2.0 \ \mu g/L^2 2.0 \ \mu g/L^3 2.0 \ \mu g/L^3 2.0 \ \mu g/L^3 Various depending on analyte detected. ³	Limit ² NA NA NA NA NA NA NA NA NA	Time NA 6 Months 6 Months 28 Days 29 Days 28 Days 7 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1-L amber glass	NA Acidified with HNO ₃ , field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw
ndwater 2-C) 3-C)	Pioneer Laboratory Samples PACE Energy Laboratories	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved copper (Cu) Total recoverable and dissolved copper (Cu) Total recoverable and dissolved cinc (Zn) Total recoverable and dissolved since (Ag) Total recoverable and dissolved rinc (Fe) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH)	EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 305.2 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or	Total and Dissolved 1.0 μg/L ² 0.03 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.2 μg/L ² 0.2 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.01 μg/L ³ 20 μg/L ³ 20 μg/L ³	Limit ²	Time A Market State Stat	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1-L amber glass 3, 40-mL clear glass VOA vials	NA Acidified with HNO ₂ , field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCl.
ndwater 2-C) 3-C)	Pioneer Laboratory Samples PACE Energy Laboratories	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved copper (Cu) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved since (Ag) Total recoverable and dissolved since (Ag) Total recoverable and dissolved since (Ag) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 365.2 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D)	NA $\frac{\text{Total and Dissolved}}{1.0 \ \mu g/L^2}$ $\frac{1.0 \ \mu g/L^2}{2.0 \ \mu g/L^2}$ $\frac{2.0 \ \mu g/L^2}{2.0 \ \mu g/L^2}$ Various depending on analyte detected. ^{4*}	Limit ² NA	Time NA 6 Months 28 Days 29 Days 28 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass	NA Acidified with HNO ₃ , field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HC1. Unfiltered, acidified with H2SO4.
1.C) ndwater 2.C) 3.C) 4.C)	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved copper (Cu) Total recoverable and dissolved copper (Cu) Total recoverable and dissolved cinc (Zn) Total recoverable and dissolved since (Ag) Total recoverable and dissolved rinc (Fe) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH)	EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 365.2 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D)	NA $\frac{\text{Total and Dissolved}}{1.0 \ \mu g/L^2}$ 0.03 \ \mu g/L^2 2.0 \ \mu g/L^2 0.3 \ \mu g/L^2 0.3 \ \mu g/L^2 0.2 \ \mu g/L^2 2.0 \ \mu g/L^2 2.0 \ \mu g/L^3 2.0 \ \mu g/L^3 2.0 \ \mu g/L^3 Various depending on analyte detected. ³	Limit ²	Time A Market State Stat	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1-L amber glass 3, 40-mL clear glass VOA vials	NA Acidified with HNO ₂ , field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCl.
L-C) hdwater h-C) h-C) PL Labor	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories ratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved ixer (Ag) Total recoverable and dissolved silver (Ag) Total recoverable and dissolved wilver (Ag) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrie (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane)	NA EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 353.2 EPA 802A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B	Total and Dissolved $1.0 \ \mu g/L^2$ $0.3 \ \mu g/L^2$ $2.0 \ \mu g/L^2$ $0.3 \ \mu g/L^2$ $0.3 \ \mu g/L^2$ $0.2 \ \mu g/L^2$ $0.1 \ \mu g/L^2$ $0.1 \ \mu g/L^2$ $0.0 \ \mu g/L^2$ $0.1 \ \mu g/L^3$ $50 \ \mu g/L^3$ $0.08 \ \mu g/L^3$ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*}	Limit ²	Time NA 6 Months 28 Days 29 Days 29 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials	NA Acidified with HNO ₃ , field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCl. Unfiltered, acidified with HCl.
ndwater 2-C) 3-C) 4-C) PL Labor	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved zinc (Zn) Total recoverable and dissolved ron (Fc) Total recoverable and dissolved ron (Fe) Evaluation (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) Evaluation with Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Petroleum Hydrocarbons (VPH) Volatile Petroleum Hydrocarbons (VPH)	EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1)	Total and Dissolved 1.0 µg/L ² 0.03 µg/L ² 2.0 µg/L ² 0.3 µg/L ² 0.0 µg/L ³ 50 µg/L ³ 0.08 µg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ³ Various depending on analyte detected. ³	Limit ² NA	Time NA 6 Months 28 Days 29 Days 28 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 240-mL clear glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCl. Unfiltered, acidified with H2_SO4. Lunfiltered, acidified with H2. Lunfiltered, acidified with H2.
L-C) hdwater h-C) h-C) PL Labor	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories ratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved ixer (Ag) Total recoverable and dissolved silver (Ag) Total recoverable and dissolved wilver (Ag) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrie (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane)	NA EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 353.2 EPA 802.A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or	Total and Dissolved $1.0 \ \mu g/L^2$ $0.3 \ \mu g/L^2$ $2.0 \ \mu g/L^2$ $0.3 \ \mu g/L^2$ $0.3 \ \mu g/L^2$ $0.2 \ \mu g/L^2$ $0.1 \ \mu g/L^2$ $0.1 \ \mu g/L^2$ $0.0 \ \mu g/L^2$ $0.1 \ \mu g/L^3$ $50 \ \mu g/L^3$ $0.08 \ \mu g/L^3$ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*}	Limit ²	Time NA 6 Months 28 Days 29 Days 29 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials	NA Acidified with HNO ₃ , field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCl. Unfiltered, acidified with HCl.
L-C) hdwater h-C) h-C) PL Labor	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories ratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved elad (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved ren (Ca) Total recoverable and dissolved ren (re) Total recoverable and dissolved ren (re) Total recoverable and dissolved rencury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 365.1 EPA 305.2 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D)	Total and Dissolved 1.0 µg/L ² 0.03 µg/L ² 2.0 µg/L ² 0.3 µg/L ² 8.0 µg/L ² 0.1 µg/L ² 0.01 µg/L ³ 20 µg/L ³ 20 µg/L ³ 20 µg/L ³ 30 µg/L ³ 20 µg/L ³ 20 µg/L ³ 20 µg/L ³ 20 µg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*}	Limit ²	Time NA 6 Months 28 Days 29 Days 28 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-L amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCl. Unfiltered, acidified with H2SO4. Clinitered, acidified with H2SO4.
-C) -C) -C) -C) -L Labor	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories ratory Samples	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved zinc (Zn) Total recoverable and dissolved ron (Fc) Total recoverable and dissolved ron (Fe) Evaluation (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) Evaluation with Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Petroleum Hydrocarbons (VPH) Volatile Petroleum Hydrocarbons (VPH)	NA EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 353.2 EPA 802.A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or	Total and Dissolved 1.0 µg/L ² 0.03 µg/L ² 2.0 µg/L ² 0.3 µg/L ² 0.0 µg/L ³ 50 µg/L ³ 0.08 µg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ³ Various depending on analyte detected. ³	Limit ² NA	Time NA 6 Months 28 Days 29 Days 28 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 240-mL clear glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 µm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HC1. Unfiltered, acidified with H2SO4. Solution H2SO4. Control H2SO4.
C) C) C) C) C) C) C- C- 	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories Energy Laboratories	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved elad (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved ren (Ca) Total recoverable and dissolved ren (re) Total recoverable and dissolved ren (re) Total recoverable and dissolved rencury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 365.1 EPA 305.2 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D)	Total and Dissolved 1.0 µg/L ² 0.03 µg/L ² 2.0 µg/L ² 0.3 µg/L ² 8.0 µg/L ² 0.1 µg/L ² 0.01 µg/L ³ 20 µg/L ³ 20 µg/L ³ 20 µg/L ³ 30 µg/L ³ 20 µg/L ³ 20 µg/L ³ 20 µg/L ³ 20 µg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*}	Limit ²	Time NA 6 Months 28 Days 29 Days 28 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-L amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCl. Unfiltered, acidified with H2SO4. Clinitered, acidified with H2SO4.
C) C) C) C) C) C) 	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories Energy Laboratories	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved elad (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved ren (Ca) Total recoverable and dissolved ren (re) Total recoverable and dissolved ren (re) Total recoverable and dissolved rencury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 365.1 EPA 305.2 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D)	Total and Dissolved 1.0 µg/L ² 0.03 µg/L ² 2.0 µg/L ² 0.3 µg/L ² 8.0 µg/L ² 0.1 µg/L ² 0.01 µg/L ³ 20 µg/L ³ 20 µg/L ³ 20 µg/L ³ 30 µg/L ³ 20 µg/L ³ 20 µg/L ³ 20 µg/L ³ 20 µg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*}	Limit ²	Time NA 6 Months 28 Days 29 Days 28 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-L amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCl. Unfiltered, acidified with H2SO4. Clinitered, acidified with H2SO4.
C) C) C) C) C) C) 	Pioneer Laboratory Samples Laboratory Samples PACE Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratory XRF	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved zinc (Zn) Total recoverable and dissolved wilver (Ag) Total recoverable and dissolved ron (Fc) Total recoverable and dissolved mercury (Hg) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrie (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd)	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B	Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.3 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³	Limit ² NA	Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. Confiltered, acidified with H2SO4. Confiltered, acidif
C) C) C) C) C) C) 	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories Energy Laboratories Intergy Laboratories Intergy Laboratories Intergy Laboratories Intergy Laboratory Samples Energy Laboratory Samples Energy Laboratory Samples Energy Laboratory Samples Intergy Laboratory Samples Inte	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved very (Cu) Total recoverable and dissolved ron (Fc) Volati recoverable and dissolved ron (Fc) Volati recoverable and dissolved ron (Fc) Volati recoverable and dissolved ron (Fc) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan <t< td=""><td>NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B</td><td>Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 0.3 μg/L² 0.0 μg/L² 0.0 μg/L² 0.0 μg/L² 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ Various depending on analyte detected.³ Various depending on analyte detected.^{4*} Various depending on analyte detected.^{4*} Various depending on analyte detected.³ Various depending on analyte detected.^{4*} Various depending on analyte detected.³</td><td>Limit² NA NA</td><td>Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days</td><td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸</td><td>NA Acidified with HNO₃, field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. Confiltered, acidified with H2SO4. Confiltered, acidif</td></t<>	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B	Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.3 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³	Limit ² NA	Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. Confiltered, acidified with H2SO4. Confiltered, acidif
1-C) idwater 3-C) 3-C) 4-C) 2L Labou 2-L Labou 1-C) 1-C 1-C 1-C 1-C 1-C 1-C 1-C 1-C	Pioneer Laboratory Samples Laboratory Samples PACE Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratory XRF	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved since (Ag) Total recoverable and dissolved rencury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Calcum (Ca) Calmium (Cf)	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B	Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.3 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³	Limit ² NA	Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtered 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the second se
1-C) idwater 3-C) 3-C) 4-C) 2L Labou 2-L Labou 1-C) 1-C 1-C 1-C 1-C 1-C 1-C 1-C 1-C	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories ratory Samples Energy Laboratories dings Pioneer Laboratory XRF *used to field screen, however this analytical	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved copper (Cu) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Ca) Total recoverable and dissolved can (Pb) Total recoverable and dissolved into (Fe) Total recoverable and dissolved into (Fe) Total recoverable and dissolved mercury (Hg) Total recoverable phosphate (PO4) Nitrate (NO2) and Nitrie (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Ca) Cadmium (Ca) Cadmium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) <td>NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B</td> <td>Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 0.3 μg/L² 0.0 μg/L² 0.0 μg/L² 0.0 μg/L² 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ Various depending on analyte detected.³ Various depending on analyte detected.^{4*} Various depending on analyte detected.^{4*} Various depending on analyte detected.³ Various depending on analyte detected.^{4*} Various depending on analyte detected.³</td> <td>Limit² NA NA</td> <td>Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days</td> <td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸</td> <td>NA Acidified with HNO₃, field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. Confiltered, acidified with H2SO4. Confiltered, acidif</td>	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B	Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.3 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³	Limit ² NA	Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. Confiltered, acidified with H2SO4. Confiltered, acidif
1-C) ndwater 3-C) 3-C) 	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories Energy Laboratories dings Pioneer Laboratory XRF *used to field screen, however this analytical group refars to Fioneer	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved cadm(Qn) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved ron (Fc) Total recoverable and dissolved mercury (Hg) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrie (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Calexim (Ca) Chromium (Cr) Copper (Cu) Iron (Fe) Lead (Pb)	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B	Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.3 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³	Limit ² NA	Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. Confiltered, acidified with H2SO4. Confiltered, acidif
1-C) ndwater 3-C) 3-C) 	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories Energy Laboratories dings Pioneer Laboratory XRF *used to field screen, however this analytical group refars to Fioneer	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved copper (Cu) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Ca) Total recoverable and dissolved can (Pb) Total recoverable and dissolved into (Fe) Total recoverable and dissolved into (Fe) Total recoverable and dissolved mercury (Hg) Total recoverable phosphate (PO4) Nitrate (NO2) and Nitrie (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Ca) Cadmium (Ca) Cadmium (Ca) Calcium (Ca) Chromium (Cr) Copper (Cu) <td>NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B</td> <td>Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 0.3 μg/L² 0.0 μg/L² 0.0 μg/L² 0.0 μg/L² 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ Various depending on analyte detected.³ Various depending on analyte detected.^{4*} Various depending on analyte detected.^{4*} Various depending on analyte detected.³ Various depending on analyte detected.^{4*} Various depending on analyte detected.³</td> <td>Limit² NA NA</td> <td>Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days</td> <td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸</td> <td>NA Acidified with HNO₃, field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. $\leq 6^{\circ}C$ $\leq 6^{\circ}C$</td>	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B	Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.3 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³	Limit ² NA	Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. $\leq 6^{\circ}C$ $\leq 6^{\circ}C$
1-C) idwater 3-C) 3-C) 4-C) 	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories Energy Laboratories Intergy Laboratories Intergy Laboratories Intergy Laboratories Intergy Laboratory XRF *used to field screen, however this analytical group refirs to Fioneer Laboratory XRF only.	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved zinc (Zn) Total recoverable and dissolved ron (Fc) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Cakium (Ca) Cadmium (Cf) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) <t< td=""><td>NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C</td><td>NA Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 0.1 μg/L² 0.1 μg/L³ 50 μg/L³ 20 μg/L² 0.0 μg/L³ 50 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ Various depending on analyte detected.³ NA</td><td>Limit² NA NA</td><td>Time NA A A A A B A B A B<td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td><td>NA Acidified with HNO₃, field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Infiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Se⁶°C \$\leq 6°C \$\leq 6°C NA</td></td></t<>	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C	NA Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.1 μg/L ² 0.1 μg/L ³ 50 μg/L ³ 20 μg/L ² 0.0 μg/L ³ 50 μg/L ³ 20 μg/L ³ Various depending on analyte detected. ³ NA	Limit ² NA	Time NA A A A A B A B A B <td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td> <td>NA Acidified with HNO₃, field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Infiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Se⁶°C \$\leq 6°C \$\leq 6°C NA</td>	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ NA	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Infiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Se ⁶ °C \$\leq 6°C \$\leq 6°C NA
1-C) idwater 3-C) 3-C) 4-C) 	Pioneer PID Pionee	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved since (Xa) Total recoverable and dissolved rencury (Hg) Total recoverable and dissolved rencury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan <td< td=""><td>NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B</td><td>Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 0.3 μg/L² 0.0 μg/L² 0.0 μg/L² 0.0 μg/L² 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ 0.0 μg/L³ Various depending on analyte detected.³ Various depending on analyte detected.^{4*} Various depending on analyte detected.^{4*} Various depending on analyte detected.³ Various depending on analyte detected.^{4*} Various depending on analyte detected.³</td><td>Limit² NA NA</td><td>Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days</td><td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸</td><td>NA Acidified with HNO₃, field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. Confiltered, acidified with H2SO4. Confiltered, acidif</td></td<>	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) Marrier (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B	Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.3 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ² 0.0 μg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³	Limit ² NA	Time NA 6 Months 28 Days 29 Days 29 Days 28 Days 14 Days 14 Days 14 Days 14 Days 14 Days	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clear glass VOA vials 2, 1-L amber glass 3, 40-mL clear glass VOA vials 2, 1-L amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸	NA Acidified with HNO ₃ , field filtere 0.45 μ m filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. Confiltered, acidified with H2SO4. Confiltered, acidif
I-C) idwater 3-C) 3-C) 4-C) 1-Labor 1-C) 1-Labor 1-C) 1-C	Pioneer Pioneer Pioneer PACE Energy Laboratories Energy Laboratories Energy Laboratories Interpy Laboratories Interpy Laboratories Interpy Laboratory XRF used to field screen, however this analytical Pioneer Laboratory XRF only. Pioneer PID MiniRAE (PID MR) I.o.6 eV lamp I.o.6 eV lamp I.o.6 eV lamp IIIO MIN IIIO AN IIIO MINIRAE (PID MR) IIIO AN IIIO MINIRAE (PID MR) IIIO AN IIIIO AN	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved zinc (Zn) Total recoverable and dissolved ron (Fc) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Cakium (Ca) Cadmium (Cf) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) <t< td=""><td>NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C</td><td>NA Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 0.1 μg/L² 0.1 μg/L³ 50 μg/L³ 20 μg/L² 0.0 μg/L³ 50 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ Various depending on analyte detected.³ NA</td><td>Limit² NA NA</td><td>Time NA A A A A B A B A B<td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td><td>NA Acidified with HNO₃, field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te</td></td></t<>	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C	NA Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.1 μg/L ² 0.1 μg/L ³ 50 μg/L ³ 20 μg/L ² 0.0 μg/L ³ 50 μg/L ³ 20 μg/L ³ Various depending on analyte detected. ³ NA	Limit ² NA	Time NA A A A A B A B A B <td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td> <td>NA Acidified with HNO₃, field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te</td>	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ NA	NA Acidified with HNO ₃ , field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te
-C) idwater -C) -C) -C) -C) -C) -C) -C) -C)	Pioneer PACE Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratories Energy Laboratories dings Pioneer Laboratory XRF *used to field screen, however this analytical group refers to Pioneer Laboratory XRF only. Pioneer PID MiniRAE (PID MR) - 10.6 eV lamp UltraRAE (PID MR) - 9.8	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved zinc (Zn) Total recoverable and dissolved ron (Fc) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Cakium (Ca) Cadmium (Cf) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) <t< td=""><td>NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C</td><td>NA Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 0.1 μg/L² 0.1 μg/L³ 50 μg/L³ 20 μg/L² 0.0 μg/L³ 50 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ Various depending on analyte detected.³ NA</td><td>Limit² NA NA</td><td>Time NA A A A A B A B A B<td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td><td>NA Acidified with HNO₃, field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te</td></td></t<>	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C	NA Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.1 μg/L ² 0.1 μg/L ³ 50 μg/L ³ 20 μg/L ² 0.0 μg/L ³ 50 μg/L ³ 20 μg/L ³ Various depending on analyte detected. ³ NA	Limit ² NA	Time NA A A A A B A B A B <td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td> <td>NA Acidified with HNO₃, field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te</td>	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ NA	NA Acidified with HNO ₃ , field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te
-C) idwater -C) -C) -C) -C) -C) -C)	Pioneer Laboratory Samples PACE Energy Laboratories Energy Laboratories atory Samples Energy Laboratories tatory Samples Fioneer Laboratory XRF *used to field screen, however this analytical group refirs to Fioneer Laboratory XRF only. Pioneer PID MiniRAE (PID MR) - 10.6 eV lamp UltraRAE (PID MR) - 10.6 eV lamp	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved zinc (Zn) Total recoverable and dissolved ron (Fc) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Cakium (Ca) Cadmium (Cf) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) <t< td=""><td>NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C</td><td>NA Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 0.1 μg/L² 0.1 μg/L³ 50 μg/L³ 20 μg/L² 0.0 μg/L³ 50 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ Various depending on analyte detected.³ NA</td><td>Limit² NA NA</td><td>Time NA A A A A B A B A B<td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td><td>NA Acidified with HNO₃, field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te</td></td></t<>	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C	NA Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.1 μg/L ² 0.1 μg/L ³ 50 μg/L ³ 20 μg/L ² 0.0 μg/L ³ 50 μg/L ³ 20 μg/L ³ Various depending on analyte detected. ³ NA	Limit ² NA	Time NA A A A A B A B A B <td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td> <td>NA Acidified with HNO₃, field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te</td>	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ NA	NA Acidified with HNO ₃ , field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te
-C) -C) -C) -C) -C) -C) -C) -C)	Pioneer PACE Energy Laboratories Energy Laboratory XRF Pioneer Laboratory XRF Pioneer Energy Caboratory XRF Pioneer PID MiniRAE (PID MR) - 10.6 eV lamp Pioneer PID MiniRAE (PID UR) - 9.8 eV lamp Y Samples PACE	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved since (Ag) Total recoverable and dissolved since (Ag) Total recoverable and dissolved since (Ag) Total recoverable and dissolved mercury (Hg) Total recoverable and dissolved mercury (Hg) Total recoverable Advissolved Noro (Fe) Total recoverable and dissolved mercury (Hg) Total recoverable and dissolved mercury (Hg) Total recoverable Advissolved Noro (PAH) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Cadmium (Cd) Cadmium (Cd) Cademium (Cr) Copper (Cu) Iron (Fe) </td <td>NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C</td> <td>NA Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 0.1 μg/L² 0.1 μg/L³ 50 μg/L³ 20 μg/L² 0.0 μg/L³ 50 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ 20 μg/L³ Various depending on analyte detected.³ NA</td> <td>Limit² NA NA</td> <td>Time NA A A A A B A B A B<td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td><td>NA Acidified with HNO₃, field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te</td></td>	NA EPA 200.8 (Rev 5.4) EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA8015C	NA Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 0.1 μg/L ² 0.1 μg/L ³ 50 μg/L ³ 20 μg/L ² 0.0 μg/L ³ 50 μg/L ³ 20 μg/L ³ Various depending on analyte detected. ³ NA	Limit ² NA	Time NA A A A A B A B A B <td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA</td> <td>NA Acidified with HNO₃, field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te</td>	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL clar glass VOA vials 2, 1-1 amber glass 3, 40-mL clar glass VOA vials 2, 1-1 amber glass 6, 40-mL clar glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ NA	NA Acidified with HNO ₃ , field filtere $0.45 \mu\text{m}$ filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Compared to the term of te
-C) -C) -C) -C) -C) -C) -C) -C)	Pioneer Eaboratory Samples PACE Energy Laboratories Energy Laboratories ratory Samples ratory Samples Pioneer Laboratory XRF *used to field screen, Laboratory XRF only. Pioneer PID MiniRAE (PID MR) - 10.6 eV lamp UltraRAE (PID UR) - 9.8 eV lamp Y Samples PACE General Parameters	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cinc (Zn) Total recoverable and dissolved ince (Zn) Total recoverable and dissolved rinc (Fe) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Seavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Calcium (Ca) Chromium (Cr) Copper (Cu)	NA EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8026 MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015C NA MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015C NA Method 9045D Method 9045D Method 9045D	NA Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 8.0 μg/L ² 0.1 μg/L ³ 50 μg/L ³ 20 μg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³ NA NA 0.10 S.U. ⁵ 10 umhos/cm ³	Limit ² NA	Time NA A A A A B A B A B A B <td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL near glass 3, 40-mL clear glass VOA vials 2, 1-1 amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA NA 4 oz. amber glass container 8 oz. amber glass container</td> <td>NA Acidified with HNO₃, field filtere 0.45 µm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Infiltered, acidified with H2SO4. Quark Raw Unfiltered, acidified with H2SO4. Constrained acidified with H2SO4. Nufiltered, acidified with H2SO4. S6°C ≤6°C S6°C ≤6°C NA NA NA None None</td>	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL near glass 3, 40-mL clear glass VOA vials 2, 1-1 amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ NA NA 4 oz. amber glass container 8 oz. amber glass container	NA Acidified with HNO ₃ , field filtere 0.45 µm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Infiltered, acidified with H2SO4. Quark Raw Unfiltered, acidified with H2SO4. Constrained acidified with H2SO4. Nufiltered, acidified with H2SO4. S6°C ≤6°C S6°C ≤6°C NA NA NA None None
1.C) idwater 3.C) 4.C) 9L Labor 5.C) ield Read 6.C) 7.C) aborator	Pioneer PACE Energy Laboratories Energy Laboratory XRF Pioneer Laboratory XRF Pioneer Energy Caboratory XRF Pioneer PID MiniRAE (PID MR) - 10.6 eV lamp Pioneer PID MiniRAE (PID UR) - 9.8 eV lamp Y Samples PACE	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved lead (Pb) Total recoverable and dissolved vinc (Ca) Total recoverable and dissolved vinc (Ag) Total recoverable and dissolved mercury (Hg) Total recoverable and dissolved mercury (Hg) Total recoverable and dissolved mercury (Hg) Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Cakium (Ca) Cabmium (Cf) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) Zine (Zn)	NA EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8260B MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 82015C NA NA NA Mathematical Method SD	NA Total and Dissolved 1.0 µg/L ² 0.3 µg/L ² 2.0 µg/L ² 0.3 µg/L ² 0.0 µg/L ² 0.0 µg/L ² 0.0 µg/L ³ 20 µg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} NA NA 0.10 S.U. ⁵ 10 umhos/cm ⁵ 1.0 mg/kg ⁵	Limit ² NA NA	Time NA 6 Months 28 Days 29 Days 28 Days 29 Days 14 Days 14 Days 14 Days 14 Days NA NA NA	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 2, 1-L amber glass 0, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ NA NA NA 4 oz. amber glass container	NA Acidified with HNO ₃ , field filtere 0.45 μm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Raw Unfiltered, acidified with HCI. Unfiltered, acidified with HCI. ≤6°C ≤6°C NA NA NA
1.C) idwater 3.C) 4.C) 9L Labor 5.C) ield Read 6.C) 7.C) aborator	Pioneer Eaboratory Samples PACE Energy Laboratories Energy Laboratories ratory Samples ratory Samples Pioneer Laboratory XRF *used to field screen, Laboratory XRF only. Pioneer PID MiniRAE (PID MR) - 10.6 eV lamp UltraRAE (PID UR) - 9.8 eV lamp Y Samples PACE General Parameters	Temperature Specific conductance (SC) Dissolved Oxygen (DO) pH Oxidation Reduction Potential (ORP) Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd) Total recoverable and dissolved cance (Zn) Total recoverable and dissolved ron (Fe) Total recoverable and dissolved mercury (Hg) Total recoverable phosphate (PO4) Nitrate (NO2) and Nitrite (NO3) PCB Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane) Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs) Hydrocarbon Fingerprinting Scan Arsenic (As) Cadmium (Cd) Cadmium (Cd) Cadmium (Cf) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Marcury (Hg) Zine (Zn) <t< td=""><td>NA EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8026 MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015C NA MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015C NA Method 9045D Method 9045D Method 9045D</td><td>NA Total and Dissolved 1.0 μg/L² 0.3 μg/L² 2.0 μg/L² 0.3 μg/L² 8.0 μg/L² 0.1 μg/L³ 50 μg/L³ 20 μg/L³ Various depending on analyte detected.³ Various depending on analyte detected.^{4*} Various depending on analyte detected.^{4*} Various depending on analyte detected.³ NA NA 0.10 S.U.⁵ 10 umhos/cm³</td><td>Limit² NA NA</td><td>Time NA A A A A B A B A B A B<td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL near glass 3, 40-mL clear glass VOA vials 2, 1-1 amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA NA 4 oz. amber glass container 8 oz. amber glass container</td><td>NA Acidified with HNO₃, field filter 0.45 µm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Infiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Se^oC ≤6^oC ≤6^oC NA NA NA None None</td></td></t<>	NA EPA 200.8 (Rev 5.4) EPA 245.1 EPA 365.1 EPA 365.1 EPA 8082A MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8011, EPA 8026 MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015C NA MAVPH (Rev 1.1) Montana Method EPH (PAHs: 8270C or 8270D) EPA 8015C NA Method 9045D Method 9045D Method 9045D	NA Total and Dissolved 1.0 μg/L ² 0.3 μg/L ² 2.0 μg/L ² 0.3 μg/L ² 8.0 μg/L ² 0.1 μg/L ³ 50 μg/L ³ 20 μg/L ³ Various depending on analyte detected. ³ Various depending on analyte detected. ^{4*} Various depending on analyte detected. ^{4*} Various depending on analyte detected. ³ NA NA 0.10 S.U. ⁵ 10 umhos/cm ³	Limit ² NA	Time NA A A A A B A B A B A B <td>NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL near glass 3, 40-mL clear glass VOA vials 2, 1-1 amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample⁸ Depends on nature and purity of LNAPL sample⁸ NA NA 4 oz. amber glass container 8 oz. amber glass container</td> <td>NA Acidified with HNO₃, field filter 0.45 µm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Infiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Se^oC ≤6^oC ≤6^oC NA NA NA None None</td>	NA 2, 250-mL high-density polyethylene (HDPE) bottles 1, 250-mL high-density polyethylene (HDPE) bottle 1, 250-mL near glass 3, 40-mL clear glass VOA vials 2, 1-1 amber glass 6, 40-mL clear glass VOA vials Depends on nature and purity of LNAPL sample ⁸ Depends on nature and purity of LNAPL sample ⁸ NA NA 4 oz. amber glass container 8 oz. amber glass container	NA Acidified with HNO ₃ , field filter 0.45 µm filter (dissolved). Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Acidified with H2SO4. Infiltered, acidified with HCI. Unfiltered, acidified with H2SO4. Se ^o C ≤6 ^o C ≤6 ^o C NA NA NA None None

		Calcium (Ca)		25.0 mg/kg ⁵				
		Chromium (Cr)		0.50 mg/kg ⁵				
		Copper (Cu)		0.50 mg/kg ⁵				
		Iron (Fe)		2.5 mg/kg ⁵				
		Lead (Pb)		0.50 mg/kg ⁵				
		Manganese (Mn)		0.25 mg/kg ⁶ / 0.3 mg/kg ⁵				
		Silver (Ag)		0.5 mg/kg ⁵				
		Zinc (Zn)		1.0 mg/kg ⁵				
		Mercury (Hg)	EPA Method 7471	0.02 mg/kg ⁵		28 Days		≤6°C
(9-C)	Energy Laboratories	Volatile Petroleum Hydrocarbons (VPH)	MAVPH (Rev 1.1)	Various depending on analyte detected.3	NA	7 Days	4-oz amber glass container	None
		EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	Montana Method EPH (PAHs: 8270C or 8270D)	Various depending on analyte detected.4*	NA	14 Days		
		Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane)	EPA 8011, EPA 8260B	Various depending on analyte detected.3	NA	14 Days	2, 4-oz amber glass containers	None
 ² ARCO, 1992 ³ Energy Labo ⁴ DEQ, 2019. ^{4*} Energy Labo ⁵ Pace Analytic 	2. Clark Fork River Superfi ratories' Applicable Repor Circular DEQ-7 Montana pratories Applicable Repor cal Practical Quantitation I	Numeric Water Quality Standards. Montana Department of Environmental Qu rting Limit for one analyte, Indeno (1,2,3-cd)pyrene (0.1µg/L), is higher than th Limit (PQL)	ember 1992. ality. June 2019.					
[°] Pace Analytic	cal Minimum Detection Li	imit (MDL)						
7 MBMG deter	ction limit							
⁷ MBMG deter ⁸ LNAPL Pres	ervation Methods:							
⁷ MBMG deter ⁸ LNAPL Pres If sample is pu	ervation Methods: ire LNAPL - collect 5-40n	nL VOAs, unpreserved, and cooled to <6°C. ter - collect all of the following: 2-4mL VOAs preserved with HCL and cooled	to <6°C, 2-1L amber glass co	ontainers preserved with $\mathrm{H_2SO_4}$ and cooled to <6°C	C, and 2-1L amber glass containe	rs preserved	with H_2SO_4 and cooled to $<\!\!6^\circ C$	

s a mixture of LNAPL and water - collect all of the follow µg/L - Microgram per liter S.U. - Standard Unit unhos/cm or µJ/cm - microsiemen per centimeter mg/L - miligram per kilogram pCi/L - picceurie per liter rg/L - picceurie per liter TBD - To Be Determined CRQL - Contract Required Quantitation Limit

Analytical Group	PP (August 2020 to A Analytical Lab/Company	Analyte	Analytical Method	Lab Reporting Limit/CRQL		ethod Detection Limit ²	Holding Time	Container Size	Preservation ¹
oundwater a	nd Surface Water Field Pioneer	Parameters Water level	NA	NA	NA		NA	NA	NA
(2-D)]	Pioneer	Temperature	NA	NA	NA		NA	NA	NA
		Specific conductance (SC) Dissolved Oxygen (DO) pH	NA	NA			NA	NA	NA
		Dridation Reduction Potential (ORP) Total recoverable copper (Chemetrics V-2000 Photometer)							
	Surface Water, Drill Re PACE	turn Water Laboratory Samples	EPA 200.8 (Rev 5.4)	Total / Dissolved	NA		6 Months	2, 250-mL high-density polyethylene (HDPE) bottles	Acidified with HNO3, field filtered
		Total recoverable and dissolved arsenic (As) Total recoverable and dissolved cadmium (Cd)		0.5 μg/L / 1.0 μg/L ² 0.08 μg/L / 1.0 μg/L ²	-				0.45 µm filter (dissolved).
		Total recoverable and dissolved copper (Cu) Total recoverable and dissolved lead (Pb)		1.0 μg/L / 2.0 μg/L ² 0.1 μg/L / 1.0 μg/L ²	-				
		Total recoverable and dissolved zinc (Zn) Total recoverable and dissolved silver (Ag)		5.0 μg/L / 2.0 μg/L ² 0.2 μg/L / 0.15 μg/L ²	1				
		Total recoverable and dissolved irro (Fe) Total recoverable and dissolved mercury (Hg)	EPA 245.1	50.0 μg/L / 200.0 μg/L ²	NA		28 Days	-	
		Total recoverable Phosphate (PO4) Nitrate (NO2) and Nitrite (NO3)	EPA 365.1 EPA 353.2	0.01 μg/L / 2.0 μg/L ² 50 μg/L ²	NA		29 Days 29 days	1, 250-mL high-density polyethylene (HDPE) bottle	Acidified with H2SO4. Acidified with H2SO4.
4-D)]	Energy Laboratories	Dissolved Calcium (Ca)	EPA 200.7 (Rev 4.4)/ EPA 200.8 (Rev 5.4)	100 µg/L ⁵ 5000 µg/L ²	NA NA		6 Months	1, 250-mL high-density polyethylene (HDPE) bottle 250-mL HDPE bottle	Acidified with HNO ₃ , field filter 0.45 µm filter (dissolved).
		Dissolved Potassium (K) Dissolved Silica (SiO ₂)	EFA 200.8 (Rev 5.4)	5000 μg/L ² 200 μg/L ³	-				0.45 µm inter (dissolved).
		Dissolved Sodium (Na) Dissolved Aluminum (Al)		5000 μg/L ² 9.0 μg/L ⁴	1				
		Dissolved Barium (Ba) Dissolved Boron (B)		3.0 μg/L ⁴ 50 μg/L ³	-				
		Dissolved Cobalt (Co) Dissolved Magnesium (Mg)		50 μg/L ² 500 μg/L ²	-				
		Dissolved Maganese (Mn) Dissolved Molybdenum (Mo)		15 μg/L ²	-				
		Dissolved Nickel (Ni)		1 μg/L ³ 2.0 μg/L ⁴	-				
		Dissolved Strontium (Sr) Dissolved Vanadium (V)		20.0 μg/L ⁴ 50 μg/L ²	_				
		Dissolved Cerium (Ce) Dissolved Lithium (Li)		1 µg/L ³ 100 µg/L ³	-				
		Dissolved Palladium (Pd) Dissolved Rubidium (Rb)		10 µg/L ³ 10 µg/L ³	-				
		Dissolved Tungsten (W) Dissolved Uranium (U)		100 μg/L ³ 0.2 μg/L ⁴	-				
		Bicarbonate (HCO ₃) Carbonate (CO ₃)	SM 2320B	4 mg/L ³ 4 mg/L ³	NA		14 Days	250-mL HDPE bottle	Raw
		Alkalinity, Total (as CaCO ₃) Bromide (Br)	EPA 300.1 (Rev 1.0)	4 mg/L ³	NA		28 Days		
		Chloride (Cl) Sulfate (SO4)	LIA 500.1 (Rev 1.0)	0.5 mg/L ³ 1 mg/L ³			20 Days		
		Fluoride (F)	A4500-F C	1 mg/L ³ 0.2 mg/L ⁴	NA		28 Days	250-mL HDPE bottle	Raw
		Total Hardness Total Dissolved Solids (TDS)	Calculation	1 mg/L ³ 1 mg/L ³	NA NA		None	None	None
	PACE Energy Laboratories	Polychlorinated biphenyls (PCB) Volatile Petroleum Hydrocarbons (VPH)	EPA 8082A MAVPH (Rev 1.1)	0.1 μg/L ⁵ / 0.0355 μg/L ⁶ Various depending on analyte detected. ³	NA NA		1 Year 14 Days	2, 1-L amber glass 3, 40-mL clear glass VOA vials	≤6°C Unfiltered, acidified with HCl.
		EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	Montana Method EPH (PAHs: 8270C or	Various depending on analyte detected.3	NA		14 Days	2, 1-L amber glass	Unfiltered, acidified with H_2SO_4
		Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane)	8270D) EPA 8011, EPA 8260B	Various depending on analyte detected.3	NA		14 Days	6, 40-mL clear glass VOA vials	Unfiltered, acidified with HCl.
7-D)]	PACE	Pentachlorophenol (PCP) 2,3,7,8-TCDD	EPA 8270 SIM EPA 1613	0.6 μg/L ⁵ / 0.193 μg/L ⁶ 10 pg/L ⁵ / 3.06 pg/L ⁶	NA NA		7 Days 1 Year	2-1L amber glass 2-1L amber glass	≤6°C ≤6°C
	MBMG atory Samples		EPA 913.0	20 pCi/L ⁷	NA		48 hours	125-mL glass - no headspace	None
	Energy Laboratories	Volatile Petroleum Hydrocarbons (VPH) EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	MAVPH (Rev 1.1) Montana Method EPH	Various depending on analyte detected. ³ Various depending on analyte detected. ³	NA NA		14 Days 14 Days		≤6°C ≤6°C
			(PAHs: 8270C or 8270D)	various depending on analyte detected.				Depends on nature and purity of LNAPL sample ⁸	20 0
ield Read		Hydrocarbon Fingerprinting Scan	EPA8015C	Various depending on analyte detected.3	NA		14 Days		≤6°C
	Pioneer Laboratory XRF	Cadmium (Cd)	NA	NA	NA		NA	NA	NA
1	nowever this analytical group refers to Pioneer	Calcium (Ca) Chromium (Cr) Copper (Cu)							
	Laboratory XRF only.	Iron (Fe) Lead (Pb)							
		Manganese (Mn) Mercury (Hg)							
		Silver (Ag) Zinc (Zn)							
1	Pioneer PIDs MiniRAE (PID MR) -	Volatile Organic Compounds	NA	NA	NA		NA	NA	NA
1	10.6 eV lamp UltraRAE (PID UR) - 9.8	8							
aboratory	eV lamp 7 Samples PACE	pH	Method 9045D		NA		15 Minutes	4-oz. amber glass container	None
	General Parameters	SC	Method ASA10-3.3	0.10 S.U. ⁵ 10 umhos/cm ⁵	NA		28 Days	8-oz. amber glass container	None
	ICP-OES	Arsenic (As) Cadmium (Cd)	SW-846 6010D	1.0 mg/kg ⁵ 0.15 mg/kg ⁵	NA		6 Months	4-oz. amber glass container	None
		Calcium (Ca) Chromium (Cr)		25.0 mg/kg ⁵ 0.50 mg/kg ⁵	-				
		Copper (Cu) Iron (Fe)		0.50 mg/kg ⁵ 2.5 mg/kg ⁵	-				
		Lead (Pb) Manganese (Mn)		0.50 mg/kg ⁵ 0.25 mg/kg ⁶ / 0.3 mg/kg ⁵	1				
		Vianganese (Vin) Silver (Ag) Zinc (Zn)		0.25 mg/kg ⁵ 0.5 mg/kg ⁵ 1.0 mg/kg ⁵	1				
3-D)]	Energy Laboratories	Mercury (Hg) Volatile Petroleum Hydrocarbons (VPH)	EPA Method 7471 MAVPH (Rev 1.1)	0.02 mg/kg ⁵	NA		28 Days 7 Days	4-oz. amber glass container	≤6°C None
	Laboratories			Various depending on analyte detected. ³	NA		7 Days	amore glass container	. some
		EPH Fractionation with Polycyclic Aromatic Hydrocarbons (PAHs)	Montana Method EPH (PAHs: 8270C or 8270D)	Various depending on analyte detected. ³	NA		14 Days		
		Lead Scavengers (1, 2 dichloroethane and 1, 2 dibromoethane)	EPA 8011, EPA 8260B	Various depending on analyte detected. ³	NA		14 Days	2, 4-oz. amber glass containers	None
	Energy Laboratories SPLP (20:1)	SPLP solids to be analyzed for (12), above. SPLP leachate to be analyzed for (3) (dissolved metals only) above. Lab to use	SW1312	See CRQL's listed above for applicable analytical method.	NA		180 Days	Minimum 200 grams in a ziplock bag.	None
		the 20:1 liquid to solid ratio. Laboratory to report final extraction pH.							
	Modified SPLP (4:1)	SPLP solids to be analyzed for (12), above. SPLP leachate to be analyzed for (3) (dissolved metals only) above. Lab to use	SW1312 (Modified to use a 4:1	See CRQL's listed above for applicable analytical method.	NA		180 Days	Minimum 250 grams in an 8 oz jar.	None
Return W	ater Field Readings	a 4:1 liquid to solid ratio and increase the sample size. Laboratory to report final extraction pH. Up to 8 laboratory samples will be split with the 20:1 SPLP analysis.	liquid to solid ratio)				_		
	Pioneer	Total Petroleum Hydrocarbons (TPH)	NA	NA			NA	NA	NA
rgy Labora Q, 2019. Ci ergy Labora e Analytical e Analytical MG detecti APL Preser aple is pure aple is a mi :	tories' Applicable Report treular DEQ-7 Montana N tories Applicable Report I Practical Quantitation L Minimum Detection Lin on limit vation Methods: LNAPL - collect 5-40m Xture of LNAPL and wat ug/L - Microgram per lite S.U Standard Unit mihos/em or µJs/em - mit	Numerie Water Quality Standards. Montana Department of Environmental Quality ing Limit for one analyte, Indeno (1,2,3-cd)pyrene (0.1µg/L), is higher than the Ci imit (PQL) int (MDL) L VOAs, unpreserved, and cooled to <6°C. er - collect all of the following: 2-4mL VOAs preserved with HCL and cooled to < r crossiemen per centimeter	. June 2019. rcular DEQ-7 Reporting		and 2-1L and	nber glass container:	s preserved v	/ith H_2SO_4 and cooled to <6°C	
Jnits:	ug/L - Microgram per lite S.U Standard Unit	r crosiemen per centimeter ogram	gidss Ci		2-11 am	Juos onnainer	- preset veu v		

Table 5: SPLP Analytical Results Summary (Phase I)

							Ars	enic	Cadn	nium	Cop	oper	Le	ad	Ziı	nc	Waste Criteri
						Groundwater Standards (2006 ROD, Table 8-1)	-	10	-	5	-	1,300	-	15	-	2,000	-
						Waste Criteria (mg/kg)	200	-	20	-	1,000	-	1,000	-	1,000	-	-
ocation	Sample Interval	pH of Extraction Fluid After SPLP Cycle	Initial Geologic Unit Classification	ReClassified Geologic Unit	Lithology	Additional Sample Selection Notes**	(ICP) (mg/kg)	(D - SPLP) (μg/L)	(ICP) (mg/kg)	(D - SPLP) (µg/L)	Result (Pass/F						
BRW18-PZ03	5.0 - 9.9	6.80	Alluvium	АТО	SP	Interval with the 2nd highest copper concentration for alluvium. Interval with highest copper concentration did not have sufficient sample volume for lab analysis [BRW18-PZ06[4.8-5.3]].	2,010	2	10	1.78	18,700	262	974	2	4,260	471	Fail
RW18-BH28	5.9 - 8.6	6.90	Alluvium	ATO	SW	Interval with the 3rd highest copper concentration for alluvium.	1,910	3	30	3.81	27,200	295	689	8.2	10,900	533	Fail
3RW18-BH05	15.0 - 17.5	8.20	Alluvium	Slag	GC	Interval selected based on overall concentrations and material type.	447	45	2	0.26	6,810	36	1,650	15.4	11,500	28	Fail
3RW18-BH05	12.3 - 13.7	7.50	Alluvium	Other	ML	Interval selected based on overall concentrations and material type.	151	3	<1	< 0.07	5,000	8	1,350	0.9	6,620	<8	Fail
BRW18-BH26	6.5 - 6.8	7.10	Alluvium	ATO	CL	Interval selected based on overall concentrations and material type.	511	<1	9	2.27	3,820	80	21,600	249	25,300	368	Fail
3RW18-PZ21	12.5 - 15.0	7.00	Alluvium	Slag	SM	Interval selected based on both high chromium and iron concentrations.	100	<1	7	0.66	4,740	46	3,690	30.3	38,600	133	Fail
BRW18-PZ21	31.0 - 31.7	7.00	Alluvium	ATO	SM	Interval selected based on both high chromium and iron concentrations.	9	7	<1	0.13	171	20	29	3	352	25	Pass
BRW18-BH09	36.8 - 37.4	6.80	Alluvium	ATO	SW	Interval selected based on both high chromium and iron concentrations.	26	128	<1	0.08	85	8	48	5	219	14	Pass
BRW18-PZ09	13.0 - 13.6	6.50	Alluvium	ATO	GM	Interval selected based on both high chromium and iron concentrations.	6	3	10	6.86	22	7	21	1.7	188	99	Pass
BRW18-PZ15	18.3 - 18.8	7.00	Alluvium	ATO	SP	Interval selected based on both high chromium and iron concentrations.	2	2	<1	< 0.07	10		11	2	142	22	Pass
BRW18-PZ19	12.6 - 14.5	8.80	Demolition Debris	Slag	SW	Interval with highest copper concentration for demolition debris.	540	337	4	< 0.05	2,310	19	405	1.7	5,150	<8	Fail
BRW18-PZ21	6.2 - 10.0	7.70	Demolition Debris	Demolition Debris	GM	Interval with 2nd highest copper concentration for demolition debris.	351	14	8		4,860	13	615	<0.3	7,120	34	-
BRW18-BH06	5.5 - 5.7	9.00	Demolition Debris	Demolition Debris	SW	Interval with highest lead concentration and no detectable nitrate for demolition debris.	343		11		968		1,820	0.7	7,850	<8	-
3RW18-BH10	0.0 - 3.5	9.00	Demolition Debris	Other	SP	Interval with 3rd highest lead concentration and no detectable nitrate for demolition debris. Interval with 2nd highest lead concentration and no detectable nitrate was already collected based on copper concentration [BRW18-PZ19(12.6-14.5)].	155	80	5	<0.05	551	10	1,690	13.0	3,860	14	Pass
BRW18-BH11	0.0 - 10.0	9.00	Demolition Debris	Demolition Debris	ML	Interval with 4th highest lead concentration and no detectable nitrate for demolition debris.	398	297	9	< 0.05	1,010	7	1,450	4.5	4,260	<8	Fail
BRW18-BH02	2.5 - 10.8	6.30	Demolition Debris	Other	ML	Interval with 5th highest lead concentration and no detectable nitrate for demolition debris.	940	-	7	4.47	1,790	394	956	1.4	1,710	3,100	Fail
BRW18-BH10	3.5 - 4.8	9.20	Demolition Debris	Demolition Debris	CL	Interval with 6th highest lead concentration and no detectable nitrate for demolition debris.	448	198	11	< 0.05	1,190	9	1,890	13.1	8,940	16	Fail
BRW18-PZ21	0.0 - 6.2	8.10	Demolition Debris	Other	GM	Interval with 8th highest lead concentration and no detectable nitrate for demolition debris. Interval with 7th highest lead concentration and no detectable nitrate was already collected based on copper concentration [BRW18- PZ21(6.2-10.0)].	234	89	9	0.12	1,420	6	454	<0.3	11,700	<8	Fail
BRW18-BH05	2.7 - 4.7	9.40	Demolition Debris	Demolition Debris	ML/GM	Sample submitted due to unique lithology.	23	33	<1	<0.05	207	13	172	3.3	468	10	Pass
BRW18-TP09	3.5 - 4.5	8.00	Demolition Debris	Demolition Debris	SM	Interval with highest lead concentration, no detectable nitrate, and sufficient sample volume.	270	44	31	0.20	195	3	609	< 0.3	2,220	<8	Fail
3RW18-PZ23	0.0 - 5.0	7.80	Other	Other	ML/SC	Interval with highest copper concentration for other.	218	3	6	1.79	11,000	31	255	0.5	1,780	51	Fail
3RW18-PZ13	0.0 - 2.7	8.80	Other	Slag	GM/SM	Interval with 2nd highest copper concentration for other.	93	325	<1	< 0.07	1,520	16	115	0.6	9,120	13	Fail
3RW18-PZ02	1.2 - 2.0	8.10	Other	ATO	OL	Interval with highest lead concentration and no detectable nitrate for other.	185	10	8	0.08	83	3	1,030	6.5	3,780	10	Pass
RW18-BH16	0.0 - 1.3	8.70	Other	Other	SM	Interval with 2nd highest lead concentration and no detectable nitrate for other.	136	212	5	0.08	312	22	542	4.7	1,240	10	Pass
3RW18-BH28	0.0 - 1.5	8.00	Other	ΑΤΟ	ОН	Interval with 4th highest lead concentration and no detectable nitrate for other. Interval with 3rd highest lead concentration and no detectable nitrate for other was already collected based on copper concentration [BRW18- PZ13(0.0-2.7)].	21	32	<1	<0.07	76	19	18	2.5	86	<8	Pass
RW18-BH03	0.0 - 1.3	8.10	Other	Other	OL	Interval with 6th highest lead concentration and no detectable nitrate for other. Interval with 5th highest lead concentration and no detectable nitrate for other was already collected based on copper concentration [BRW18- PZ23(0.0-5.0)].	27	32	2	<0.07	315	26	214	1.9	628	<8	Pass
RW18-PZ06	0.5 - 2.5	8.80	Other	АТО	GM	Interval with 8th highest lead concentration and no detectable nitrate for other. Interval with 7th highest lead concentration and no detectable nitrate did not have sufficient volume for lab analysis [BRW-BH26(0.0-0.9)].	26	20	<1	<0.07	69	7	48	2.9	124	<8	Pass
BRW18-PZ22	35.0 - 37.6	7.40	Other	ATO	SP	Interval with 9th highest lead concentration and no detectable nitrate for other.	42	23	3	0.24	910	-	69	4.8	1,060	28	Pass
BRW18-PZ23	30.7 - 31.1	6.70	Other	ATO	ML	Interval with 10th highest lead concentration and no detectable nitrate for other.	3	4	3	0.18	27	2	31	2.6	222	23	Pass
3RW18-PZ15	8.0 - 8.9	7.90	Other	ATO	SP	Sample submitted due to upgradient location to help spatial distribution of samples.	13	55	<1	0.24	96	30	17	10.6	112	54	Pass

<X = Value less than detection limit (value in cell (X) is the detection limit)

Above Groundwater Standards (2006 ROD, Table 8-1)

Above Waste Identification Criteria (BPSOU SOW; EPA, 2020)

Waste Identification Criteria (Pass/Fail) - If three of the six contaminant criteria listed are exceeded or any one contaminant is above 5,000 mg/kg then, then material is waste.

Table 4 contains additional information on analytical method used, including sample preparation.

**Sample Selection Criteria from Phase I QAPP:

Criteria from Phase I QAPP:

(1) For tailings, slag, demolition debris, and other materials (not including alluvium) from boreholes, up to 8 samples from each material with the highest lead concentrations will be sent to the laboratory for SPLP analysis. In addition, up to 8 samples (up to 2 from each material) with the highest copper concentrations will be sent to the analytical laboratory for SPLP analysis.

(2) For alluvium from boreholes, up to 8 samples with the highest chromium and iron concentrations will be sent to the analytical laboratory for SPLP analysis. In addition, up to 2 samples with the highest copper concentrations will be sent to the analytical laboratory for SPLP analysis.

(3) The lead, chromium, iron, and copper concentrations will be based on XRF or ICP-OES results.

(4) If multiple similar samples (i.e., same locations or same material) meet the criteria above for SPLP analysis, field personnel will determine the appropriate samples to be submitted to the laboratory to get results representative of a variety of materials and locations.

Additional Notes:

(1) ICP concentrations shown in table are from laboratory analysis conducted prior to SPLP analysis.

(2) To determine samples with the highest chromium and iron concentrations, the concentrations for chromium and iron were ranked numerically for each sample (with "1" representing the highest concentration). Then the rankings for chromium and iron were summed to generate a cumulative ranking value, and the lowest values were selected. (3) The "Initial Geological Unit Classification" were based on initial field observations. After review, the geological units were reclassified to simplify the remedial design.

(4) Slag samples were not analyzed for nitrate. Due to nature of material the test could not be completed. Additionally, slag samples generally focused on larger rock materials as opposed to smaller gravel.

(5) Only seven samples were sent for demolition debris due to similar material types.

(6) No soil samples representing other material from test pits were submitted for SPLP analysis. Samples collected in the field were insufficient volume to send to the lab. [Deviations Table (Appendix A, Table 1)]

(7) Only one soil sample, representing demolition debris material from test pits, was submitted for analysis via SPLP due to insufficient sample volume. [Deviations Table (Appendix A, Table 1)]

(8) Table is organized first by "initial Geological Unit Classification" and then by the order the samples were selected for SPLP analysis based on the criteria included in the BRW Phase I QAPP.

							Ars	enic	Cad	mium	Cop	oper	Le	ad	Zi	linc	Waste Criteria
						Groundwater Standards (2006 ROD, Table 8-1)	-	10	-	5	-	1,300	-	15	-	2,000	-
						Waste Criteria (mg/kg)	200	-	20	-	1,000	-	1,000	-	1,000	-	-
ocation	Sample Interval	pH of Extraction Fluid After SPLP Cycle	Initial Geologic Unit Classification	ReClassified Geologic Unit	Lithology	Additional Sample Selection Notes**	(ICP) (mg/kg)	(D - SPLP) (µg/L)	Result (Pass/Fa								
RW18-PZ20	7.6 - 12.5	9.00	Slag	Slag - First	GP	Interval with highest copper concentration for slag.	58	10	3	< 0.07	10,300	33	1,260	16.5	12,200	63	Fail
RW18-PZ20	7.6 - 12.5	9.00	Slag	Slag - Second	GP	-	NA	9	NA	< 0.05	NA	5	NA	3.7	NA	20	-
3RW18-PZ24	9.5 - 14.5	7.20	Slag	Slag - First	GW	Interval with 2nd highest copper concentration for slag.	263	3	<1	< 0.07	4,240	12	224	0.9	8,800	20	Fail
3RW18-PZ24	9.5 - 14.5	7.20	Slag	Slag - Second	GW		NA	8	NA	< 0.05	NA	20	NA	1.5	NA	23	-
RW18-BH06	7.7 - 10.0	9.10	Slag	Slag - First	GW	Interval with highest lead concentration for slag.	18	4	2	< 0.07	1,520	8	693	7	12,000	27	Fail
RW18-BH06	7.7 - 10.0	9.10	Slag	Slag - Second	GW		NA	2	NA	< 0.05	NA	7	NA	8.8	NA	42	-
3RW18-BH06	11.1 - 15.0	6.50	Slag	Slag - First	GP	Interval with 2nd highest lead concentration for slag.	20	<1	2	0.20	2,480	11	593	2	13,700	707	Fail
3RW18-BH06	11.1 - 15.0	6.50	Slag	Slag - Second	GP	-	NA	<1	NA	0.19	NA	8	NA	0.7	NA	636	-
3RW18-PZ20	12.5 - 15.0	7.10	Slag	Slag - First	GP	Interval with 3rd highest lead concentration for slag.	67	4	2	< 0.07	4,080	70	1,600	34.2	5,780	69	Fail
3RW18-PZ20	12.5 - 15.0	7.10	Slag	Slag - Second	GP		NA	4	NA	< 0.05	NA	84	NA	52.0	NA	124	-
3RW18-BH01	10.1 - 16.8	9.50	Slag	Slag - First	GP/SP	Interval with 4th highest lead concentration for slag.	267	31	3	< 0.07	5,770	21	679	6	9,820	14	Fail
3RW18-BH01	10.1 - 16.8	9.50	Slag	Slag - Second	GP/SP	· · · · · · · · · · · · · · · · · · ·	NA	33	NA	0.08	NA	12	NA	3.6	NA	18	1 -
RW18-PZ20	15.0 - 20.0	7.50	Slag	Slag - First	GP	Interval with 5th highest lead concentration for slag.	97	4	4	< 0.07	4.390	87	1.960	37.9	10.900	139	Fail
RW18-PZ20	15.0 - 20.0	7.50	Slag	Slag - Second	GP	-	NA	3	NA	0.21	NA	72	NA	41.2	NA	194	1 -
RW18-PZ12	1.5 - 2.9	9.50	Slag	Slag - First	GW	Interval with 6th highest lead concentration for slag.	352	247	5	0.11	4.480	93	4.120	102	13.700	72	
BRW18-PZ12	1.5 - 2.9	9.50	Slag	Slag - Second	GW	-	NA	227	NA	0.16	NA	92	NA	141	NA	116	-
BRW18-PZ23	10.0 - 14.2	6.90	Slag	Slag - First	GW	Interval with 8th highest lead concentration for slag. Interval with 7th highest lead concentration was already collected based on copper concentration [BRW18-PZ20(7.6-12.5)].	498	16	<1	0.24	4,780	20	340	2	4,410	48	Fail
3RW18-PZ23	10.0 - 14.2	6.90	Slag	Slag - Second	GW	-	NA	8	NA	0.08	NA	6	NA	0.6	NA	16	-
RW18-PZ19	16.0 - 19.8	7.60	Slag	Slag - First	GM	Interval with 9th highest lead concentration for slag.	181	15	10	0.09	4,260	21	1.000	9	20.700	39	Fail
3RW18-PZ19	16.0 - 19.8	7.60	Slag	Slag - Second	GM	-	NA	31	NA	0.19	NA	102	NA	60.7	NA	160	-
3RW18-PZ08	6.6 - 7.2	5.50	Tailings	ATO	MH	Interval with highest copper concentration for tailings.	801	6	6	9.19	12.200	37.300	3.640	547	2.650		
3RW18-PZ02	5.3 - 5.7	6.20	Tailings	ATO	СН	Interval with 2nd highest copper concentration for tailings.	790	263	13		4,020	155	803	10.8	3,270	,	-
3RW18-PZ24	25.4 - 26.3	8.00	Tailings	ATO	CH	Interval with highest lead concentration and no detectable nitrate for tailings.	881	32			2,540	215	15,200	33.8	16,100		
BRW18-BH27	6.4 - 9.2	8.20	Tailings	АТО	ОН	Interval with 3rd highest lead concentration and no detectable nitrate for tailings. Interval with 2nd highest lead concentration and no detectable nitrate was already collected based on copper concentration [BRW18-PZ02(5.3-5.7)].	106	13	7	0.23	364	41	1,820	9.0	2,970		Pass
RW18-PZ09	3.8 - 5.1	6.60	Tailings	ΑΤΟ	OL	Interval with 6th highest lead concentration and no detectable nitrate for tailings. Interval with 4th highest lead concentration and no detectable nitrate was already collected based on copper concentration [BRW18-PZ08(6.6- 7.2)], and interval with 5th highest lead concentration and no detectable nitrate did not have sufficient volume for lab analysis [BRW18-BH23(6.0-6.3)].	2,190	7	63	308	22,700	1,440	6,310	1,280	11,000	27,600	Fail
RW18-PZ05	6.8 - 8.8	7.80	Tailings	АТО	CL	Interval with 8th highest lead concentration and no detectable nitrate for tailings. Interval with 7th highest lead concentration did not have sufficient volume for lab analysis [BRW18-BH27(6.0-6.4)].	80	7	4	1.07	447	31	2,720	28.2	1,310	51	Pass
RW18-PZ06	7.0 - 9.1	7.80	Tailings	ΑΤΟ	ML/MH	Interval with 11th highest lead concentration and no detectable nitrate for tailings. Intervals with 9th and 10th highest lead concentrations and no detectable nitrates did not have sufficient volume for lab analysis [BRW18- BH11(10.0-15.0) and BRW18-PZ09(5.9-6.2)].	750	26	9	0.53	7,340	112	640	3.5	2,650	71	Fail
BRW18-PZ02	7.2 - 8.3	8.00	Tailings	ATO	ОН	Interval with 12th highest lead concentration and no detectable nitrate for tailings.	434	15	21	0.90	3,860	37	22,800	95.0	21,700	64	Fail
3RW18-PZ19	19.8 - 20.9	7.90	Tailings	ATO	SM	Interval with 13th highest lead concentration and no detectable nitrate for tailings.	229	28	13	0.46	3,390	27	991	3.8	7,220	14	Fail
3RW18-PZ08	8.5 - 9.5	7.90	Tailings	ΑΤΟ	MH	Interval with 14th highest lead concentration and no detectable nitrate for tailings.	148	10	4	0.89	819	32	1.630	6.0	1.310	27	Pass

Above In-Stream Chronic Surface Water Performance Standards (2020 ROD Amendment, Table 1)

Above Waste Identification Criteria (BPSOU SOW; EPA, 2020)

Waste Identification Criteria (Pass/Fail) - If three of the six contaminant criteria listed are exceeded or any one contaminant is above 5,000 mg/kg then, then material is waste.

Table 4 contains additional information on analytical method used, including sample preparation.

**Sample Selection Criteria from Phase I QAPP:

Criteria from Phase I QAPP:

(1) For tailings, slag, demolition debris, and other materials (not including alluvium) from boreholes, up to 8 samples from each material with the highest lead concentrations will be sent to the analytical laboratory for SPLP analysis. In addition, up to 8 samples (up to 2 from each material) with the highest copper concentrations will be sent to the analytical laboratory for SPLP analysis.

(2) For alluvium from boreholes, up to 8 samples with the highest chromium and iron concentrations will be sent to the analytical laboratory for SPLP analysis. In addition, up to 2 samples with the highest copper concentrations will be sent to the analytical laboratory for SPLP analysis. (3) The lead, chromium, iron, and copper concentrations will be based on XRF or ICP-OES results.

(4) If multiple similar samples (i.e., same locations or same material) meet the criteria above for SPLP analysis, field personnel will determine the appropriate samples to be submitted to the laboratory to get results representative of a variety of materials and locations.

Additional Notes:

(1) ICP concentrations shown in table are from laboratory analysis conducted prior to SPLP analysis.

(2) To determine samples with the highest chromium and iron concentrations, the concentrations for chromium and iron were ranked numerically for each sample (with "1" representing the highest concentration). Then the rankings for chromium and iron were summed to generate a cumulative ranking value, and the lowest values were selected. (3) The "Initial Geological Unit Classification" were based on initial field observations. After review, the geological units were reclassified to simplify the remedial design.

(4) Slag samples were not analyzed for nitrate. Due to nature of material the test could not be completed. Additionally, slag samples generally focused on larger rock materials as opposed to smaller gravel.

(5) Only seven samples were sent for demolition debris due to similar material types.

(6) No soil samples representing other material from test pits were submitted for SPLP analysis. Samples collected in the field were insufficient volume to send to the lab. [Deviations Table (Appendix A, Table 1)]

(7) Only one soil sample, representing demolition debris material from test pits, was submitted for analysis via SPLP due to insufficient sample volume. [Deviations Table (Appendix A, Table 1)]

(8) Table is organized first by "initial Geological Unit Classification" and then by the order the samples were selected for SPLP analysis based on the criteria included in the BRW Phase I QAPP.

	ing actin results 5	ummary (Phase II)					Arsenic	Cadr	mium	Сор	per	Le	ad	Mer	cury	Ziı	nc	Waste Criteria
					Groundwate (2006 ROI	-	10	-	5	-	1,300	-	15	-	2	-	2,000	-
					Waste Crit	eria (mg/kg) 200	-	20	-	1,000	-	1,000	-	10	-	1,000	-	-
Location	Sample Interval (ft)	pH of Extraction Fluid After SPLP Cycle	Geologic Unit	Lithology	Additional Sample Selection Notes**	(ICP) (mg/kg)	(SPLP) (µg/L)	(ICP) (mg/kg)	(SPLP) (μg/L)	(ICP) (mg/kg)	(SPLP) (µg/L)	(ICP) (mg/kg)	(SPLP) (µg/L)	(ICP) (mg/kg)	(SPLP) (µg/L)	(ICP) (mg/kg)	(SPLP) (µg/L)	Result (Pass/Fa
BRW19-PZ26	13.4-14.3	6.6	ATO	SP	Located outside the removal corridor. Limited recovery, was combined with previous layer.		19 12.6	5.0	3.02	361	248	7	2.4	<.020	< 0.5	255	140	D Pass
BRW19-PZ27	10.6-12.9	7.1	ATO	SP	Similar copper concentration as following layer and sufficient recovery.		2 2.5	1.6	0.57	219	28	18	3.8	0.030	< 0.1	151	100) Pass
BRW19-PZ28	7.9-8.7	6.7	ATO	CH	High lead concentration.		13 17. 4	1.7	0.39	114	53	123	113	0.75	1.67	2,500	160) Pass
	5.9-8.7	7.3	ATO	ML	High lead and zinc concentrations.	1	99 6.7	12.5	0.55	1,040	24	5,600	52.4	13	2.01	9,630	50) Fail
BRW19-PZ30	10.0-14.4	6.3	ATO	SP	High copper concentration.		5 4.1	0.7	0.26	359	188	123	43.6	0.55	<0.5	122	60	D Pass
BRW19-P230	24.0-27.3	6.6	ATO	CH/SM	High copper and Zinc concentrations. Sufficient recovery when combined with lower layer.		13 18.2	1.5	0.75	135	56	52	9.4	<.020	< 0.5	1,080	290) Pass
	28.8-30.4	7.1	ATO	GM/SM	High arsenic, cadmium and zinc concentrations.	1,1	70 202	4.8	0.62	6	9	11	1.6	<.020	< 0.1	872	130) Pass
DDW/10 D721	10.0-12.2	6.1	ATO	SM	High copper and zinc concentrations, limited recovery, combined with previous layer.		50 6.2	2.4	0.63	709	230	651	181.0	6.4	2.73	1,230	380) Pass
BRW19-PZ31	25.2-30.0	6.7	ATO	ML/SM	High zinc concentration.		27 16.6	2.5	5.13	147	135	2	4.2	<.020	< 0.5	1,280	1,050) Pass
	20.9-21.7	7.3	ATO	GM/GW		1	55 9.3	2.9	0.55	1,510	308	292	44.2	0.78	< 0.5	738	230) Pass
DDW/10 D740	20.9-21.7	7.3	ATO	GM/GW	Above and below intervals confirm high copper concentration.		34 6.8	2.9	0.15	1,300	43	401	5.7	0.48	< 0.5	845	30) Pass
BRW19-PZ40	22.4-22.8	6.4	ATO	SM			5 2.7	0.9	< 0.08	718	33	19	1.1	<.020	< 0.5	314	20) Pass
	22.4-22.8	6.4	ATO	SM	Located within removal corridor and determining the extent of lead.		5 6.0	2.6	0.26	611	135	19	5.9	<.020	< 0.5	258	80) Pass
	28.5-30.0	6.6	ATO	GP			10 16. 4	1.5	0.27	434	92	31	7.1	<.020	< 0.5	229	50	D Pass
BRW19-PZ41	28.5-30.0	6.6	ATO	GP	High copper concentration and located within removal corridor.		13 67. 3	2.6	1.09	606	356	41	17.9	<.020	< 0.5	280	230	D Pass
	22.9-24.5	6.5	ATO	SM/SP			4 5.4	3.1	<0.08	268	<4	16	< 0.2	<.020	< 0.5	290	<10	
BRW19-PZ42	22.9-24.5		ATO	SM/SP	Located within removal corridor.		6 27.8		1.25	251	139	40	6.9	<.020	< 0.5	275	210	
	10.0-11.1		ATO	SM			41 112	-	<0.1	853	62	37	1.5	0.055	< 0.5	499	30	
	10.0-11.1		ATO	SM	High copper concentration and located within removal corridor.		38 200		0.11	1,110	21	30	<0.2	0.063	< 0.5	461	<10	
3RW19-PZ43	16.7-18.3		ATO	SM			19 22.2		0.30	1,250	149	10	2.2	<.020	< 0.5	244	60	
	16.7-18.3	-	ATO	SM	High copper concentration and located within removal corridor.		18 24.6		1.12	1,400	509	12	5.2	<.020	< 0.5	277	210	
	26.0-27.5	-	ATO	SM	High copper and zinc concentrations.		36 117		0.70	410	62	71	2.2	<.020	< 0.5	942	170	
	22.5-25.0		ATO	SP			10 9.0		0.29	347	107	37	2.2	<.020	<0.5	124	40	
BRW19-PZ44	22.5-25.0		ATO	SP	Located within removal corridor.		11 23.		0.98	364	339	9	6.1	< 020	<0.5	135	130	
	21.5-24.0		ATO	SM	High cadmium concentration.		19 14 .5		0.16	268	69	30	9.0	0.047	<0.5	165	70	
BRW19-PZ45	24.0-25.0	÷.•	ATO	CH			9 8.1		0.10	200	45	17	3.1	<.020	<0.5	296	80	
511125 1 2 15	24.0-25.0	0.0	ATO	СН	High copper and zinc concentrations.		10 18. 8		0.69	222	184	18	11.4	<.020	<0.5	322	380	
	18.2-20.0		ATO	SP	High cadmium concentration.		2 2.5		0.13	16	21	3	3.1	<.020	<0.5	27	20	
BRW19-PZ46	22.2-24.1		ATO	CH/SM	High cadmium concentration.		47 157			34	47	25	36.6	<.020	<0.5	2,420	1,870	
	8.5-13.4	-	ATO	SM	High copper concentration, and located within removal corridor/above bottom of waste.		25 3.5		0.71	8,460	198	187	5.0	0.59	<0.1	5,460	130	
BRW19-PZ47	30.2-31.3		ATO	CH	High zinc concentration.		12 14.9		3.70	135	329	40	53.6	<.020	<0.1	1,060	1,440	
	10.0-12.1		ATO	SP/SM	High copper concentration.		6 14.2		<0.08	524	75	40	<0.2	<.020	<0.5	68	<10	
BRW19-PZ49	23.5-25.5		ATO	SM	High copper concentration.		21 11.5		0.25	86	27	19	4.6	<.020	<0.5	296	100	
BRW20-TP59	6.8-12.0		ATO	ML	High copper concentration and proximity to ore bin and excavation boundary.		95 4.0			5,430	256	1,740	4.8	020	-	39,900	1,820	
BRW20-TP60	8.5-12.0		ATO	SM	High copper concentration and proximity to ore bin, excavation boundary, and groundwater table.		32 3.9		2.99	392	230	60		-	-	187	480	
	5.4-6.0	7.6		ML	High copper concentration and proximity to be bin, excavation boundary, and groundwater table.		18 4.2				21	1,460	~2	-	-	10.800	940	
BRW20-TP60	6.0-8.5	5.2	Demolition Debris	SM	High copper concentration, influence recovery. Similar neighboring layers.		4.2 50 28.7		1.86 24.0	2,080 1,270	<4 857	1,460	<2 40	-	-		3,820	
	0.4-1.1	-		SM	High copper concentration and sometient recovery. Similar neighboring layers. High copper concentration, and located within removal corridor/above bottom of waste.				-		85/		40	-	-	1,150	3,820	
BRW20-TP71		8.2	Demolition Debris				22 216		< 0.2	399	5	1,260	2	-	-	3,400	20	
	1.1-6.0	7.8		SM	Located within removal corridor and is above bottom of waste.		52 231		<0.2	1,030	24	1,230	5	-	-	3,270		
BRW20-TP57	5.4-9.0	9.3	Slag	GP	High copper concentration and proximity to ore bin.		15 11.5		<1	499	33	395	18	-	-	2,660	50	
	9.0-10.0	7.7		GP	High copper concentration and proximity to ore bin, excavation boundary, and groundwater table.		9 0.6	-	<1	1,840	11	249	18	-	-	6,120	70	
BRW20-TP70	0.0-0.6	7.6	Other	SM	Located within removal corridor and is above bottom of waste.		13 52.4	2.7	< 0.9	278	176	87	2	-	-	551	120	D Pass

Indicates a solid:liquid ratio of 4:1 was used.

<X = Value less than detection limit (value in cell (X) is the reporting limit)

Above Standards for Groundwater (2006 ROD Amendment, Table 8-1)

Above Waste Identification Criteria (BPSOU SOW; EPA, 2020)

Waste Identification Criteria (Pass/Fail) - If three of the six contaminant criteria listed are exceeded or any one contaminant is above 5,000 mg/kg then, then material is waste.

Table 4 contains additional information on analytical method used, including sample preparation.

**Sample Selection Criteria from Phase II QAPP:

Criteria from Phase II QAPP:

For Alluvium, Tailings, Organic soils (ATO), slag, demolition debris and other materials (not including alluvium) from test pits/boreholes the following selection criteria was used to select samples:

(1) Soil is from lithologic layers outside the removal corridor.

(2) Pioneer XRF copper concentrations exceed 367 mg/kg.

(3) Soil is located within removal corridor/above bottom of waste and pass the Waste Identification Screening Criteria (EPA, 2020).

(4) Sample selection may be altered by field personnel based on field observations or analytical results (e.g. no samples exceed threshold values). (5) Additional notes have been added to clarify why certain samples were selected.

Additional Notes:

(1) ICP concentrations shown in table are from laboratory analysis conducted prior to SPLP analysis.

(2) Table is organized first by "Initial Geological Unit Classification" and then by the order the samples were selected for SPLP analysis based on the criteria included in the BRW Phase II QAPP.

Table 7. Summary of Historic Infrastructure

Equipment	Description	Remaining Equipment/Data Gaps	Phase I QAPP Actions and Observations
Cultural Resource Inventory Feature)		Kemanning Equipment Data Gaps	
Butte Reduction Works			
Concentrator Plant	The second class ore was sent to the concentrator prior to being smelled in the furnaces. The concentrator consisted of various equipment including crushers, trommels, jigs, slime classifiers, chilean mills, and tables used to separate the ore from waste rock.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. Previous site investigations support the assumption that the concentrator was demolished. However, a foundation for the tailings elevator may still remain.	No actions proposed for Phase I.
Open Ore Kilns	Two open ore kilns were built of blocks of slag with a stack centered between the two kilns.	Based on historical information, equipment was most likely demolished sometime between 1900 and 1914. Previous site investigations support the assumption that the kilns were demolished. However, a foundation for the stack may still remain.	No actions proposed for Phase I.
Reverberatory Furnace Foundation (Main Calcine Furnace Building & Calcine Furnace Building No. 2)	The fine material, or screenings, was put through the roasting (e.g., calcining or desulphurizing) furnaces prior to going to the matte furnaces. The calcine department consisted of two buildings with a total of seven furnaces. The buildings were a steel frame construction, and the furnaces were built of steel and brick with no subsurface support/foundation. The flue dust from the furnaces was captured via a system of elevated flues and dust chambers that directed flow to the main stack. The settling tanks and tables were most likely part of the slime plant which were used to thicken the slimes from the concentrator. Buried brick and slag smoke flue used for furnace smoke evacuation. Oriented east-west and is approximately 300 feet long.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. Previous site investigations support the assumption that the roasting furnaces were demolished and no foundation remains for the Main Calcine Furnace Building. However, a foundation remains for the Calcine Furnace Building No.2 based on present-day aerial imagery. Additionally, a foundation for the stacks may still remain. Remaining settling tanks and tables from the slime plant are based on present-day aerial imagery and previous site investigations.	A test pit (BRW18-TP02) will be excavated to determine the foundation depth for the Cal Furnace Building No. 2 (Table 2 and Figure 5). Total depth of BRW18-TP02 was 4.2 feet due to slag. Pockets of tailings with bigger chun were observed towards the bottom of the test pit. Photos will be included in the PDI Evalua Report. Measurements and photographs of visible settling tanks and tables will be collected. Settling ponds, made mostly of slag, are roughly 5 feet high, 104 feet long, and 15-20 feet Photos will be included in the PDI Evaluation Report.
Blast / Reverberatory & Smelting Furnaces	The coarse ore material went directly to blast furnaces. The furnaces were built of steel and brick with no subsurface support/foundation. The building was steel frame construction. The flue dust from the furnaces was captured via an extensive system of elevated flues and dust chambers and sent to the main stack.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. Could not confirm if a foundation still exists based on available information. Additionally, a foundation for the stack may still remain.	Unable to excavate a test pit due to current location of Butte-Silver Bow's equipment. No a proposed for Phase I.
Matte Furnaces	The fine ore from the roasting furnaces is sent to the three reverberatory matting-furnaces. The heated gases from the furnaces pass through Worthington boilers. The flue dust from the furnaces was captured via an extensive system of elevated flues and dust chambers and sent to the main stack.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. It appears a foundation for the matte furnace building may remain based on historical imagery.	A test pit (BRW18-TP03) will be excavated to determine the foundation depth for the Mar Building (Table 2 and Figure 5). Total depth of BRW18-TP03 was 1.3 feet due to slag foundation.
Converting Department	The matte from the furnaces was taken to the converting department. The converter building was steel frame construction with an earth floor. The equipment was primarily built with steel and required no subsurface foundation/support. The converters were connected to the elevated flue and dust chamber via a movable hood and fumes were sent to the main stack.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. Previous site investigations support the assumption that the converter building and equipment was demolished.	No actions proposed for Phase I.
Stack	An extensive system of flues and dust chambers collected and sent the flue dust from the equipment to main stack. The stack stood on a slag base 12.5-feet thick. The reinforced concrete base was 42.5-feet by 42.5-feet and 8-feet thick. The stack was 340-feet high, including the concrete base.	Based on historical information, the stack was partially demolished after the BRW discontinued operations in 1910 and was completely demolished after the manganese plant ceased operations with the exception of the slag and concrete bases which still exist today.	No actions proposed for Phase I.
Tracks & Conveyors	There were multiple elevated tracks, conveyors, and tramways used to transport ore, coal, matte, and copper.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910	No actions proposed for Phase I.
Steel Tank (Feature 21)	A 24' tall million gallon capacity tank used for storing both liquid and dry materials. It is located in the center of the BRW site	NA - Feature identified during cultural survey.	No actions proposed for Phase I.
Ore Bins (Feature 23)	There were multiple storage bins used for ore and coal at the BRW. The ore bins would most likely have been above ground to allow material to fall out of the bins and onto conveyors, tracks, etc.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. However, there is an ore bin located on the southwest portion of the site that still remains.	Measurements and photographs of the remaining ore bins will be collected. The Storage bin is about 44 feet long, 16 feet high, and 16 feet wide. Structure, mostly con rebar, is falling apart. There appears to be 4-inch channel iron running through it. Photos w included in the PDI Evaluation Report.
Blacktail Creek Box Flume (Figure 15a)	The Blacktail Creek Flume was built to channel clean water from Blacktail Creek to the concentrator. The majority of the structure is located underground and is most likely constructed of slag and brick.	Based on aerial imagery and previous site investigations, a portion of the flume remains on the west side of the site. Therefore, it is assumed that a significant portion of the flume may still exist.	A Geophysical Multichannel Analysis of Surface Waves (MASW) seismic survey wil completed to locate the Blacktail Creek Flume (Figure 6). The MASW seismic survey was completed. See Appendix C for additional information.
Slag Walls, Slag Canyon, and Poured Slag Constructions (Features 28), and (Feature 44).	The network of slag walls is the main identifying structure of the Butte Reduction Works area. These walls are identified as Features 16 and 44.	Based on historical information the extensive slag piles on either side of SBC creating a "slag canyon".	No actions proposed for Phase I.
Slag and Concrete Culvert (Feature 35)	This slag and concrete barrier runs along the north side of Silver Bow Creek (SBC) and drew in water via a concrete intake gate, feature 47. This barrier is a 2360' concrete culvert.	NA - Feature identified during cultural survey.	No actions proposed for Phase I.
Bridge (Feature 46)	This bridge is a 38-foot long by 13ft wide bridge with steel beams and it is resting on tall slag walls features 44 and 48.	NA - Feature identified during cultural survey.	No actions proposed for Phase I.
Headgate for Culvert (Feature 47)	This headgate attaches to the Feature 35/36 culvert for SBC.	NA - Feature identified during cultural survey.	No actions proposed for Phase I.

	Additional Notes from Cultural Resource Inventory and/or Structural Assessment
	Concentrator that used two 4-stamp battery stamp mill, jigs and vanners to separate ore from gangue. Produced approximately 150 tons per day beginning in 1885.
	No additional observations.
r the Calcine ger chunks of slag DI Evaluation d. -20 feet wide.	A 40' wide slag floor extends south to Feature 14 and was thought to have housed the roasting furnace/calciner in 1904. The Structural Assessment reports the furnace foundations will be preserved for their historic value, but the public should be restricted from approaching or entering the structures, pits and basins. An area security fence should be installed to restrict access. Feature 16 has four slag walls, with three chambers. The east end chamber contains five narrow concrete chambers. There was reason to believe these were built on the ruins of reverberatory furnace house No. 2. The buried brick and slag smoke flue (Feature 15) used for furnace smoke evacuation runs between Feature 14 and Feature 17. The flume is currently blocked with chain-link fencing at the west end because it has collapsed in three place and has filled in with dirt.
ent. No actions	Multiple reverberatory smelting furnaces were installed and updated in 1888-1889.
r the Matte Furnace	No additional observations.
	Located in the center of the site, the tank stands 24' tall and 90' in diameter. Its age is estimated to post-date 1955.
ostly concrete and Photos will be	This is an 8-compartment ore bin, F-23, and is considered one of the first concrete ore bins erected in Butte. The structural reports the inside surfaces in good condition however, the exterior surfaces are in poor to very poor condition. Spalling has occurred where steel reinforcement has been exposed. The southwest column is completely failed with a visible air gap through the column. The structure should be fenced off and public access restricted.
rvey will be nation.	This feature, built as early as 1909, carried Blacktail Creek through the BRW site and is made of brick and poured slag. It is approximately 7'long by 9' tall.
	Structural observations include the "slag canyon" which lines both sides of SBC on the north side of BRWs site. According to the structural report, slag is not a natural soil material or a recognized building material. It is not recommended as a viable base for a new bridge abutment.
	This culvert drew in water from SBC. It's concrete portion was built in 1907 and 1908 with its enclosed slag portion added in 1909.
	This is a 38' long steel stringer bridge that abuts tall slag walls. It was built after 1955 and consists of three I-beam stringers. The deck is comprised of two wooden plank layers, approximately 3-inches thick. Structural reports show the bridge deck and superstructure could support a maximum single- vehicle weight of 20 tones and a maximum axle load of 4 tons. However, the slag wall substructures cannot be verified. Therefore, the bridge is rated for small numbers of pedestrians involved with construction activities.
	This headgate controls the water entering F-35 (slag/concrete culvert). Headgate dimensions are 20' tall by 18-1/2' wide on the upstream side and at least 11' tall by the same width on the downstream side.

Table 7. Summary of Historic Infrastructure (cont.)

-			I		
Equipment (Cultural Resource Inventory Feature)	Description	Remaining Equipment/Data Gaps	Phase I QAPP Actions and Observations		
Butte Reduction Works					
Historic Silver Bow Creek Channel South Culvert	To direct SBC around the tailings, a culvert was built of pilings and plank sidewalls. This culvert was rebuilt and extended during the operations at BRW.	There is little information available on the final construction and alignment of the south culvert.	A Geophysical Multichannel Analysis of Surface Waves (MASW) seismic survey w completed to attempt to verify if the culvert remains (Figure 6). The MASW seismic survey was completed. See Appendix C for additional information.		
	Pump House: Consisted of a well, pumps, an iron flue, and stack.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. Could not confirm if a foundation remains based on available information. Additionally, a foundation for the stack may still remain.	A test pit (BRW18-TP01) will be excavated to determine if a foundation remains and if p thickness of the foundation (Table 2 and Figure 5). Total depth of BRW18-TP01 was 6.4 feet. A brick structure on top of slag was observed of the test pit.		
	Machine Shop: Constructed with a steel truss roof and contained the blowers for the blast furnaces.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. Could not confirm if a foundation remains based on available information.	No actions proposed for Phase I.		
	Motor Repair Shop	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. Could not confirm if a foundation remains based on available information.	No actions proposed for Phase I.		
Miscellaneous Mechanical Systems	Sampling Works: Ore was sampled as it arrived to the BRW.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. Could not confirm if a foundation remains based on available information.	No actions proposed for Phase I. Unable to excavate a test pit due to location underneath Bow materials storage pile.		
	Crusher House	Based on historical information, the crusher house was demolished sometime between 1900 and 1914.	No actions proposed for Phase I.		
	Blister Building: The building was a steel frame building with multiple engines, generators, and compressors (Feature 17).	Based on historical information, building was demolished shortly after the BRW discontinued operations in 1910. Based on present-day aerial imagery and previous site investigations, there are remaining concrete structures most likely from engines, generators, compressors, etc. located within the building.	Measurements and photographs of visible infrastructure will be collected. Blister building comprised mostly of concrete, rebar, and 4-inch channel iron, appears to feet tall and 30 feet long with 4 sets of pillars left that are about 7 feet wide. Photos will the PDI Evaluation Report.		
	Electric Motor: Assumed to power/move the coal elevators.	Based on historical information, equipment was demolished or removed shortly after the BRW discontinued operations in 1910. Could not confirm if a foundation remains based on available information.	No actions proposed for Phase I.		
Domestic Manganese					
Kilns:	The Domestic Manganese kilns and footings were built over the location of the dust chambers for BRW operations which were built of steel frames with a slag base between 1907-1908. The building contained two rotary kilns and was constructed of steel frame trusses and posts(20 feet tall) with wood, concrete footings (676 square feet), and earth floors.	Based on historical research and previous site investigations, most structures were removed during the 1970s with some remaining infrastructure observed in the early 1990s. Could not confirm if a foundation remains based on available information and the structures original function is unknown.	Measurements and photographs of visible infrastructure will be collected. Two test pit TP09 & BRW18-TP16) will be excavated to determine if a foundation remains and if pc thickness of the foundation as well as identify if any remaining flue dust is present (Table 4). There are 4 structures, roughly 10 feet tall, 7 feet wide, and 13 feet in length. There are 4 structures with rebar, and one of them has steel on the top in concrete. BRW18-TP09 con demolition debris, railroad ties, and a concrete foundation with a metal lid. BRW18-TP16 demolition debris, brick, wire, and white ash. Photos will be included in the PDI Evaluation		
Ore Mill	The building was constructed of wood posts.	Based on historical research and previous site investigations, most structures were removed during the 1970s with some remaining infrastructure observed in the early 1990s. Additionally, it appears that there were some pumps, conveyors, and crushers beneath the surface that may still remain.	Measurements and photographs of visible infrastructure will be collected. Test pits (Bl & BRW18-TP12) will be excavated to determine if subsurface structures or equipment r (Table 2 and Figure 5). One borehole (BRW18-PZ13) will be drilled to determine if infra remains (Table 2 and Figure 5). BRW18-TP08 consisted of demolition debris and tailings (white sand). BRW18-TP12 wa excavated. BRW18-PZ13 consisted of slag and brick within the first 5 feet of core collect		
Transformer Yard	No equipment/construction description available.	Based on historical research, structures were removed during the 1970s. However, there is a concern that PCBs may still exist from the transformer operation.	One borehole will be drilled to determine if PCBs are present (BRW18-BH13) (Table 2 12). BRW18-BH13 was not drilled due to proximity to asphalt plant. No samples were collec		
Miscellaneous Buildings	The buildings once included a carpenter shop, garages, and an office.	Based on historical research, the structures were removed during the 1970s. Based on previous site investigations, the foundations most likely remain.	No actions proposed for Phase I.		
		roundations most neery romani.			

Purpose: To identify the potentially remaining durable historic infrastructure with the goal of identifying areas for design related test pit locations.
Observations: There are structures that remain at the BRW Site from both the BRW Smelter and the Domestic Manganese plant. The test pit locations indicated in the table are identified on Figure 5.

References:

Addicks, L., 1916. Leaching Slime Tailings. Mining and Engineering World, 44(3): 121. Bowman, C.H., Annual Address, Association of Engineering Societies, January 8, 1910.

DCI Engineers, 2021. Structural Assessment of Existing Bridge and Historic Structures, Butte Reduction Works Smelter Site, Butte, Montana. October 11, 2021.

Harlan Casey and Associates, 1992. Letter from Richard L. Harlan to Mr. Stephen E. Dole (ARCO). March 10, 1999.

Hufman, Lussy and Associates, 252, Eeler Joyner, Retrieved from http://hooks.google.com Hofman, H.O., 1914, Metallurgy of Copper. Retrieved from http://hooks.google.com Lock, C. G. Warnford., 1901. Gold Milling Principles and Practice. Retrieved from http://books.google.com McGraw-Hill Book Company, Inc., 1914. Handbook of Milling Details. Retrieved from http://books.google.com

Qiferhaus, C. 1909. Copper Blass Furnace Smelting at Anaconda. The Engineering and Mining Journal, 88(6): 243-250.
Peters, Edward Dyer, 1907. Modern Copper Smelting. Retrieved from http://books.google.com
Quivik, F. L., 1998. Smoke and Tailings, An Environmental History of Copper Smelting Technologies in Montana, 1880-1930.

Sanborn, 1900. Map of Colusa-Parrot Mining and Smelting Co's, Butte Reduction Works. GCM Services, 1991. Cultural Resource Inventory of The Lower Area One Operable Unit of Silver Bow Creek/Butte Area NPL Site and the Montana Pole and Treating Plant NPL Site. December 1991. Sanborn, 1914. Map of Colusa-Parrot Mining and Smelting Co's, Butte Reduction Works. Sanborn, 1953. Map of Domestic Manganese and Development Co. Schnabel, C., 1905. Handbook of Metallurgy. Retrieved from http://books.google.com Tetra Tech, Inc., 2016. Data Gap Site Investigation – Task 1a Test Pit Investigation at Butte Reduction Works Smelter Site. October 3, 2016. The Engineering Record, 1906. The Concrete Chinney of the Butte Reduction Works, 53(5): 124. The Engineering Record, 1907. Waste Heat Boilers for Copper Smelting Furnaces, 56(1): 11-12. Wethey, A.H., 1908. Movable Converter Hoods. The Engineering and Mining Journal, 85(2): 100-101.
 Wethey, A.H., 1909. Concentration at the Butte Reduction Works. The Engineering and Mining Journal, 88(9): 415-416.
 Wethey, A.H., 1909. Smelting Plant of the Butte Reduction Works. The Engineering and Mining Journal, 88(2): 1153-1155.

Rossillon, Mitzi, 2021. Consulting Archaeologist, LLC. Further Remedial Elements Scope of Work Remedial Design/Remedial Action, Butte Priority Soils Operable Unit: Cultural Resource Inventory, Evaluation, and Recommendations. December 6, 2021.

	Additional Notes from Cultural Resource Inventory and/or Structural Assessment
y will be n.	No additional observations.
if possible the ved at the bottom	No additional observations.
	No additional observations.
	No additional observations.
ath a Butte Silver-	No additional observations.
	No additional observations.
to be about 8-10 ill be included in	Photographs of Feature 17, east and west, were taken, showing slag floors poured between the concrete floors, joist pockets cast in the footings, and various machine pads on both foundations are still present at the Site. This indicates machine shafts for large equipment, a floor, and building used to be present.
	No additional observations.
pits (BRW18 - f possible the ble 2 and Figure e 4 concrete consisted of P16 consisted of lation Report.	Remnant features exist at the east end of the Site. These include: a Beam and Slab Pier/Remnant concrete footing (Feature 1), and Concrete Piers (Features 2-3) and (Features 6-7). The concrete footings and piers are located near the entrance. The piers are tall, tapered structures that were used to mount heavy machinery based on remnant cylindrical mounts and cast iron equipment bases that remain near the top of the structures. A retaining wall (Feature 14) located south of the reverberatory furnace and north of the ore bins is the only remaining structure made of dry-laid stone. It is possibly one of the oldest standing walls at the Site because structural slag replaced hand laid stone.
(BRW18-TP08 ent remains nfrastructure ? was not lected.	No additional observations.
e 2 and Figure lected for PCB's.	No additional observations.
	No additional observations.

				А	luminum	Arso	enic	Cad	mium	Со	pper	Irc	on	Le	ad	Me	rcury	Zi	inc
	Phase I and Ph	nase II Data			D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	Groundwater Re (2006 ROD, T				-	-	10	-	5	-	1,300	-	-	-	15	-	2	-	2,000
In-Strea	m Chronic Surface Wat (2020 ROD Amend		andards		87	10	-	1.0	-	12.3	-	1,000	-	4.79	-	0.05	-	157	-
Location	Aquifer Unit	SI	Date/Std. Dev	рН															
urface Water Anal	ytical Results							<u> </u>		<u> </u>				<u>.</u>		<u> </u>		<u> </u>	
	-	-	10/1/2020	8.10	-	3.3	2.7	0.100	0.120	4.0	2.0	220	14	0.79	< 0.043	< 0.0045	< 0.0045	11	7
	-	-	10/6/2020	8.33	-	3.4	2.9	0.089	0.100	3.7	1.6	160	<12	0.76	< 0.043	< 0.0045	< 0.0045	10	7
B-5	-	-	10/14/2020	7.74	-	3.6	2.9	0.062	0.048	6.3	3.7	230	40	0.70	0.044	< 0.0045	< 0.0045	16	12
D-3	-	-	10/28/2020	7.76	-	2.7	2.2	0.055	0.044	5.9	1.8	320	30	1.2	0.055	0.0090	< 0.0045	13	9
	-	-	11/4/2020	7.83	-	3.2	2.5	0.072	0.057	5.2	2.5	250	20	0.90	< 0.043	<0.0045	<0.0045	14	12
	-	-	Std.Dev	0.229	-	0.30	0.27	0.017	0.031	1.02	0.75	52	10	0.18	0.006	-	-	2	2
	-	-	10/1/2020	8.44	-	3.4	2.9	0.088	0.088	3.9	1.7	160	13	0.70	< 0.043	< 0.0045	< 0.0045	11	6
	-	-	10/6/2020	8.54	-	3.7	3.2	0.140	0.096	4.0	1.6	160	<12	0.71	< 0.043	< 0.0045	< 0.0045	11	5
B-6	-	-	10/14/2020	8.16	-	3.6	3.0	0.078	0.045	6.5	4.1	240	52	0.71	0.061	<0.0045	< 0.0045	16	17
D-0	-	-	10/28/2020	7.99	-	2.6	1.9	0.059	0.030	5.9	2.0	330	21	1.3	< 0.043	<0.0045	<0.0045	15	8
	-	-	11/4/2020	7.89	-	3.1	2.7	0.063	0.047	4.1	1.1	200	19	0.57	0.043	0.0050	<0.0045	12	8
	-	-	Std.Dev	0.251	-	0.40	0.45	0.029	0.026	1.10	1.04	63	15	0.26	0.0090	-	-	2	4
	-	-	10/1/2020	8.34	-	3.2	2.7	0.110	0.100	4.4	2.0	140	<12	0.64	< 0.043	<0.0045	<0.0045	9	7
	-	-	10/6/2020	8.50	-	3.6	3.0	0.097	0.110	3.4	1.9	140	<12	0.62	< 0.043	0.0045	<0.0045	9	6
BRW-SS-01	-	-	10/14/2020	8.06	-	4.0	3.2	0.088	0.051	8.6	4.3	340	57	1.4	0.054	0.0050	<0.0045	19	12
	-	-	10/28/2020	7.94	-	2.8	2.0	0.051	0.030	5.7	1.6	320	29	1.2	< 0.043	0.0070	<0.0045	14	9
	-	-	11/4/2020	7.86	-	3.1	2.5	0.063	0.060	4.5	1.9	210	22	0.70	< 0.043	<0.0045	<0.0045	12	11
	-	-	Std.Dev	0.243	-	0.42	0.42	0.022	0.030	1.79	0.99	86	15	0.32	-	0.0011	-	4	2

Note: A hardness value of 138 mg/L (reported as CaCO₃) from USGS Station 12323240 (SS-04) on February 19, 2014 was used.

All Site COCs are listed in Table 7 except Silver. Silver only has an acute standard, which is not applicable for the Site.

<X = Value less than detection limit (value in cell (X) is the reporting limit)

	Be
	Ab
	Ab

elow Standard or Goal

bove In-Stream Chronic Surface Water Performance Standard bove Groundwater Remedial Goal

	Chronic Aquatic
Cadmium	1.0
Copper	12.3
Lead	4.79
Zinc	157

		Chronic= exp.{mc[ln(hardness)]+bc}							
			mc	bc					
	Acronyms Table	Cadmium	0.7977	-3.909					
SI	Screened Interval	Copper	0.8545	-1.702					
TR	Total Recoverable	Lead	1.273	-4.705					
D	Dissolved	Zinc	0.8473	0.884					

					Aluminum	Ars	enic	Cad	mium	Co	oper	Ire	on	Lea	ad	Me	rcury	Zi	inc
	Phase I and Pl	hase II Data			D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	Groundwater Re (2006 ROD, ⁻				-	-	10	-	5	-	1,300	-	-	-	15	-	2	-	2,000
In-Strean	n Chronic Surface Wa (2020 ROD Ameno		andards		87	10	-	1.0	-	12.3	-	1,000	-	4.79	-	0.05	-	157	-
	-	-	10/1/2020	8.55	-	3.7	2.8	0.150	0.140	5.7	1.6	220	<12	1.2	< 0.043	< 0.0045	< 0.0045	15	8
	-	-	10/6/2020	8.66	-	3.6	3.1	0.059	0.088	3.8	1.7	150	<12	1.0	< 0.043	< 0.0045	< 0.0045	12	8
	-	-	10/14/2020	8.33	-	3.4	3.0	0.080	0.051	6.4	4.2	220	38	0.76	< 0.046	< 0.0045	< 0.0045	17	14
SS-05A	-	-	10/28/2020	8.07	-	3.2	2.7	0.079	0.066	5.8	1.8	300	17	1.3	< 0.043	0.0050	< 0.0045	16	12
	-	-	11/4/2020	7.94	-	3.0	2.5	0.061	0.061	5.5	1.6	200	19	1.0	< 0.043	0.0050	< 0.0045	13	12
	-	-	Std.Dev	0.274	-	0.26	0.21	0.033	0.032	0.87	1.01	48	9	0.19	-	0.00	-	2	2
	-	-	10/1/2020	8.46	-	3.8	3.2	0.099	0.110	3.4	1.3	170	14	0.96	< 0.043	< 0.0045	< 0.0045	9	4
	-	-	10/6/2020	8.60	-	3.9	3.1	0.087	0.094	3.3	1.5	190	<12	0.85	< 0.043	< 0.0045	< 0.0045	9	5
66 0FD	-	-	10/14/2020	8.28	-	3.9	3.3	0.062	0.040	3.4	2.0	220	54	0.59	0.078	< 0.0045	< 0.0045	11	9
SS-05B	-	-	10/28/2020	8.01	-	2.4	2.0	0.052	0.030	4.1	0.9	310	29	1.1	< 0.043	< 0.0045	< 0.0045	11	6
	-	-	11/4/2020	8.00	-	3.0	2.6	0.052	0.052	2.8	1.3	170	24	0.48	0.044	0.0050	<0.0045	9	9
	-	-	Std.Dev	0.239	-	0.60	0.48	0.019	0.031	0.41	0.36	52	15	0.23	0.017	-	-	1	2
	-	-	10/1/2020	7.75	-	3.7	2.8	0.15	0.14	5.7	1.6	220	15	1.2	< 0.043	< 0.0045	<0.0045	15	8
	-	-	10/6/2020	8.07	-	3.6	3.1	0.059	0.088	3.8	1.7	150	<12	1.0	< 0.043	< 0.0045	< 0.0045	12	8
	-	-	10/14/2020	7.61	-	3.4	3.0	0.080	0.051	6.4	4.2	220	38	0.76	< 0.046	< 0.0045	< 0.0045	17	14
SS-06A	-	-	10/28/2020	7.67	-	3.2	2.7	0.079	0.066	5.8	1.8	300	17	1.3	< 0.043	0.0050	<0.0045	16	12
	-	-	11/4/2020	7.77	-	3.0	2.5	0.061	0.061	5.5	1.6	200	19	1.0	< 0.043	0.0050	<0.0045	13	12
	-	-	Std.Dev	0.159	-	0.26	0.21	0.033	0.032	0.87	1.01	48	9	0.19	-	0.00	-	2	2
roundwater Analyti	ical Results	•	•																
			12/4/2018	5.41	2640	470	260	41	40	18700	18900	108000	110000	150	130	-	-	15300	14800
			10/22/2019	5.70	-	440	280	19	18	7400	7700	53400	55900	110	100	0.86	0.87	7100	7000
BRW18-PZ01	Deep	10' - 15'	8/24/2020	5.85	-	480	240	12	13	4200	4800	36500	42900	69	39	0.17	0.11	4800	5800
			11/10/2020	5.60	-	320	190	7.3	11	1800	3800	22300	33600	29	17	0.17	0.15	3000	5200
			Std. Dev	0.160	-	64	33	13	12	6475	6005	32493	29600	45	45	0.33	0.35	4705	3865
			8/12/2020	5.60	-	19	10	23	26	12100	12300	57300	61200	360	300	0.32	0.10	9300	9900
BRW19-PZ01S	Shallow	3.5'-8.5'	11/10/2020	5.80	-	21	18	19	20	10000	10600	51600	47700	130	140	0.25	0.29	8000	7800
			Std. Dev	0.100	-	1.0	4.0	2.0	3.0	1050	850	2850	6750	115	80	0.035	0.096	650	1050
			8/12/2020	7.19	_	2.2	2.4	2.3	2.8	50	50	170	<12	0.48	0.057	< 0.0045	<0.0045	200	210
BRW19-PZ01DR	Deep	19'-24'	11/11/2020	7.06	-	2.6	2.6	2.4	2.6	69	79	150	<12	0.40	0.080	< 0.0045	< 0.0045	250	270
	Std. Dev			0.20					-							25	30		

Note: A hardness value of 138 mg/L (reported as CaCO₃) from USGS Station 12323240 (SS-O4) on February 19, 2014 was used.

All Site COCs are listed in Table 7 except Silver. Silver only has an acute standard, which is not applicable for the Site.

<X = Value less than detection limit (value in cell (X) is the reporting limit)</pre>

Below Standard or Goal

Above In-Stream Chronic Surface Water Performance Standard Above Groundwater Remedial Goal

	Chronic Aquatic
Cadmium	1.0
Copper	12.3
Lead	4.79
Zinc	157

Ac	ronyms Tab
SI	Screened Ir
TR	Total Recov
D	Dissolved

Table	
d Interval	
coverable	
d	

Chronic= exp.{mc[ln(hardness)]+bc}								
mc bc								
Cadmium	0.7977	-3.909						
Copper	0.8545	-1.702						
Lead	1.273	-4.705						
Zinc	0.8473	0.884						

					Aluminum	Ars	enic	Cad	mium	Со	oper	Ir	on	Lea	ad	Me	ercury	Zi	inc
	Phase I and P	hase II Data			D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	Groundwater Ro (2006 ROD,				-	-	10	-	5	-	1,300	-	-	-	15	-	2	-	2,000
In-Strean	n Chronic Surface Wa (2020 ROD Amen		andards		87	10	-	1.0	-	12.3	-	1,000	-	4.79	-	0.05	-	157	-
			12/5/2018	7.09	<9	3.0	2.9	3.6	3.6	82	84	150	62	1.4	0.30	-	-	320	350
			10/24/2019	7.24	-	2.5	2.2	4.1	3.9	83	74	180	<12	1.2	0.096	0.016	< 0.0039	370	360
	_		10/1/2020	7.22	-	2.7	2.5	4.2	4.0	77	74	84	<12	0.64	0.11	0.0090	<0.0045	390	370
BRW18-PZ02	Deep	10' - 15'	10/12/2020	7.15	-	3.8	3.1	4.4	4.3	76	67	39	<12	0.26	0.11	0.0050	0.0060	420	410
			11/5/2020	6.97	-	3.1	2.8	4.1	3.9	83	74	55	<12	0.65	0.087	0.0090	0.0070	360	340
			Std. Dev	0.0977	-	0.44	0.32	0.26	0.22	3.1	5.4	55	-	0.41	0.080	0.0040	0.00050	33	24
			12/4/2018	6.66	<9	12	11	7.4	7.5	600	630	140	140	2.8	0.46	-	-	6000	6500
			10/22/2019	6.46	-	25	23	7.0	7.0	380	400	1500	1500	1.7	0.65	0.010	<0.0039	9800	9700
			10/1/2020	6.74	-	24	21	5.1	4.8	460	460	250	210	2.5	0.39	0.0090	< 0.0045	2400	2900
BRW18-PZ03	Shallow	5' - 10'	10/12/2020	6.48	-	18	15	7.2	6.9	400	370	360	340	2.0	0.50	0.0060	< 0.0045	4200	4200
			11/4/2020	6.53	-	16	13	8.5	8.4	380	380	300	330	1.4	0.54	0.013	0.0050	5300	5200
			Std. Dev	0.108	-	4.9	4.6	1.1	1.2	83.3	96.2	500	504	0.51	0.087	0.0025	-	2452	2323
			8/4/2020	7.30	-	3.0	2.8	2.4	2.4	14	8.3	160	<12	0.34	< 0.043	<0.0045	<0.0045	130	130
BRW19-PZ03D	Deep	14.5'-19.5'	11/11/2020	7.18	-	3.7	3.4	1.9	1.9	17	17	66	<12	0.16	< 0.043	<0.0045	<0.0045	120	130
			Std. Dev	0.0600	-	0.35	0.30	0.25	0.25	1.5	4.4	47	-	0.090	-	-	-	5.0	0.0
		12.5' - 17.5'	12/4/2018	7.07	<9	6.0	2.4	6.0	5.7	67	43	620	53	3.6	< 0.039	-	-	520	530
	_		10/22/2019	6.82	-	2.8	2.6	4.9	5.2	40	33	980	930	0.11	0.050	0.016	0.0090	490	530
BRW18-PZ04	Deep		11/12/2020	6.78	-	1.9	2.0	3.3	3.5	27	31	220	220	0.098	0.067	0.0080	0.0060	350	400
			Std. Dev	0.128	-	1.8	0.25	1.1	0.94	17	5.2	310	380	1.6	0.0085	0.0040	0.0015	74.1	61
			12/4/2018	7.18	<9	2.8	1.1	7.7	7.1	22	7.6	1600	13	5.0	0.042	-	-	570	520
BRW18-PZ05	Deep	14.4' - 19.4'	10/18/2019	7.17	-	1.6	1.3	6.5	7.0	16	14	320	<12	1.1	< 0.046	0.020	0.0040	520	530
			Std. Dev	0.00500	-	0.60	0.10	0.60	0.050	3.0	3.2	640	-	1.9	-	-	-	25	5.0
			8/4/2020	6.29	-	3.9	1.5	11	11	530	460	5600	5100	3.5	1.2	0.10	0.079	2600	2700
BRW19-PZ05S	Shallow	3'-8'	11/11/2020	5.56	-	5.3	4.5	58	63	3100	3300	76000	75900	59	56	0.30	0.22	26300	31600
			Std. Dev	0.365	-	0.70	1.5	23	26	1285	1420	35200	35400	28	27	0.10	0.071	11850	14450
			12/3/2018	7.18	<9	1.6	1.5	8.9	8.6	3.9	2.9	69	7.4	0.36	0.077	-	-	730	770
BRW18-PZ06	Deep	14.7' - 19.7'	10/18/2019	7.22	-	2.7	1.6	7.8	7.8	4.8	3.2	220	<12	0.76	< 0.046	0.0090	<0.0039	750	700
	2000		Std. Dev	0.0200	_	0.55	0.050	0.55	0.40	0.45	0.15	76	_	0.20	-	-	-	10	35
			12/3/2018	6.73	203	2.1	2.0	0.62	0.57	5.3	3.1	61	24	0.22	0.074	-	_	38	38
			10/17/2019	5.80		12	8.2	130	140	70900	55800	117000	109000	3.1	0.45	0.90	0.66	36700	36900
			10/1/2020	5.99	_	17	9.0	120	140	56000	50300	95400	102000	7.3	1.2	0.56	0.36	35100	36500
BRW18-PZ08	Shallow	5.3' - 10.3'	10/12/2020	5.16	-	15	12	120	120	74700	71900	155000	137000	21	18	0.32	0.18	41600	40200
			11/4/2020	4.95	_	18	17	170	120	111000	110000	168000	234000	28	27	0.28	0.10	57800	57700
			Std. Dev	0.633	-	5.7	4.9	56.8	59.8	36110	35565	59490	74913	11	11	0.25	0.12	18899	18803

Note: A hardness value of 138 mg/L (reported as CaCO₃) from USGS Station 12323240 (SS-04) on February 19, 2014 was used.

All Site COCs are listed in Table 7 except Silver. Silver only has an acute standard, which is not applicable for the Site.

<X = Value less than detection limit (value in cell (X) is the reporting limit)

Below Standard or Goal
Above In-Stream Chronic Surface Water Performance Standard
Above Groundwater Remedial Goal

	Chronic Aquatic
Cadmium	1.0
Copper	12.3
Lead	4.79
Zinc	157

Acronyms Table								
SI	Screened Interv							
TR	Total Recoverat							
D	Dissolved							

		Chronic= exp.{mc[l	Chronic= exp.{mc[ln(hardness)]+bc}							
	_		mc	bc						
		Cadmium	0.7977	-3.909						
rval		Copper	0.8545	-1.702						
able		Lead	1.273	-4.705						
		Zinc	0.8473	0.884						

						Ars	enic	Cad	lmium	Со	oper	Ire	on	Lead		Mercury		Zinc	
	Phase I and P	hase II Data			D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D
						(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)									
	Groundwater Ro (2006 ROD,				-	-	10	-	5	-	1,300	-	-	-	15	-	2	-	2,000
In-Stream	n Chronic Surface Wa (2020 ROD Amen		andards		87	10	-	1.0	-	12.3	-	1,000	-	4.79	-	0.05	-	157	-
			12/3/2018	6.85	<9	50	38	23	21	17	4.2	1900	1600	3.5	0.11	-	-	1500	1500
			10/17/2019	6.99	-	110	95	9.7	9.4	12	3.8	2300	2200	1.3	0.097	0.019	0.0070	1500	1300
BRW18-PZ09	Deep	12' - 17'	10/1/2020	7.08	-	180	150	5.8	5.1	4.1	2.2	2800	2500	0.63	0.12	0.017	0.011	1400	1500
DKW10-P203	Deep	12 - 17	10/12/2020	6.99	-	250	220	2.6	2.5	4.6	3.9	2800	2200	0.88	0.12	0.025	0.014	1400	1500
			11/4/2020	7.09	-	200	120	7.0	7.0	5.8	3.0	1900	1700	1.2	0.11	0.020	0.011	1500	1500
			Std. Dev	0.0863	-	70.3	60.2	7.1	6.4	5.0	0.73	403	338	1.0	0.0085	0.0029	0.0025	49	80
			11/28/2018	7.19	12	3.6	3.3	1.4	1.3	16	10	410	7.1	0.46	< 0.039	-	-	74	74
BRW18-PZ10	Shallow	15' - 20'	10/21/2019	7.19	-	2.5	2.5	0.96	1.1	11	9.0	190	81	0.20	< 0.046	0.014	<0.0039	66	75
			Std. Dev	0.00	-	0.55	0.40	0.22	0.10	2.5	0.50	110	37	0.13	-	-	-	4.0	0.50
			8/13/2020	7.23	-	2.6	3.0	0.98	1.1	3.4	3.5	36	<12	0.085	0.043	< 0.0045	< 0.0045	160	170
BRW19-PZ10D	Deep	24.5'-34.5'	11/12/2020	7.21	-	3.2	3.2	1.1	1.1	4.8	3.8	83	<12	0.45	< 0.043	0.0050	<0.0045	160	160
			Std. Dev	0.0100	-	0.30	0.10	0.060	0	0.70	0.15	23	-	0.18	-	-	-	0.0	5.0
	Deep		11/29/2018	7.35	3.4	4.2	4.0	0.79	0.73	43	30	320	13	0.52	0.069	-	-	35	31
BRW18-PZ11		19.5' - 24.5'	10/21/2019	7.33	-	3.0	2.9	0.70	0.75	49	47	160	<12	0.23	< 0.046	< 0.0039	< 0.0039	40	37
			Std. Dev	0.0100	-	0.60	0.55	0.045	0.010	3.0	8.5	80	-	0.15	-	-	-	2.5	3.0
			8/13/2020	7.54	-	5.2	5.7	0.48	0.57	28	28	32	<12	0.065	0.046	< 0.0045	< 0.0045	70	74
BRW19-PZ11S	Shallow	9'-14'	11/12/2020	7.27	-	5.5	5.4	0.40	0.42	33	35	<12	18	0.078	0.076	< 0.0045	< 0.0045	68	68
			Std. Dev	0.135	-	0.15	0.15	0.040	0.075	2.5	3.5	-	-	0.0065	0.015	-	-	1.0	3.0
			11/28/2018	7.06	<9	20	5.8	19	19	1900	1600	3900	3500	3.8	0.042	-	-	3300	3200
BRW18-PZ12	Shallow	17' - 22'	10/21/2019	7.24	-	2.0	2.0	0.45	0.47	8.0	8.6	20	<12	0.094	< 0.046	0.0040	< 0.0039	48	49
			Std. Dev	0.0900	-	9.0	1.9	9.3	9.3	946	796	1940	-	1.85	-	-	-	1626	1576
			8/13/2020	7.35	-	2.6	2.1	0.64	0.65	8.8	4.7	430	16	2.0	0.11	< 0.0045	< 0.0045	66	44
BRW19-PZ12D	Deep	21.5'-26.5'	11/16/2020	7.20	-	2.4	2.3	0.36	0.36	4.2	4.2	58	<12	0.39	< 0.043	< 0.0045	< 0.0045	40	39
	·		Std. Dev	0.0750	-	0.1	0.1	0.1	0.1	2.3	0.3	186	-	0.81	-	-	-	13	2.5
			11/28/2018	7.30	<9	61	59	0.29	0.30	16	11	45	9.6	0.077	< 0.039	-	-	17	12
BRW18-PZ13	Shallow	19' - 24'	10/21/2019	7.39	-	35	35	0.32	0.36	6.1	6.1	<12	<12	0.43	< 0.046	< 0.0039	< 0.0039	29	29
			Std. Dev	0.0450	-	13	12	0.015	0.030	5.0	2.4	-	-	0.18	-	-	-	6.0	8.5
			11/29/2018	7.25	<9	2.7	2.2	1.3	1.3	2.4	0.89	320	15	0.39	< 0.039	-	-	95	98
	.		10/15/2019	7.20	-	2.8	2.5	0.84	0.74	2.5	0.80	200	<12	0.26	< 0.046	< 0.0039	< 0.0039	88	80
BRW18-PZ14	Shallow	17.5' - 22.5'	11/16/2020	7.04	-	2.7	2.6	0.76	0.54	1.4	1.0	84	<12	0.12	< 0.043	< 0.0045	< 0.0045	78	75
			Std. Dev	0.0896	-	0.047	0.170	0.238	0.32	0.50	0.08	96	-	0.11	-	-	-	7.0	9.9

Note: A hardness value of 138 mg/L (reported as CaCO₃) from USGS Station 12323240 (SS-04) on February 19, 2014 was used.

All Site COCs are listed in Table 7 except Silver. Silver only has an acute standard, which is not applicable for the Site.

<X = Value less than detection limit (value in cell (X) is the reporting limit)</pre>

Below Standard or Goal

A

Above In-Stream Chronic Surface Water Performance Standard Above Groundwater Remedial Goal

	Chronic Aquatic
Cadmium	1.0
Copper	12.3
Lead	4.79
Zinc	157

Acronyms Table								
SI	Screened Interval							
TR	Total Recoverable							
D	Dissolved							

Chronic= exp.{mc[ln(hardness)]+bc}							
	mc	bc					
Cadmium	0.7977	-3.909					
Copper	0.8545	-1.702					
Lead	1.273	-4.705					
Zinc	0.8473	0.884					

					Aluminum	Ars	enic	Cad	mium	Со	oper	Ir	on	Lea	ad	Me	ercury	Zi	inc
	Phase I and P	hase II Data			D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D
						(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)								
	Groundwater Ro (2006 ROD,				-	-	10	-	5	-	1,300	-	-	-	15	-	2	-	2,000
In-Stream	n Chronic Surface Wa (2020 ROD Amen		andards		87	10	-	1.0	-	12.3	-	1,000	-	4.79	-	0.05	-	157	-
			11/29/2018	7.25	<9	1.9	2.0	0.66	0.68	0.82	0.62	43	14	0.19	0.057	-	-	87	93
	Deen	201 251	10/15/2019	7.26	-	1.5	1.5	0.56	0.57	0.74	0.52	<12	<12	< 0.046	< 0.046	0.0040	<0.0039	94	100
BRW18-PZ15	Deep	20' - 25'	11/16/2020	7.09	-	2.4	2.4	0.82	0.80	1.2	1.2	13	<12	0.052	< 0.043	< 0.0045	<0.0045	120	130
			Std. Dev	0.0779	-	0.37	0.37	0.11	0.09	0.20	0.30	15	-	0.069	-	-	-	13	15
			11/29/2018	7.06	<9	6.0	6.0	1.2	1.1	100	100	100	6.6	0.57	0.057	-	-	120	130
BRW18-PZ16	Deep	32.5' - 37.5'	10/21/2019	6.82	-	8.2	8.1	0.52	0.48	70	64	78	<12	0.43	0.052	0.0060	<0.0039	70	66
			Std. Dev	0.120	-	1.1	1.0	0.34	0.31	15	18	11	-	0.070	0.0025	-	-	25	32
			8/17/2020	6.59	-	1.7	1.6	14	14	120	110	4700	5000	0.96	0.52	< 0.0045	< 0.0045	8400	8700
BRW19-PZ16S	Shallow	20'-25'	11/13/2020	6.38	-	34	29	8.3	8.5	390	500	15500	13900	1.9	1.5	0.0060	< 0.0045	5000	4200
			Std. Dev	0.105	-	16	14	2.9	2.7	135	195	5400	-	0.47	0.49	-	-	1700	2250
			11/29/2018	7.19	<9	43	43	2.9	2.8	68	68	22	6.9	< 0.039	< 0.039	-	-	230	260
DDW/10 D717	Shallow	15' - 20'	10/15/2019	7.06	-	41	40	3.7	3.7	120	120	<12	<12	0.17	< 0.046	< 0.0039	<0.0039	310	320
BRW18-PZ17	Shanow	13 - 20	11/16/2020	7.04	-	47	46	2.0	2.1	87	85	120	<12	0.16	< 0.043	0.0060	<0.0045	180	190
			Std. Dev	0.0665	-	2.5	2.4	0.69	0.65	21	22	49	-	0.0050	-	-	-	65	65
			11/27/2018	6.67	<9	87	89	44	37	1300	1100	27	<5.4	0.097	< 0.039	-	-	15000	11900
BRW18-PZ18	Shallow	17' - 22'	10/25/2019	6.63	-	97	93	53	51	1200	1100	<12	<12	< 0.046	0.048	0.011	0.0090	13300	12500
DKVV10-P210	Shallow		11/17/2020	6.63	-	150	150	24	23	780	750	20	<12	0.061	< 0.043	0.0090	0.0080	3800	3600
			Std. Dev	0.0189	-	28	28	12	11	225	165	4	-	0.018	-	0.0010	0.00050	4750	4450
			11/27/2018	7.02	<9	9.9	9.8	5.9	6.0	62	50	290	13	3.9	0.37	-	-	650	560
BRW18-PZ19	Shallow	22' - 27'	10/23/2019	7.12	-	14	15	4.7	4.7	40	38	71	12	0.57	0.096	0.010	<0.0039	480	500
			Std. Dev	0.0500	-	2.1	2.6	0.60	0.65	11	6.0	109	0.50	1.7	0.14	-	-	85.0	30.0
			11/30/2018	7.09	<9	5.1	4.4	2.9	3.0	93	75	400	180	2.7	0.20	-	-	250	240
BRW18-PZ20	Shallow	22.5' - 27.5'	10/25/2019	7.23	-	6.9	5.8	2.7	2.6	99	81	240	34	1.3	0.16	0.013	<0.0039	230	220
			Std. Dev	0.0700	-	0.90	0.70	0.10	0.20	3.0	3.0	80	73	0.70	0.020	-	-	10.0	10.0
			11/26/2018	7.17	<9	31	30	11	10.0	82	72	84	39	0.25	0.072	-	-	850	810
BRW18-PZ21	Shallow	25' - 30'	10/25/2019	7.02	-	36	37	14	14	140	140	<12	<12	< 0.046	< 0.046	0.048	0.0080	1100	1000
DKW10-7221	Sildilow	25 - 50	2/14/2020	7.14	-	31	30	9.5	8.8	110	100	<12	<12	0.15	0.13	0.030	0.011	800	840
			Std. Dev	0.0648	-	2.4	3.3	1.9	2.2	24	28	-	-	0.050	-	0.0090	0.0015	150	80.0
			11/30/2018	7.12	<9	3.1	2.9	4.3	4.3	9.7	7.6	200	7.7	0.81	0.040			450	420
BRW18-PZ22	Shallow	24' - 29'	10/25/2019	7.13	-	2.2	2.2	3.8	3.6	11	11	17	<12	0.11	0.11	0.0090	<0.0039	410	400
			Std. Dev	0.00500	-	0.45	0.35	0.25	0.35	0.65	1.7	92	-	0.35	0.035	-	-	20.0	10.0

Note: A hardness value of 138 mg/L (reported as CaCO₃) from USGS Station 12323240 (SS-04) on February 19, 2014 was used.

All Site COCs are listed in Table 7 except Silver. Silver only has an acute standard, which is not applicable for the Site.

<X = Value less than detection limit (value in cell (X) is the reporting limit)

Below Standard or Goal

Above

Above In-Stream Chronic Surface Water Performance Standard Above Groundwater Remedial Goal

	Chronic Aquatic
Cadmium	1.0
Copper	12.3
Lead	4.79
Zinc	157

Acronyms Ta								
SI	Screened Ir							
TR	Total Recov							
D	Dissolved							

Chronic= exp.{mc[ln(hardness)]+bc}										
	mc	bc								
Cadmium	0.7977	-3.909								
Copper	0.8545	-1.702								
Lead	1.273	-4.705								
Zinc	0.8473	0.884								

					Aluminum	Ars	enic	Cad	lmium	Со	pper	Ir	on	Lea	ad	Mercury		Zi	inc
	Phase I and P	Phase II Data			D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	Groundwater Remedial Goals (2006 ROD, Table 8-1)						10	-	5	-	1,300	-	-	-	15	-	2	-	2,000
In-Strean	In-Stream Chronic Surface Water Performance Standards (2020 ROD Amendment, Table 1)					10	-	1.0	-	12.3	-	1,000	-	4.79	-	0.05	-	157	-
			11/27/2018	6.97	<9	3.7	4.0	8.4	8.7	1.4	1.1	43	13	0.54	0.29	-	-	1200	1200
BRW18-PZ23	Deep	22.5' - 27.5'	10/24/2019	7.14	-	4.0	4.2	9.0	8.8	3.6	3.1	58	<12	0.49	0.075	0.010	0.0039	1400	1300
			Std. Dev	0.0850	-	0.15	0.10	0.30	0.050	1.1	1.0	7.5	-	0.025	0.11	-	-	100.0	50.0
			11/28/2018	6.58	<9	11	9.8	1.7	1.8	59	30	1300	11	14	0.70	-	-	360	290
BRW18-PZ24	Doon	34' - 39'	10/24/2019	7.03	-	10	9.0	1.6	1.5	36	14	920	<12	9.6	0.31	0.11	<0.0039	330	260
DKVV18-P224	Deep	34 - 39	11/13/2020	7.01	-	9.1	8.8	2.1	1.4	8.6	5.4	12	12	0.24	0.071	0.0050	<0.0045	360	360
			Std. Dev	0.208	-	0.78	0.43	0.22	0.17	21	10	540	0.50	5.7	0.26	0.053	-	14	42
	Deep		12/5/2018	6.89	<9	2.3	1.9	8.4	8.2	3.0	2.0	250	12	0.47	0.19	-	-	540	510
BRW18-PZ25		14.8' - 19.8'	10/22/2019	6.99	-	2.7	2.4	5.3	5.3	2.9	2.1	270	<12	0.56	< 0.046	0.0050	<0.0039	380	380
			Std. Dev	0.0500	-	0.20	0.25	1.5	1.5	0.050	0.050	10	-	0.0	-	-	-	80.0	65
			8/4/2020	7.16	-	1.6	1.4	6.0	5.9	36	31	170	63	0.58	0.16	0.0090	0.0050	910	850
BRW19-PZ26	Deep	13.5'-18.5'	11/9/2020	7.08	-	1.8	1.8	5.8	6.0	38	40	16	<12	0.11	0.045	0.0080	<0.0045	870	830
			Std. Dev	0.0400	-	0.10	0.20	0.10	0.050	1.0	4.5	77	-	0.23	0.057	0.00050	-	20.0	10.0
	Deep	15'-20'	8/4/2020	7.15	-	2.2	2.1	3.5	3.6	46	43	58	<12	0.64	< 0.043	<0.045	<0.0045	440	430
BRW19-PZ27			11/9/2020	6.96	-	2.1	2.3	3.6	4.0	43	50	<12	<12	< 0.043	< 0.043	0.0070	<0.0045	420	480
			Std. Dev	0.0950	-	0.05	0.10	0.050	0.20	1.5	3.5	-	-	-	-	-	-	10.0	25
BRW19-PZ28R	Deep	14.8'-19.8'	8/11/2020	7.31	-	2.6	2.8	2.6	3.1	90	91	32	<12	0.15	0.043	< 0.0045	<0.0045	170	180
DKW19-P220K	Беер	14.0 - 19.0	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BRW19-PZ29	Deep	19'-24'	8/4/2020	7.29	-	2.7	2.4	2.5	2.6	40	31	160	<12	1.1	0.092	0.0050	<0.0045	180	180
DI(0019-F229	Беер	19-24	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			8/12/2020	7.21	-	2.2	2.3	3.6	4.0	100	96	44	<12	0.78	0.30	0.0060	0.0050	340	350
BRW19-PZ30	Shallow	13.25'-17.25'	11/9/2020	7.19	-	4.8	4.5	3.4	3.7	130	130	96	<12	1.2	0.21	0.0060	<0.0045	320	340
			Std. Dev	0.0100	-	1.3	1.1	0.10	0.15	15	17	26	-	0.21	0.045	0.0	-	10.0	5.0
BRW19-PZ31	Deep	14'-19'	8/11/2020	7.16		2.0	2.3	3.3	3.9	25	27	47	26	1.7	0.90	<0.0045	<0.0045	290	330
511417-1 231	Беер	17-17	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			8/11/2020	7.27	-	2.6	2.4	2.6	3.2	120	120	230	<12	2.0	0.16	<0.0045	<0.0045	280	310
BRW19-PZ32	Deep	17'-22'	11/12/2020	7.10	-	3.2	3.4	2.3	2.7	110	130	37	<12	0.45	0.19	0.0050	<0.0045	250	280
			Std. Dev	0.0850	-	0.30	0.50	0.15	0.25	5.0	5.0	97	-	0.78	0.015	-	-	15	15
BRW19-PZ40	Shallow	22'-27'	8/17/2020	7.10	-	2.3	2.1	0.81	0.75	39	36	23	<12	0.26	0.072	<0.0045	<0.0045	230	210
BRW19-F240 31	Shanow	22-21	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note: A hardness value of 138 mg/L (reported as CaCO₃) from USGS Station 12323240 (SS-04) on February 19, 2014 was used.

All Site COCs are listed in Table 7 except Silver. Silver only has an acute standard, which is not applicable for the Site.

<X = Value less than detection limit (value in cell (X) is the reporting limit)

Below Standard or Goal

Above In-Stream Chronic Surface Water Performance Standard

	Chronic Aquatic
Cadmium	1.0
Copper	12.3
Lead	4.79
Zinc	157

Ac	ronyms Tab
SI	Screened Ir
TR	Total Recov
D	Dissolved

le
nterval
verable

Chronic= exp.{mc[ln(hardness)]+bc}									
	mc	bc							
Cadmium	0.7977	-3.909							
Copper	0.8545	-1.702							
Lead	1.273	-4.705							
Zinc	0.8473	0.884							

					Aluminum	Ars	enic	Cad	mium	Со	oper	Ire	on	Lea	ad	Me	ercury	Z	inc
	Phase I and P	hase II Data			D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Groundwater Remedial Goals (2006 ROD, Table 8-1)						-	10	-	5	-	1,300	-	-	-	15	-	2	-	2,000
In-Stream Chronic Surface Water Performance Standards (2020 ROD Amendment, Table 1)					87	10	-	1.0	-	12.3	-	1,000	-	4.79	-	0.05	-	157	-
		251 201	8/14/2020	7.18	-	12	12	5.6	5.9	78	74	35	<12	0.20	0.043	0.0080	0.0060	530	530
BRW19-PZ41	Shallow	25'-30'	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			8/14/2020	7.01	-	2.5	2.7	5.6	6.9	31	32	52	<12	0.57	0.091	0.0060	0.0050	1700	1800
BRW19-PZ42	Deep	20'-25'	11/16/2020	7.00	-	4.7	4.6	2.3	2.3	19	18	55	<12	0.49	0.062	0.0070	0.0060	600	590
			Std. Dev	0.00500	-	1.1	0.95	1.6	2.3	6.0	7.0	1.5	-	0.040	0.015	-	-	550	605
	_		8/13/2020	7.32	-	6.4	6.5	1.4	1.5	62	61	20	<12	0.045	< 0.043	< 0.0045	<0.0045	100	100
BRW19-PZ43	Deep	22'-27'	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			8/14/2020	7.21	-	2.6	2.8	1.4	1.7	99	88	97	<12	0.30	0.045	< 0.0045	< 0.0045	100	100
BRW19-PZ44	244 Shallow	20'-25'	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			8/13/2020	7.32	-	9.6	10	0.95	1.2	14	14	23	<12	0.044	< 0.043	< 0.0045	<0.0045	100	110
BRW19-PZ45	Shallow	13'-18'	11/16/2020	7.21	-	11	11	0.83	0.87	9.7	9.3	16	<12	0.052	< 0.043	0.0050	0.0050	90	84
			Std. Dev	0.0550	-	0.70	0.50	0.060	0.17	2.2	2.4	3.5	-	0.0040	-	-	-	5	13
	Shallow	6'-11'	8/12/2020	2.87	-	1300	1400	14	17	9600	9800	48100	51300	490	590	0.044	< 0.0045	6700	7200
			10/1/2020	3.14	-	1300	1300	16	15	9500	9700	57100	55900	650	600	0.043	0.010	7100	7300
BRW19-PZ46			10/12/2020	2.90	-	1200	1300	16	15	7800	8800	44000	41900	560	490	0.085	0.012	5900	6600
			11/4/2020	2.96	-	1300	1300	17	16	9300	8700	49400	51600	570	540	0.056	0.009	7800	7000
			Std. Dev	0.105	-	43	43	1.1	0.83	730	502	4741	5112	57	44	0.017	0.0012	687	268
			8/12/2020	5.87	-	5.6	3.8	38	45	4800	5000	660	590	1.9	0.65	0.0090	<0.0045	14800	15200
BRW19-PZ47	Shallow	3.6'-8.6'	11/11/2020	5.80	-	13	12	33	35	4700	5100	630	210	1.3	0.85	0.0080	<0.0045	11000	12200
			Std. Dev	0.0350	-	3.7	4.1	2.5	5.0	50	50	15	190	0.30	0.10	0.00050	-	1900	1500
			8/24/2020	7.42	-	3.6	3.6	1.1	1.0	65	58	73	<12	0.12	< 0.043	0.0050	<0.0045	210	220
BRW19-PZ48	Shallow	11.4'-16.4'	11/17/2020	6.95	-	4.8	4.9	1.5	1.7	89	92	17	<12	0.063	0.049	0.0080	0.0060	350	360
			Std. Dev	0.235	-	0.60	0.65	0.20	0.35	12	17	28	-	0.028	-	0.0015	-	70.0	70.0
			8/24/2020	7.32	-	3	3.2	0.78	0.76	8.8	7.0	57	<12	0.19	< 0.043	<0.0045	<0.0045	70	67
BRW19-PZ49	Shallow	21.6'-26.6'	11/18/2020	7.27	-	4.2	3.8	0.85	0.83	6.7	4.9	180	<12	0.46	< 0.043	<0.0045	<0.0045	87	79
			Std. Dev	0.0250	-	0.60	0.30	0.035	0.035	1.1	1.1	62	-	0.135	-	-	-	8.5	6.0
			8/13/2020	7.34	-	2.8	3.2	2.8	3.5	97	80	76	<12	0.10	< 0.043	0.027	0.013	180	210
BRW19-PZ50	Shallow	9.5'-14.5'	11/18/2020	7.19	- 1	3.9	4.7	3.1	3.5	100	120	23	<12	0.047	< 0.043	0.019	< 0.008	220	270
·····			Std. Dev	0.0750	- 1	0.55	0.75	0.15	0.0	1.5	20	26	-	0.026	-	0.0040	_	20.0	30.0

Note: A hardness value of 138 mg/L (reported as CaCO₃) from USGS Station 12323240 (SS-O4) on February 19, 2014 was used.

All Site COCs are listed in Table 7 except Silver. Silver only has an acute standard, which is not applicable for the Site.

<X = Value less than detection limit (value in cell (X) is the reporting limit)

Below Standard or Goal

Above In-Stream Chronic Surface Water Performance Standard

Chronic Aquatic
1.0
12.3
4.79
157

Acronyms Table										
SI	Screened Interval									
TR	Total Recoverable									
D	Dissolved									

Chronic= exp.{mc[ln(hardness)]+bc}										
	mc	bc								
Cadmium	0.7977	-3.909								
Copper	0.8545	-1.702								
Lead	1.273	-4.705								
Zinc	0.8473	0.884								

					Aluminum	Ars	enic	Cad	lmium	Со	oper	Ire	on	Lead		Mercury		Zinc	
	Phase I and F	Phase II Data			D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	Groundwater F (2006 ROD,				-	-	10	-	5	-	1,300	-	-	-	15	-	2	-	2,000
In-Stream	Chronic Surface W (2020 ROD Amer	ater Performance St ndment, Table 1)	andards		87	10	-	1.0	-	12.3	-	1,000	-	4.79	-	0.05	-	157	-
			2/4/2020	7.13	-	270	220	0.069	< 0.030	16	0.67	29400	25200	2.2	0.068	0.0080	< 0.0039	180	140
BRW19-HCW30	Shallow	9.0'-24.0'	11/18/2020	7.01	-	570	540	0.14	0.12	3.4	1.6	24500	26400	0.91	0.29	0.0090	0.0070	1500	1500
			Std. Dev	0.0600	-	150	160	0.036	-	6.3	0.46	2450	-	0.64	0.11	0.00050	-	660	680
BRW19-HCW31	Shallow	4.5'-19.5'	1/28/2020	7.04	-	5.7	5.7	4.2	4.7	1200	1100	34	12	15	16	0.014	0.0060	1900	1800
DKW19-HCW31	Shallow 4.5 - 19.5	4.5 - 19.5	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Challow	C 0! 21 0!	1/30/2020	7.22	-	110	66	6.0	5.6	170	92	3400	2300	2.2	0.17	0.011	<0.0039	1100	880
BRW19-HCW32	Shallow	6.0'-21.0'	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BRW19-HCW33R			2/5/2020	6.93	-	53	49	4.2	4.3	160	140	620	460	1.3	0.75	0.010	0.0070	390	380
	Shallow	4.0'-19.0'	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Deers		2/5/2020	7.01	-	170	160	0.12	< 0.030	45	0.97	22300	21300	7.9	0.26	0.025	<0.0039	140	100
BRW19-HCW34	Deep	5.0'-20.0'	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			2/4/2020	7.47	-	52	48	1.6	1.7	58	53	25	<12	0.11	< 0.046	< 0.0039	< 0.0039	160	150
BRW19-HCW35	Shallow	4.0'-19.0'	11/19/2020	7.04	-	75	78	1.4	1.4	86	86	28	13	0.086	0.044	< 0.046	0.0050	150	140
			Std. Dev	0.215	-	12	15	0.10	0.15	14	17	1.5	-	0.012	-	-	-	5.0	5.0
	Challow		2/5/2020	7.46	-	27	27	0.76	0.77	49	42	63	<12	0.11	< 0.046	< 0.0039	<0.0039	59	59
BRW19-HCW36	Shallow	3.0'-18.0'	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BRW19-HCW37	Shallow	10.0'-25.0'	2/5/2020	7.01	-	30	27	12	11	280	200	470	350	30	23	0.087	0.026	5900	5200
DKVV13-HCVV3/	Shallow	10.0 -25.0	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			2/6/2020	6.76	-	6.5	4.5	15	16	820	720	370	280	78	62	0.051	0.017	5400	5100
BRW19-HCW38	Shallow	6.0'-21.0'	11/18/2020	6.72	-	9.1	4.5	17	17	1600	1500	400	220	110	68	0.065	0.021	4600	4700
			Std. Dev	0.0200	-	1.3	0.0	1.0	0.50	390	390	15	30	16	3.0	0.0070	0.0020	400	200
BRW19-HCW39	Shallow	3.0'-18.0'	2/5/2020	6.85	-	42	38	43	49	410	430	520	420	0.52	< 0.046	0.0070	0.0080	13500	13300
DKM13-UCM33	StidllOW	3.0-18.0	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BRW19-HCW40	Shallow	2.0'-17.0'	1/28/2020	7.16	-	14	11	1.0	1.0	74	52	710	470	0.72	< 0.046	< 0.0039	<0.0039	200	190
DNVV13-NUV4U	Stidliow	2.0-17.0	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note: A hardness value of 138 mg/L (reported as CaCO₃) from USGS Station 12323240 (SS-04) on February 19, 2014 was used.

All Site COCs are listed in Table 7 except Silver. Silver only has an acute standard, which is not applicable for the Site.

<X = Value less than detection limit (value in cell (X) is the reporting limit)

1
,
,

Below Standard or Goal

Above In-Stream Chronic Surface Water Performance Standard

	Chronic Aquatic
Cadmium	1.0
Copper	12.3
Lead	4.79
Zinc	157

Ac	ronyms Table
SI	Screened Interval
TR	Total Recoverable
D	Dissolved

Chronic= exp.{mc[l	n(hardness)]+bc}
	mc	bc
Cadmium	0.7977	-3.909
Copper	0.8545	-1.702
Lead	1.273	-4.705
Zinc	0.8473	0.884
	Cadmium Copper Lead	Cadmium 0.7977 Copper 0.8545 Lead 1.273

					Aluminum	Ars	enic	Cad	mium	Со	pper	Ir	on	Lea	ad	Me	ercury	Zi	inc
	Phase I and F	hase II Data			D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D	TR	D
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	Groundwater R (2006 ROD,				-	-	10	-	5	-	1,300	-	-	-	15	-	2	-	2,000
In-Stream	Chronic Surface W (2020 ROD Amer	ater Performance St dment, Table 1)	andards		87	10	-	1.0	-	12.3	-	1,000	-	4.79	-	0.05	-	157	-
			1/28/2020	7.34	-	15	15	2.1	2.1	62	56	110	<12	0.40	< 0.046	< 0.0039	<0.0039	98	95
BRW19-HCW41	Shallow	3.0'-18.0'	11/18/2020	6.99	-	33	30	1.3	1.3	130	98	400	<12	1.3	< 0.043	0.0060	< 0.0045	99	85
			Std. Dev	0.175	-	9.0	7.5	0.40	0.40	34	21	145	-	0.45	-	-	-	0.50	5.0
			1/28/2020	6.63	-	16	16	8.2	8.4	510	490	70	<12	0.21	< 0.046	< 0.0039	<0.0039	2500	2300
BRW19-HCW42	Shallow	3.0'-18.0'	11/13/2020	6.53	-	15	16	5.6	6.5	520	590	93	13	0.23	< 0.043	0.0070	<0.0045	1300	1600
			Std. Dev	0.0500	-	0.50	0.0	1.3	0.95	5.0	50.0	12	-	0.010	-	-	-	600	350
			10/23/2019	7.11	-	2.3	1.6	0.14	0.11	33	19	660	37	1.2	0.24	0.014	<0.0039	33	24
		2 01 42 01	11/14/2019	7.12	<9	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-01-MPC	Shallow	3.0'-13.0'	1/30/2020	7.30	-	4.0	2.4	0.22	0.056	26	4.4	1100	12	0.82	0.046	0.050	<0.0039	27	7.1
			Std. Dev	0.0873	-	0.00	0.00	0.000	0.000	0.0	0.0	0	0	0.00	0.00	0.000	-	0.0	0.0
			10/23/2019	7.24	-	1.6	1.7	0.060	0.057	15	15	<12	<12	< 0.046	< 0.046	< 0.0039	<0.0039	4.5	5.2
			11/14/2019	7.19	<9	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-02-MPC	Shallow	3.0'-12.5'	1/30/2020	6.90	<9	1.4	1.6	0.056	0.057	11	10	26	<12	0.074	< 0.046	< 0.0039	<0.0039	4.1	4.3
			Std. Dev	0.150	-	0.00	0.000	0.0000	0.0	0.0	0.0	-	-	-	-	-	-	0.00	0.00
			10/23/2019	7.47	-	8.1	8.6	0.42	0.36	2.4	1.8	140	<12	0.77	< 0.046	< 0.0039	< 0.0040	27	23
	-		11/14/2019	7.41	<9	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-03A-MPC	Deep	22'-33'	1/30/2020	7.46	-	7.6	7.8	0.33	0.38	1.2	13	<12	14	< 0.046	< 0.046	< 0.0039	0.010	22	24
			Std. Dev	0.0262	-	0.00	0.00	0.000	0.000	0.00	0.0	-	-	-	-	-	-	0.0	0.00
			10/23/2019	6.85	-	1400	1400	1.6	1.5	700	730	43	16	1.1	0.99	0.0090	0.0080	660	690
			11/14/2019	6.67	<9	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-03-MPC	Shallow	3.5'-13.5'	1/30/2020	6.81	<9	1500	1300	2.5	1.8	780	580	1200	<12	9.4	0.52	0.012	0.0040	810	570
			11/19/2020	6.46	-	1300	1200	1.3	1.4	750	740	170	<12	2.9	0.86	0.0090	0.0070	680	710
			Std. Dev	0.153	-	82	82	0.51	0.17	33	73	518	-	3.6	0.20	0.0014	0.0017	66	62
			10/5/2020	7.12	<9	4.5	4.6	2.8	3.0	47	46	54	<12	0.51	0.20	< 0.0045	< 0.0045	290	290
			10/6/2020	7.24	<9	4.1	4.0	3.1	2.9	53	49	<12	<12	0.21	0.15	< 0.0045	< 0.0045	290	280
BRW-PW-01A	Deep	12'-32'	10/7/2020	7.23	<9	4.0	3.8	2.9	2.9	51	49	<12	<12	0.19	0.14	< 0.0045	<0.0045	270	270
			10/8/2020	7.25	<9	3.9	3.9	2.9	3.0	52	50	<12	<12	0.17	0.14	< 0.0045	< 0.0045	280	280
			Std. Dev	0.0524	-	0.23	0.31	0.11	0.050	2.3	1.5	-	-	0.14	0.025	-	-	8.3	7.1
			10/27/2020	7.05	<9	16	16	5.3	5.5	110	110	58	20	2.5	2.1	0.014	<0.0045	510	550
			10/28/2020	7.02	<9	16	15	8.7	8.3	150	150	<12	<12	1.2	1.1	0.019	0.0050	910	890
BRW-PW-01B	Deep	25'-40'	10/29/2020	7.04	<9	15	15	8.3	8.2	150	150	<12	<12	0.87	0.80	0.015	0.0050	900	890
			10/30/2020	7.04	<9	15	15	8.0	8.6	150	150	<12	<12	0.73	0.68	0.016	<0.0045	860	1000
			Std. Dev	0.0109	-	0.50	0.43	1.3	1.3	17	17	-	-	0.70	0.56	0.0019	0.0	166	169
	Challan	CI 441	1/27/2020	6.99	-	97	21	1.3	1.3	65	42	3300	1900	0.75	< 0.046	< 0.0039	<0.0039	1800	1600
BPS11-05A1	Shallow	6'-11'	Std. Dev	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note: A hardness value of 138 mg/L (reported as CaCO₃) from USGS Station 12323240 (SS-04) on February 19, 2014 was used.

All Site COCs are listed in Table 7 except Silver. Silver only has an acute standard, which is not applicable for the Site.

<X = Value less than detection limit (value in cell (X) is the reporting limit)

Below Standard or Goal
Above In-Stream Chronic Surface Water Performance Standard

	Chronic Aquatic
Cadmium	1.0
Copper	12.3
Lead	4.79
Zinc	157

Ac	ronyms Tab
SI	Screened Ir
TR	Total Recov
D	Dissolved

Chronic= exp.{mc[l	n(hardness)]+bc}
	mc	bc
Cadmium	0.7977	-3.909
Copper	0.8545	-1.702
Lead	1.273	-4.705
Zinc	0.8473	0.884

le	
nterval	
verable	

Table 9. Monthly Depths to Groundwater

																		Depth	to Groundwate	er (ft)																
Location	Measuring	Transducer	Aquifer Unit	1/4/2019 & 1/7/2019	1/24/2019	2/28/2019	2/28/2010	4/20/2010	5/20/2010	6/27/2019	7/26/2010	8/28/2010	9/27/2019	10/28/2010	11/25/2019	12/20/2010	1/29/2020	2/28/2020	5/29/2020	6/30/2020	7/30/2020	8/26/2020	9/22/2020	10/22/2020	11/24/2020	12/22/2020	1/27/2021	2/18/2021	3/30/2021	4/20/2021	5/17/2021	6/28/2021	Average	Average (Outliers Removed)	Standard Deviation	Standard Deviation (Outliers Removed)
BRW18-PZ01	5442.507	Transducer	Deep	6.73 ¹	5.81	5.87		4/30/2019						5.36			5.81			4.85	5.44			5.74		5.88			5.54	5.57		5.92	5.60	5.56	0.40	0.34
	5440.438										3.15	3.31	-	3.02	e.e .		÷	FROZEN	4.47	2.58	3.09					3.44	3.51		3.11	3.12	3.25	22	3.15	5.50	0.40	0.34
BRW18-PZ02			Deep	FROZEN	FROZEN	FROZEN	FROZEN		2.48		0.00	0.01	3.18			FROZEN					0.07	3.29		3.37	3.32		0.01					3.45	0.00	-	0.00	· · ·
BRW18-PZ03	5441.043		Shallow	FROZEN	FROZEN	FROZEN	FROZEN		2.83	3.32	3.62	3.76	3.49	3.39	3.58		FROZEN		3.63	3	3.65	3.82		3.83	3.77	3.93	FROZEN		FROZEN	3.64	3.80	4.06	3.58	-	0.34	· · · · ·
BRW18-PZ04	5441.373		Deep	4.01	FROZEN	FROZEN	FROZEN		÷.=.		3.85		3.81	3.71	3.87		4.08		3.9	3.36	3.78	4.00		4.09	4.02		FROZEN		FROZEN			4.22	3.86	-	0.28	-
BRW18-PZ05	5441.63	Х	Deep	4.3	FROZEN	FROZEN	FROZEN		3.55		4.15	4.31	4.12	4.02	4.21		4.34		4.17	3.67	4.02	4.25		4.35	4.28	4.4			FROZEN		4.25	4.43	4.16	-	0.25	· · ·
BRW18-PZ06	5441.454		Deep	4.56	4.62	4.7		8.331	3.86	4.17	4.45	4.52	4.37	4.29	4.46	4.62	4.69	4.73		4.07	4.39			4.69	4.63	4.73		FROZEN	FROZEN	4.51	4.58	4.74	4.64	4.50	0.77	0.23
BRW18-PZ08	5443.765		Shallow	6.8	6.83	6.84	6.21	5.99	5.84	6.52	6.86	6.86	6.64	6.43	6.63	6.68	6.71		6.47	5.87	6.66	6.74	NO ENTRY	6.8	6.68	6.73	6.76	6.74	6.43	6.45	6.59	6.85	6.59		0.29	
BRW18-PZ09	5441.701	Х	Deep	5.06	5.1	5.13	4.7	4.45	4.45	4.74	4.92	5.06	4.89	4.8	4.98	5.05	5.10	5.13	4.94	4.58	4.83	4.99	5.07	4.79	5.03	5.13	5.19	5.19	4.94	4.96	5.03	5.13	4.94	-	0.20	· ·
BRW18-PZ10	5448.721		Shallow	9.25	9.32	9.41	8.68	8.24	8.35	8.74	9.03	6.24 ¹	9.07	8.92	9.11	9.28	9.33	9.38	9.1	8.35	8.95	9.26	9.32	9.35	9.24	9.4	9.47	9.51	9.04	9.12	9.22	9.43	9.00	9.10	0.62	0.34
BRW18-PZ11	5447.874		Deep	7.93	8.02	8.08	7.37	6.96	7.06	7.45	9.70 ¹	7.89	7.67	7.61	7.75	7.95	8.00	8.05	7.76	7.03	7.62	7.92	7.99	8.06	7.93	8.06	8.15	8.17	7.72	7.78	7.89	8.01	7.85	7.78	0.48	0.33
BRW18-PZ12	5448,986	х	Shallow	8.47	8.54	8.6	7.96	7.57	7.65	8.01	8.27	8.44	8.23	8.16	8.31	8.47	8.54	8.57	8.28	7.66	8.16	8.45	8.52	8.56	8.48	8.61	8.68	8.70	8.27	8.35	8.43	8.6	8.33	-	0.30	
BRW18-PZ13	5450,491		Shallow	9.47	9.58	9.59	9	8.62	8.76	9.09	9.33	9.49	9.28	9.21	9.35	9.5	9.54	9.58	9.3	8,78	9.22	9.48	9.56	9.58	9.47	9.62	9.66	9.80	9.3	9.35	9.45	9.6	9.36	-	0.28	
BRW18-PZ14	5448.876		Shallow	7.32	7.36	7.41	6.87	6.56	6.65		7.22		7.14	7.06	7.21		7.36	7 39	7.12	6.7	7.11		7.33	7.35	7.29	7.41		7.48	7.12	7.19	7.27	7.4	7.20		0.24	· .
BRW18-PZ15	5448.239	v	Deep	9.851	6.89	6.95	6.39		6.15		8.71 ¹		6.63	7.51	6.68		6.88	6.91		6.13	6.57	6.80		6.83	6.77	6.92	6.97		6.59	6.68	6.76	6.87	6.89	6.68	0.72	0.25
	5461.915	Λ		21.08	21.14	21.19	20.6		20.35	20.68	19.93 ¹	21.09	20.85	20.74	20.96		21.10		20.83	20.33	20.8	21.01		21.12	21.00	21.15			20.82	20.92	20.98	21.11	20.90	20.91	0.34	0.26
BRW18-PZ16 BRW18-PZ17	5448.562	1	Deep Shallow	7.48	7.54	7.59	20.6		6.83	20.68	7.35		7.3	7.21	7.37		7.55	7.58		6.84	7.26	7.48		7.58	7.48	7.61	7.65		7.31	7.38	7.45	7.59	7.37	- 20.91	0.34	-
	5449.737		Shallow	9.68	9.76		6.221		8.91	9.23	9.48		9.54	9.35	9.52		9.75		9.5		9.38	9.65		9.76	9.66	9.8	9.88		9.5	9.56	9.65	,,	9.51	9.55	0.23	0.29
BRW18-PZ18				,		9.8				,.=0								9.78		8.9												9.8				
BRW18-PZ19	5454.818		Shallow	15.06	15.13	15.18	14.66		14.34	14.65	14.93	15.06	14.84	14.76	14.91	15.05	15.12		1 1.05	14.35	14.79	15.03		15.14	15.02	15.15	15.22		14.89	14.94	15.03	15.17	14.93	-	0.26	•
BRW18-PZ20	5451.467		Shallow	11.83	11.89	11.97	11.34		11.03	11.37	11.62		NO ENTRY		11.64		11.88			11.02	11.52	11.79		11.9	11.79	11.94	12.03		11.64	11.7	11.79	11.96	11.69	-	0.30	-
BRW18-PZ21	5455.079		Shallow	15.37	15.44	15.51	14.88			14.87	15.14		15.12	15.04	15.19		15.43	15.47		14.51	15.04	15.34		15.44	15.35	15.5	15.57		15.18	15.25	15.33	15.51	15.22	-	0.31	-
BRW18-PZ22	5453.88		Shallow	15.58	15.63	15.68	15.14		14.84	15.19	15.43	15.59	15.38	15.28	14.46 ¹		15.62	15.67		14.9	15.3	15.58		15.66	15.55	15.68	15.73		15.4	15.45	15.55	15.72	15.42	15.45	0.32	0.27
BRW18-PZ23	5450.547		Deep	11.93	12.01	12.50 ¹		11.15	-		11.8		11.74	11.64		11.94	11.97			11.28	11.66	11.90		12	11.89	12.01	12.07		11.76	11.8	11.88	12.02	11.82	11.80	0.27	0.25
BRW18-PZ24	5460.152		Deep	21.74	21.86	21.83	21.37	21.01	21.02	21.37	21.58		21.51	20.421	21.79	21.71	21.75	21.80	21.53	21.05	21.45	21.67	21.72	21.78	21.65	21.78	21.84		21.54	21.59	21.66	21.77	21.56	21.61	0.32	0.24
BRW18-PZ25	5440.455		Deep	5.05	5.15	5.19	4.76	4.52	4.51	4.77	4.94	5.01	4.85	4.81	4.97	5.19	5.30	5.34	5.17	4.71	4.97	5.14	5.2	5.21	5.22	5.36	5.52	5.55	5.28	5.25	5.34	5.46	5.09	-	0.27	
BRW19-PZ26	5439.548		Deep	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.70	3.8	3.77	3.75	3.95	4.11	4.15	FROZEN	3.75	3.86	4.03	3.89	-	0.15	
BRW19-PZ27	5440.637		Deep		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	4.28	4.35	4.35	4.32	4.45	4.56	FROZEN	FROZEN	4.23	4.34	4.5	4.38	-	0.10	· · ·
BRW19-PZ28R	5441.411		Deep	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.49	3.57	3.56	3.50	3.61	FROZEN	FROZEN	FROZEN	3.42	3.55	3.76	3.56	-	0.09	
BRW19-PZ29	5448.17		Deep	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.48	9.54	9.53	9.48	9.6	9.69	9.71	9.26	9.31	11.45'	9.66	9.70	9.53	0.57	0.14
BRW19-PZ30	5440,568		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.34	3.42	3.41	3.38	FROZEN	FROZEN	FROZEN	FROZEN	3.43	3.59	3.80	3.48	-	0.15	· · · ·
BRW19-PZ31	5440,939		Deep	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.53	3.61	3.62	3.56	3.66	FROZEN	FROZEN	FROZEN	FROZEN	3.58	3.80	3.62	-	0.08	-
BRW19-PZ32	5443.225		Deep		-	-	-	-	-	-	-	-	-	-	-			-			-	6.07	6.13	6.14	6.10	6.21	6.28	6.27	5.88	5.91	6.04	6.2	6.11		0.13	
BRW19-PZ40	5449.868		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	11.21		11.31	11.22	11.32	11.41		11.00	11.07	11.18	11.38	11.26	-	0.13	
BRW19-PZ41	5453,49		Shallow	-	-	-	-	-	-	-	-	-	-	-	-			-			-	13.94		14.05	13.94	14.08	14.18		13.75	13.83	13.93	14.12	14.00	-	0.13	
BRW19-PZ42	5451,137		Deep		-		-											-	1 1			11.69		11.78	11.69	11.81	11.89		11.56	11.58		11.84	11.74		0.11	
BRW19-PZ43	5448,782		Deep		_	-	-	_	-	-	_		-		-				-	-	_	8.76		8.87	8.76	8.91	8.99		8 59	8.65	8.74	8.92	8.82	-	0.13	
BRW19-PZ43 BRW19-PZ44	5449.189		Shallow		-	-			+ -	+ -	-		-				-			-		0.1.0	9.32	9.36	9.24	9.4	9.47		9.06	9.12	9.23	0.07 =	9.31		0.13	
	5449.189	1	Shallow		-	-	-			+	-	-	-		-	-			+ - +	-	-	9.25		9.36	9.24	9.4		9.51	9.06	8.78		9.42	8.95		0.14	
BRW19-PZ45				-	-	-	-				-	-	-	-	-	-	-	-	-	-	-													-		
BRW19-PZ46	5444.403		Shallow	-	-	-		-			-		-		-	-	-			-	-	7.70	7.7	7.73	7.63	7.75	7.89		7.38	7.42	7.59	7.9	7.69	-	0.17	l
BRW19-PZ47	5446.458		Shallow	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	8.71	0.7.0	8.78	8.70	8.82	8.90	0.03	8.42	8.50	8.63	8.87	8.73	-	0.15	· · ·
BRW19-PZ48	5448.787	1	Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.45		8.51	8.48	8.61	8.69		8.28	8.34	8.43		8.51	-	0.13	4 - 1
BRW19-PZ49	5450.523		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		9.78	10.98 ¹		9.88	9.93		9.53	9.59	9.70		9.96	9.77	0.44	0.14
BRW19-PZ50	5449.235		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	8.81	8.88	8.94	8.81	8.96	9.04	9.05	8.62	8.69	8.78	8.96	8.87	-	0.13	
BRW19-PZ01S	5442.481		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.36	5.39	5.42	5.33	5.55	5.78	5.79	5.26	5.24	5.42	5.69	5.48	-	0.19	
BRW19-PZ01DR	5441.748		Deep	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	4.89	4.99	4.97	4.95	5.06	5.18	5.23	4.70	4.74	4.86	5.06	4.97	-	0.16	-
BRW19-PZ03D	5440.976	1	Deep	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 - 1	-	-		NO ENTRY	3.63	3.56	3.64	FROZEN		FROZEN			3.76	3.62	-	0.07	-
BRW19-PZ05S	5441.439	1	Shallow		-	-	-		1 .				-	-		-	-	- I					NO ENTRY	3.99	3.90	4	FROZEN		FROZEN	3.73	3.90	4.19	3.96	-	0.13	· ·
BRW19-PZ10D	5448.695	1	Deep		-	-	-	+	+ -	-	-		-	-	-	-	-	<u> </u>		-	-	9.36	9.42	9.43	9.34	9.5	9.58	9.58	9.12	9.19	9.31	9.54	9.40		0.15	
BRW19-PZ10D BRW19-PZ11S	5448.395	1	Shallow		-	-	+ -		+ -	-	-	-	-		-				+ · · ·	-		9.36	9.42	9.43 8.59	9.34	9.5	9.58 8.71	,	9.12	8.33	9.31 8.46	9.54	9.40	-	0.13	
				-	-	-			+ -	+ -	-		-		-	-	-			-	-									0.00		0.05	0.00	-		<u> </u>
BRW19-PZ12D	5449.777		Deep	-	-	-		-			-	-	-		-	-	-			-	-	9.21	9.3	9.33	9.22	9.38	9.43		9.03	9.12	9.19	9.36	9.28	-	0.13	
BRW19-PZ16S	5461.697	I	Shallow	· ·	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	21.52	21.48	21.59	21.46	21.63	21.2	21.69	21.34	21.41	21.47	21.56	21.49	-	0.13	<u> </u>
			0	ne point has been identif			0																													

² Groundwater in this location does not match the behavior of any other location. This is likely due to the influence of the nearby Hydraulic Control Channel (HCC). The data from this location has not been used to generate contours in any figures. Groundwater in this location does not match the behavior of any other location. This is likely due to the influence of the nearby Hydraulic Control Channel (HCC). It data from this location
 ³ Datapoint does not appear to fit with the overall behavior of any other location. However, it has not been identified as an outlier. It has been used to generate contours in figures.
 ⁴ Groundwater in this location does not match the behavior of any other location. [REASON UNKNOWN]. The data from this location has not been used to generate contours in any figures.
 ⁵ Access agreements at the Northwestern Energy property were obtained in July 2019.
 ⁶ Highlighted values were used to generate shading (kriging) shown in Figures 11 and 12. These values are within the Site boundary and do not have data set outliers.
 Blue Text Lowest groundwater elevation for this well (lowest DTW measurement).
 Data isn't present for March (3/2020) and April 2020 (4/2020) due to the COVID Pandemic.

Table 9. Monthly Depths to Groundwater (cont.)

																		Depth t	to Groundwa	ter (ft)																
Location	Measuring Point Elevation	Transducer	Aquifer Unit	1/4/2019 & 1/7/2019	1/24/2019	2/28/2019	3/28/2019	4/30/2019	5/29/2019	6/27/2019	7/26/2019	8/28/2019	9/27/2019	10/28/2019	11/25/2019	12/30/2019	1/29/2020	2/28/2020	5/29/2020	6/30/2020	7/30/2020					12/22/2020	1/27/2021	2/18/2021	3/30/2021	4/20/2021		6/28/2021	Average	Average (Outliers Removed)	Standard Deviation	Standard Deviation (Outliers Removed)
BRW-PW-01A	5443.341		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.351	5.56		5.50	5.63	5.70 15.55		5.30	5.32		9.64	6.06	5.95	1.25	0.14
BRW-PW-01B	5454.994 5452.535		Deep Shallow	10.58	- 10.61	10.72	10.11	- 9.66	9.64	- 10.01	10.27	10.67	10.11	10.02	10.33	-	10.53	10.60	10.13	9 57	10.00	15.28	15.35	16.89 ¹ 10.42	15.27 10.38	15.45	15.55 NO ENTRY		15.12 10.18	15.18	15.28	15.46 10.44	15.49	15.35	0.46	0.14
AMW-02 BPS07-08A	5450.465		Shallow	10.38	10.61	10.35	9.7	9.66	9.64	9.68	9.91	10.07	9.83	9.74	9,97	10.44 10.13	10.33	10.00		9.57	9.74	9.95	9.97	10.42	10.38 10.77 ¹	10.6	10.32	10.36	9.74	9.97	10.36	10.44	9,98	9.95	0.30	0.32
BPS07-13A	5463 576	х	Shallow	24.651	23.69	23.75	23.17	9.32	9.20	23.29	23.53	23.65	23.42	24.13 ¹	24 30 ¹	24.41 ¹	23.63	23.71	9.60	7.10	23.34	23 53	23.51	23.57	23.50	23.63	23.7	23.79	23.36	23.43	23.53	23.62	9.98 23.62	23.49	0.34	0.32
BPS07-13R BPS07-13B	5463.576	X	Deep	24.65	23.69	23.75	23.17	23.10	23.63	23.29	23.53	23.65	23.42	24.13	24.30	21.11	23.63	24.48	23.36	22.98	23.34	23.53	20101	23.57		23.63	23.7	20.17	23.36	23.43	25.55	23.62	23.62	- 23.49	0.36	0.20
BPS07-14A		X	1								24.23	24.57 20.75 ¹		20.32 ¹				FROZEN			24.11	24.5	24.32	_	24.31	22.37					24.29					0.50
	5459.521 5459.327	X	Deep Shallow	FROZEN 19.56	FROZEN 19.64	FROZEN 19.67	FROZEN 19.25	21.38	21.48 18.83	21.79 19.16	19.39	19.57	22.05	19.24	22.13 19.41	FROZEN 19.54	FROZEN 19.60	19.65	20.51	19.99 18.68	19.26	20.67	= 0 0	20.83 19.56	19.50	19.63	22.40	FROZEN FROZEN	22.09 19.37	22.13 20.41	22.21	22.33 19.62	21.47 19.44	21.53	0.80	0.78
BPS07-15A		X	Shallow				19.25	10.882	10.88 ²		19.39	19.57	2	19.24 10.39 ²	19.41 10.62 ²		19.60	19.03		10.02^{2}	19.26 10.43 ²	10.612	19.55	19.56	19.50	19.63	19.08		2	11 47 ²	19.51			-		
BPS07-25 ²	5449.082	А		11.642	10.812	10.842	10.55	10.88	10.88	10.36	11.10		11.362		10.02	10.05	10.77			10102	10.15	10.01		10.75			11.72	10.07	11.41 ²	11.17	10.07	11.64 ²	10.89	-	0.49	-
BPS11-01	5450.083		Shallow	FROZEN	FROZEN	9.43 ¹	FROZEN	8.26	8.24	8.63	8.89	9.08	8.76	8.72	8.98	FROZEN	BURIED	BURIED	0.00	FLOODED	8.65	8.92	8.98	9.11	FROZEN	FROZEN	FROZEN		8.64	9.02	9.11	9.14	8.86	8.82	0.29	0.27
BPS11-02	5447.272	v	Shallow	FROZEN	FROZEN	NO ENTRY	FROZEN	5.41	5.44	5.79	6.03	6.22	5.95	5.8	6.02	FROZEN	6.25	FROZEN		5.41	5.84	6	6.05	6.11	FROZEN	FROZEN	FROZEN		5.86	6.04	6.13	6.2	5.92	-	0.25	
BPS11-05A1	5449.384 5449.463	X	Shallow Deep	7.93 7.95	7.98	8.02	7.45	7.14	7.34	7.62	7.81 7.83	7.97	7.76	7.67	7.81	7.92 7.96	7.98 8.03	8.01 8.07		7.33	7.72	7.92	7.97	7.99 8.05	7.90	8.03 8.11	8.06 8.17	8.09 8.21	7.73	7.72	7.87	8.1	7.81	-	0.24	
BPS11-05A2 BPS11-06		X	Shallow			8.03	10.96	10.53	10.66		7.85		11.16					8.07		10.67	11.01					11.5	8.17			11.26				-		-
BPS11-06 BPS11-07	5452.047 5455.461	л	Shallow	11.4	11.45 16.44	11.59	10.96	15.51	10.66	10.98 15.86	11.21	11.37	16.02	11.08 15.94	11.24	11.38	11.44	16.43			11.01 NO ENTRY	11.34	11.41 16.2	11.46 16.3	11.38 16.24	16.37	11.57	11.58	11.21 16.06	16.17	9.40 ¹ 16.25	11.48	11.19 16.15	-	0.44	-
BPS11-07 BPS11-08	5455.461		Shallow	FROZEN	15.02	15.13	FLOODED		13.33	13.67	14.06	14.40	14.02	13.94	14.45	16.51	15.03	FROZEN			NO ENTRY		-	14.63	16.24	14.95		10.47 NO ENTRY	14.68	15.62		NO ENTRY	16.15	-	0.28	
BPS11-08	5448.202		Shallow	5.22	5.27	5.31	4.67	4.49	4.59	4.88	5.09	5.33	4.67	4.92	5.15	5.16	5.23	5.25		4.55	4.94	5.2	5.22	5.25	5.18	5.29	5.38	5.34	5.01	5.03	5.13	5 35	5.07		0.05	
BPS11-12A	5452.35		Shallow	8.58	8.62	8.65		BURIED		8.23	8.5	8.63	8.38	8.33	8.46	8.53	8.60	8.60		7.98	8.42	8.65		8.61	8.58	8.67	8.71		8.4	8.43	8.54	8.79	8.51	-	0.20	-
FP98-01B	5461.322	Х	Deep	23.85	23.88	23.94	23.49	23.14	23.13	23.48	23.71	23.87	23.67	23.58	23.73	21.861	23.89	23.92		23.27	23.61	23.85		23.92	23.82	23.95	23.99	24.01	23.68	23.72	23.81	23.95	23.67	23.73	0.41	0.24
FP98-1	5443.134	X	Shallow	FROZEN	7.86 ¹	6.41	5.68	5.50	5 30	6.07	6.43	6.45	6.98 ¹	6.01	6.34	6.4	6.34	6.45	6.23	5.51	6.3	6.51	6.41	6.43	6.28	FROZEN	6.5	FROZEN	6.15	6.18	6.35	6.64	6.30	6.20	0.48	0.35
FP98-2	5441.485	Λ	Deep	5.94	6.01	6.02	5.64		0100	0.07	5.68		5.72	5.69	5.86		6.03	6.05	0.25	5.49	5.7		5.92	5.96	5.94	6.04	6.09		5.86	5.87			5.85	0.20	0.48	0.55
GS-13A	5443.808		Shallow	7.08	7.09	7.05	6.54	6.77 ¹	6.35	6.79	6.86	6.87	6.62	6.64	6.96	6.99	6.98	7.08		6.52	6.75	6.78	6.87	6.88	6.86	6.89	7.10	6.99	6.8	6.89	6.97	7.04	6.78	6.86	0.45	0.19
GS-13R GS-13B	5441.888		Deep	4.76	4.85	4.85	4.45	4.17	4.10	4.45	4.62	4.72	4.5	4.46	4.63	4.91	4.81	4.83		4.19	4.48	4.65	4.7	4.73	4.70	4.79	4.89	4.88	4.61	4.67	4.72	4.8	4.72	4.66	0.43	0.20
	5460.346		Shallow		4.85		20.83	4.17	4.10	4.45	4.62		4.5 16.61 ³	4.46				21.76	0.77	4.19	4.48		20.44	20.33	20.55			4.88	20.46	20.41						0.20
HCA-MG33	2.00.0.0			21.15		21.7		17.07	15.70	10.17	17.10	18.79			20.18	20.99	21.43			15.25		19.46				21.01	21.56				21.21	21.12	19.65	19.72	2.02	2.02
FP98-3	5445.89 5439.444		Shallow	NO ENTRY 5.66	FROZEN 5.74	FROZEN 5.79	FROZEN 5.42	5.18	DRY 5.15	DRY 5.38	DRY 5.55	DRY 5.62	DRY 5.49	DRY 5.46	DRY 5.61	FROZEN 5.78	FROZEN 5.80	6.88 ¹ 5.83		DRY 5.23	DRY 5.54	DRY 5.64	DRY 5.7	DRY 5.71	DRY	DRY 5.77	DRY 5.84	DRY 5.84	DRY 5.59	DRY 5.62	DRY 5.70	DRY 5.82	6.88 5.62	-	0.00	
FP98-5 GS-29SR			Shallow				5.62 ¹	5.18			5.55			6.27				6.70	6.31						5.70									-		-
	5448.852			6.66	6.69	6.74	5.62	5.65	5.91	6.29	6.55	7.01	6.33	6.27	6.54	6.56	6.59		0.51	5.83	6.28	6.57	6.45	6.62	6.52	6.66	6.76	6.67	6.33	6.38	6.46	6.6	6.43	6.46	0.32	0.29
BRW19-HCW30	5454.297		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	16.01	16.03	15.8	15.23 ¹	15.64	15.95	15.99	16.07	15.90	16.06	16.12	16.15	15.76	15.81	15.90	16.07	15.91	15.89	0.22	0.22
BRW19-HCW31	5450.836		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	11.86	11.90	11.0	11.16 ¹	11.46	11.73	11.82	11.91	11.76	11.92	11.97	11.99	11.65	11.67	11.76	11.8	11.75	11.73	0.21	0.20
BRW19-HCW32	5454.067		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	15.02	15.05	14.79	14.36 ¹	14.66	14.91	14.99	15.08	14.93	15.07	15.12	15.14	14.84	14.86	14.94	15.05	14.93	14.91	0.19	0.19
BRW19-HCW33R	5452.006		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	12.28	12.14	11.87	11.36 ¹	11.75	11.99	12.05	12.07	11.95	12.11	12.14	12.17	11.82	11.88	12.00	12.09	11.98	11.97	0.21	0.21
BRW19-HCW34	5451.967		Deep	-	-	-		-	-	-	-	-	-	-	-	-	11.46	11.52	10.78	9.53 ³	10.28	10.51	11.03	11.31	11.26	11.40	11.52	11.59	10.64	10.85	11.04	11.06	10.99	-	0.53	
BRW19-HCW35	5452.421		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	11.85	11.88	11.61	11.07 ¹	11.51	11.76	11.82	11.87	11.74	11.93	11.96	11.99	11.62	11.68	11.76	11.89	11.75	11.73	0.22	0.22
BRW19-HCW36	5450.607		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	9.65	9.68	9.41	8.90 ³	9.33	9.59	9.65	9.68	9.62	9.72	9.77	11.69 ¹	9.41	9.46	9.56	9.71	9.68	9.54	0.56	0.21
BRW19-HCW37	5454.672		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	14.96	15.00	14.71	14.01 ¹	14.56	14.84	14.91	14.96	14.84	15.01	15.09	15.12	14.69	14.73	14.85	15.02	14.83	14.81	0.26	0.26
BRW19-HCW38	5450.956		Shallow	-	-	-		-	-	-	-	-		-	-	_	10.99	11.04	10.74	10.11 ¹	10.61	10.91	10.98	11.05	10.90	11.06	11.12	11.16	10.74	10.8	10.89	11.04	10.88	10.87	0.25	0.25
BRW19-HCW39	5450.088		Shallow	_	_	-	1.	-	l .			-		_	-		9.47	9.50	10.71	8.62 ¹	9.10	9.37	9.44	9.5	9.36	9.54	9.59	9.64	9.23	9,29	9.37	9.52	9.36	9.34	0.25	0.23
BRW19-HCW40	5449.347		Shallow	-	-	-	-	-	-	-	-	-	-	-	-	-	8.90	8.93	8.26	8.01 ³	8.52	11.21	11.28	11.31	11.22	11.32	9.04	9.06	8.62	8.69	8.79	8.96	9.51	7.54	1.22	0.23
BRW19-HCW40 BRW19-HCW42	5449.347		Shallow	-	-	-			+ -	-	-	-	-	-	-	-		8.14	0120	7.13 ³	8.32 7.72					11.32		9.06	7.82	0.07	0.1.7	0.00	/	-		
	51101002			-	-	-				-	-	-	-	-	-	-	8.10		7.00		1.12	11.69	11.75	11.78	11.69		8.25	0.27		7.89	8.00	8.19	9.13	-	1.78	
BRW19-HCW41	5449.674		Shallow	-	-	-		-	-	-	-	-	-	-	-	-	8.49	8.52	8.64	7.82 ¹	8.23	8.41	8.49	8.63	8.43	8.57	8.59	8.62	8.25	8.32	8.41	8.55	8.44	8.42	0.20	0.20
MW-01-MPC ^{4,5}	5449.474		Shallow	-	-	-		-	-	-	8.82 ⁴	6.35 ¹	6.17 ¹	7.54 ⁴	8.67^{4}	9.15 ⁴	7.97 ⁴	9.23 ⁴	7.75 ⁴	8.43 ⁴	7.64 ⁴	7.92 ⁴	8.164	7.97 ⁴	9.19	9.32	9.38	9.39	9.00	9.02	9.14	9.31	8.43	-	0.92	
MW-02-MPC5	5447.228		Shallow	-	-	-	-	-	-	-	6.16	7.92 ¹	7.59 ¹	6.11	6.25	6.47	6.54	6.60	3.81 ¹	3.15 ¹	3.71 ¹	3.25 ¹	4.16 ¹	6.51	6.45	6.61	6.70	6.73	6.23	6.28	6.45	6.60	5.92	6.45	1.33	0.19
MW-03-MPC5	5447.219		Shallow	-	-	-	-	-	-	-	5.67	5.76	5.60	5.56	5.73	5.85	5.90	5.91	5.64	5.16 ³	5.58	6.78	9.20 ¹	5.88	9.90 ¹	5.95	6.00	NO ENTRY	5.65	5.68	5.79	5.95	6.15	5.80	1.14	0.30
MW-03A-MPC ⁵	5447.32		Deep	-	-	-	-	-	-	-	5.65	5.83	5.64	5.56	5.71	5.54	5.88	5.96	5.66	5.19 ³	5.54	9.44 ¹	5.83	5.61	12.82 ¹	5.96		NO ENTRY	5.67	5.70	5.79	5.92	6.23	5.72	1.68	0.19
		avior of the local	1	ne point has been identif		and has not hear	d to gaparate	ntours in cree	figuras		5105	5105	2.01	2120	2.7.1	0.01	5.00		5100		0.0.		5.05	5.01		5.50	010#		5107	5.70	5.17	0.72	0.20	2.72	1.00	0.17
Data point does not fit	with the overall beha	avior of the local	groundwater. 11	ie point nas been identif	neu as an outlier a	and has not been use	a to generate con	mours in any	ingures.																											

² Groundwater in this location does not match the behavior of any other location. This is likely due to the influence of the nearby Hydraulic Control Channel (HCC). The data from this location has not been used to generate contours in any figures.

³ Datapoint does not appear to fit with the overall behavior of the local groundwater. However, it has not been identified as an outier. It has been used to generate contours in figures.
⁴ Groundwater in this location does not match the behavior of any other location. [REASON UNKNOWN]. The data from this location has not been used to generate contours in any figures.

⁵ Access agreements at the Northwestern Energy property were obtained in July 2019.

 ⁶ Highlighted values were used to generate shading (kriging) shown in Figures 11 and 12. These values are within the Site boundary and do not have data set outliers.

 Blue Text
 Lowest groundwater elevation for this well (highest DTW measurement).

 Red Text
 Highest groundwater elevation for this well (lowest DTW measurement).

 Data isn't present for March (3/2020) and April 2020 (4/2020) due to the COVID Pandemic.

Phase	I and Phase II Data					F	PCB* (μg	/L)				PCP (µg/L)	Dioxins** (µg/L
	nic Aquatic Life Standard	(DEO-7 2019)					0.014	-				4	NE
Cino	Groundwater Standar	())					0.5					1	0.000002
	Surface Water Standard	, , ,					0.0006	4				0.3	0.00000005
F	Required Reporting Value						0.08					0.1	0.00001
		,		1									
Field Sample ID	Aquifer Unit	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Pentachlorophenol	2,3,7,8-TCDD
Surface Water Samples													
BRW19-B5	-	7/16/2020	< 0.040	< 0.041	< 0.035	<0.036	<0.038	< 0.040	< 0.034	< 0.035	< 0.043	<0.19	<0.00001
BRW19-B6	-	7/16/2020	< 0.040		< 0.035	< 0.036	< 0.039	< 0.041	< 0.034	< 0.035	< 0.044	<0.20	< 0.00001
Groundwater Samples				1									
BRW19-HCW36	Shallow	2/5/2020	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	-
BRW19-HCW40	Shallow	1/28/2020	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	-
BRW19-HCW41	Shallow	1/28/2020	< 0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	-	-
BRW19-HCW42	Shallow	1/28/2020	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	-
MW-01-MPC	Shallow	1/30/2020	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	-	-
MW-02-MPC	Shallow	1/30/2020	< 0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	-	-
MW-03A-MPC	Deep	1/30/2020	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	-	-
MW-03-MPC	Shallow	1/30/2020	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	-	-
BRW18-PZ01	Deep	7/16/2020	< 0.042	< 0.043	< 0.036	< 0.038	< 0.040	< 0.042	< 0.036	< 0.036	< 0.046	<0.19	< 0.00001
BRW10-F201	Беер	11/10/2020	< 0.041	< 0.042	< 0.036	< 0.037	< 0.040	< 0.042	< 0.035	< 0.036	< 0.045	<0.19	<0.00001
		10/1/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.039	< 0.040	< 0.034	< 0.035	< 0.044	<0.19	<0.00001
BRW19-PZ46	Shallow	10/12/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.039	< 0.040	< 0.034	< 0.035	< 0.044	<0.18	< 0.00001
		11/4/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.039	< 0.040	< 0.034	< 0.035	< 0.044	<0.18	<0.00001
		7/16/2020	< 0.042	< 0.043	< 0.037	<0.038	< 0.041	< 0.043	< 0.036	< 0.037	< 0.046	<0.20	<0.00001
		10/5/2020	< 0.041	< 0.042	< 0.036	< 0.037	< 0.040	< 0.041	< 0.035	< 0.036	< 0.045	<0.19	<0.00001
BRW20-PW01A	Shallow	10/6/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.039	< 0.041	< 0.034	< 0.035	< 0.044	<0.19	<0.00001
		10/7/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.039	< 0.041	< 0.034	< 0.035	< 0.044	<0.19	<0.00001
		10/8/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.039	< 0.041	< 0.034	< 0.035	< 0.044	<0.19	<0.00001
		7/16/2020	< 0.041	< 0.042	< 0.036	< 0.037	< 0.040	< 0.041	< 0.035	< 0.036	< 0.045	<0.19	<0.00001
		10/27/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.039	< 0.040	< 0.034	< 0.035	< 0.044	<0.19	<0.00001
BRW20-PW01B	Deep	10/28/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.039	< 0.040	< 0.034	< 0.035	< 0.044	<0.18	<0.00001
		10/29/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.039	< 0.040	< 0.034	< 0.035	< 0.044	<0.18	<0.00001
		10/30/2020	< 0.040	< 0.041	< 0.035	< 0.036	< 0.038	< 0.040	< 0.034	< 0.035	< 0.043	<0.19	< 0.00001

<X = Value less than detection limit (value in cell (X) is the method detection limit or reporting limit). BRW19-HCW36 to MW-03-MPC display the reporting limit (<0.20). All remaining values are method detection limits.

*Polychlorinated Biphenyl (PCB) Aroclors are summed together before determining exceedances, except for Aroclor 1262 (not regulated by DEQ-7, 2019).

**Only 2,3,7,8-TCDD was analyzed. Additional data will be provided after the completion of additional site investigations.

Sample ID			BRW18-LFCHK-11022018	BRW19-LFBK(0-0.162)-03212019	BRW19-LFS(0-0.25)-03212019	BRW19-HCC-071119	BRW19-HCCBCK-071119	BRW19-BCKUG-080119	BRW19-BCKDG-080119	BRW19-HCC-10282019	BRW19-BCK-10282019	BRW20-LFCHK-05292020	BRW20-HCS-05292020
e of Collection			11/2/2018	3/12/2019	3/12/2019	7/11/2019	7/11/2019	8/1/2019	8/1/2019	10/28/2019	10/28/2019	5/29/2020	5/29/2020
nple Type			Landfarm Soil Sample (Initial Laboratory Analysis)	Background Soil Sample	Landfarm Soil Sample	Landfarm Soil Sample (Additional soil was added to landfarm on July 11, 2019.)	Background Soil Sample	Background Soil Sample - Upgradient	Background Soil Sample - Downgradient	Landfarm Soil Sample	Background Soil Sample	Background Soil Sample	Landfarm Soil Sample
thod of Collection			5-point composite	5-point composite	5-point composite	5-point composite	5-point composite	5-point composite	5-point composite	5-point composite	5-point composite	5-point composite	5-point composite
nple Depth			0-2" bgs	0-2" bgs	0-3" bgs	0-6" bgs	0-6" bgs	0-6" bgs	0-6" bgs	See Logbook	See Logbook	See Logbook	See Logbook
alyte		Method	Result (mg/kg-dry)	Result (mg/kg-dry)	Result (mg/kg-dry)	Result (mg/kg-dry)	Result (mg/kg-dry)	Result (mg/kg-drv)	Result (mg/kg-dry)	Result (mg/kg-dry)	Result (mg/kg-dry)	Result (mg/kg-dry)	Result (mg/kg-dry)
enic (As)			199	211	162	160	105	N/A	N/A	142	141	242	168
um (Ba)		-	N/A	145	173	141	193	N/A	N/A	140	156	161	173
nium (Cd)		-	3	5	3	3	6	N/A	N/A	3.4	4.5	5	5
nium (Cr)		EPA 6010.20	N/A	13	18	31	31	N/A N/A	N/A N/A	45	4.5	17	38
(Pb)		LIA 0010.20	243	3170	215	N/A	N/A	N/A N/A	N/A N/A	45	222	3690	498
nium (Se)		-	245 N/A	<0.4	<0.4	N/A <0.4	<0.4	N/A N/A	N/A N/A	<0.8	<0.9	ND	498 ND
er (Ag)			N/A N/A	<0.4	<0.4	<0.4	<0.4	N/A N/A	N/A N/A	6.3	<0.9	10	ND
ury (Hg)		SW-7471B			5	/	Ş						6
		SW-/4/1B	N/A	1.3	0.69	0.71	0.69	N/A	N/A	0.65	1.1	1.3	0.7
MWR O&M Manual Thresho	1	г. г											
Hydrocarbons (TEH plus TPH)	100 ppm	Calculation	919.6	17	70.3	220	152	N/A	N/A	193.6	86	54	8.3
ana Risk-Based Screening Lev	vels (RBSL)2	·				•	•	· •			·		
ile Petroleum Hydrocarbons (
8 Aliphatics	52 ppm		<1.1	<1.1	<1.1	<0.99	<0.98	N/A	N/A	0.84	<0.36	ND	ND
12 Aliphatics	77 ppm	1 F	1.5	<0.78	3.6	<0.71	<0.70	N/A	N/A	0.67	<0.22	ND	ND
10 Aromatics	130 ppm	1 -	<0.16	<0.16	<0.16	<0.14	<0.14	N/A	N/A N/A	<0.11	<0.11	ND	ND
Purgeable Hydrocarbons	N/A	1 -	1.6	<0.10	4.3	<0.14	<0.14	N/A N/A	N/A N/A	1.6	<0.11	ND	1.2
E	0.078* ppm	-	<0.0097	<0.95	<0.015	<0.04	<0.03	N/A N/A	N/A N/A	<0.012	<0.012	ND	ND
	0.078* ppm 0.07 ppm	MA-VPH	<0.0097	<0.015	<0.015	<0.013	<0.013	N/A N/A	N/A N/A	<0.012 <0.0073	<0.012	ND	ND
tene			<0.0051	<0.024	<0.025	<0.022	<0.022			<0.0073	<0.0075	ND	ND
ene	21 ppm	-			0.0=2	0.00 - 1	0.000	N/A	N/A				
lbenzene	6.4 ppm		< 0.0034	<0.029	< 0.030	< 0.010	<0.0099	N/A	N/A	<0.011	<0.012	ND	ND
enes	72 ppm	_	<0.0082	< 0.034	< 0.0082	< 0.0092	< 0.0092	N/A	N/A	0.094	< 0.0042	ND	ND
hthalene	4.3 ppm		<0.011	<0.062	0.079	< 0.016	< 0.016	N/A	N/A	< 0.021	<0.021	ND	ND
d Scavengers													
Dibromoethane (EBD)	0.000086* ppm		N/A	< 0.000062	< 0.00006	< 0.00011	< 0.00011	N/A	N/A	< 0.00011	< 0.00011	ND	ND
Dichloroethane (DCA)		SW-8260B	N/A	< 0.0027	< 0.0027	< 0.0024	< 0.0024	N/A	N/A	< 0.0025	< 0.0025	ND	ND
actable Petroleum Hydrocarbo	ons (EPH)												
Screen, Fractionate	200 ppm	SW-8015M	1070	17	233	494	222	94	242			205	244
C18 Aliphatics	110 ppm		55	N/A	<1.4	<1.2	<1.1	N/A	<1.1	<1.2	<1.2	ND	ND
-C36 Aliphatics	24000 ppm		393	N/A	27	87	89	N/A	29	60	26	ND	ND
-C22 Aromatics	370 ppm		457	N/A	32	94	53	N/A	31	79	39	43	ND
l Extractable Hydrocarbons	N/A		918	N/A	66	220	152	N/A	67	192	86	54	7.1
aphthene	27 ppm		N/A	N/A	N/A	0.016	0.032	N/A	< 0.0025	< 0.0050	< 0.0053	0.013	ND
racene	2200 ppm		N/A	N/A	N/A	0.064	0.092	N/A	0.0092	0.054	0.032	0.15	0.032
(a)anthracene	1.3 ppm		N/A	N/A	N/A	0.24	0.34	N/A	0.037	0.14	0.092	0.36	0.058
co(a)pyrene	0.13** ppm	1 [N/A	N/A	N/A	0.27	0.44	N/A	0.055	0.19	0.12	0.34	0.089
to(b)fluoranthene	1.3 ppm	1 F	N/A	N/A	N/A	0.35	0.51	N/A	0.059	0.22	0.13	0.35	0.11
zo(k)fluoranthene	13 ppm	MA-EPH	N/A	N/A	N/A	0.11	0.17	N/A	0.029	0.084	0.058	0.15	0.037
sene	130 ppm		N/A	N/A	N/A N/A	0.28	0.4	N/A N/A	0.029	0.16	0.12	0.45	0.058
nzo(a,h)anthracene	0.13** ppm	1 -	N/A N/A	N/A	N/A N/A	0.054	0.091	N/A N/A	0.013	0.055	0.028	0.059	0.02
anthene	85 ppm	1 -	N/A N/A	N/A N/A	N/A N/A	0.53	0.69	N/A N/A	0.078	0.32	0.19	0.039	0.02
ene	35 ppm	┨ ┣	N/A N/A	N/A N/A	N/A N/A	0.021	0.039	N/A N/A	<0.078	0.027	0.015	0.053	0.0092
ol(1, 2, 3-cd)pyrene	1.3 ppm	4 F	N/A N/A	N/A N/A	N/A N/A	0.021	0.038	N/A N/A	0.045	0.19	0.015	0.035	0.092
thalene		4 F	N/A N/A	N/A N/A	N/A N/A	0.25	0.38	N/A N/A	0.0074	<0.0055	<0.0057	0.021	0.08
unaterie	4.3 ppm			N/A N/A	N/A N/A			N/A N/A				0.63	
	83 ppm	4	N/A			0.41 <0.0024	0.61		0.075	0.28 <0.0048	0.19 <0.0050	0.63	0.12
thylnaphthalene	2.1 ppm	4 –	N/A	N/A	N/A	0.000		N/A	01000	010 0 10	010000		0.012
	6.9 ppm	L L	N/A	N/A	N/A	0.0077	0.012	N/A	< 0.0069	< 0.0052	< 0.0054	0.014	0.021
I/A - Analysis not performed. Source: Butte Mine Waste Repository Source: Montana Risk-Based Correct The best achievable practical quantita	licable Butte MWR O tection limit (value in y (MWR) Operations ctive Action Guidance tation limit (0.20) is g	cell (X) is the appr and Maintenance for Petroleum Rel reater than the RBS	old or RBSL. oximate detection limit). Method detectio O&M) Manual (Atlantic Richfield, 2015)	n limits vary slightly between each sample event ss Than 10-feet to Groundwater (DEQ, 2018) additional evaluation may be necessary.		1 0.00//	0.012	I N/A	<0.0069	<0.0052	<0.0034	0.014	0.021

Table 12: Approximate Volumes of Materials Within the Site

	Volume ⁽¹⁾ within the Site Boundary	Volume ⁽¹⁾ within the Preliminary Waste Removal Corridor (Figure 3) ⁽³⁾ Cubic Yards		
Material Type	Cubic Yards			
Alluvium, Tailings, and Organic Soil (ATO) - All	831,000	468,000		
Waste ⁽²⁾	598,000	220,000		
Slag	304,000	62,000		
Demolition Debris	57,000	34,000		
Other (e.g., general fill from BSB Operations)	79,000	33,000		
ATO - Waste	157,000	90,000		
Material to Be Removed During Remedial Action ⁽⁴⁾	NA	239,000		

Notes:

(1) The volumes depicted in this table are approximate and are based on the modeling done in the Leapfrog Works software.

(2) The waste material volume includes the volume of slag, demolition debris, other, and ATO-Waste. Additionally, the upper 95% regression is used to adjust the XRF data.

(3) The excavated material is preliminary. The removal corridor and excavation surface will be refined further during the remedial design and will be submitted for Agencies' review and approval.

(4) The material to be removed during the remedial action includes only the material captured by the preliminary waste excavation surface, which captures waste in the removal corridor and incorporates construction feasible side slopes and grade along the deepest parts of the surface. The preliminary waste excavation surface does not include the material to be removed to accommodate the stream design or to accommodate end land use features. Some unimpacted material will be removed to capture the waste underneath. Additional details on the surface and its evaluation in Leapfrog can be found in Appendix C.

Table 13. Depth for Bottom of Waste in Each Investigation Point

Table 13. Depth f	for Bottom of Waste in E			1					
	Borehole Data	Borehole Data Upper	Modeled		Added Waste Depth	Added Waste Depth	Excavation	Excavation Depth	On the Edge
Location	Regression Bottom of		COC Waste	Excavation	Comparing Regression	Comparing Upper 95%	-	Below Modeled	of the
	Waste Depth	Waste Depth	Depth	Depth	and Upper 95%	and Model	Upper 95%	COC Waste	Excavation?
BRW18-BH01	25	25.8	26.1	26.8	0.8	0.3	1.0	0.7	NO
BRW18-BH02	23.4	23.4	24.2	24.6	0	0.8	1.2	0.4	NO
BRW18-BH03	25.4	25.4	25.0	26.0	0	-0.4	0.6	1.0	NO
BRW18-BH05	21.9	21.9	22.6	26.7	0	0.7	4.8	4.1	NO
BRW18-BH06	20	20	20.0	20.1	0	0.0	0.1	0.1	NO
BRW18-BH07	5.7	5.9	7.6	8.0	0.2	1.7	2.1	0.4	NO
BRW18-BH16	6.2	6.2	6.2	6.7	0	0.0	0.5	0.5	NO
BRW18-BH18	6.1	6.1	6.8	7.0	0	0.7	0.9	0.2	NO
BRW18-BH20	7.7	7.7	8.5	9.3	0	0.8	1.6	0.8	NO
BRW18-BH21	10	10	10.4	10.7	0	0.4	0.7	0.3	NO
BRW18-BH22	8.6	8.6	9.2	9.7	0	0.6	1.1	0.5	NO
BRW18-BH23	7.3	7.3	9.5	10.2	0	2.2	2.9	0.7	NO
BRW18-BH24	7.9	7.9	9.1	9.3	0	1.2	1.4	0.2	NO
BRW18-BH25	10.8	10.8	11.1	11.3	0	0.3	0.5	0.2	NO
BRW18-BH26	7.2	7.2	9.1	9.6	0	1.9	2.4	0.5	NO
BRW18-BH27	9.2	9.2	8.8	9.5	0	-0.4	0.3	0.7	NO
BRW18-BH28	8.6	8.6	9.6	9.6	0	1.0	1.0	0.0	NO
BRW18-BH29	11.1	11.1	11.8	11.9	0	0.7	0.8		NO
BRW18-BH29 BRW21-TP4			11.8	11.9	_	0.7 N/A	0.8 N/A	0.1	NO
	BOW ND	BOW ND			N/A	· · · · · · · · · · · · · · · · · · ·			
BRW19-HCW41	4.5	4.5	4.5	4.9	0	0.0	0.4	0.4	NO
BRW18-PZ01	8.7	8.7	10.4	11.3	0	1.7	2.6	0.9	NO
BRW18-PZ02	8.3	8.3	8.9	9.3	0	0.6	1.0	0.4	NO
BRW18-PZ03	9.9	9.9	10.3	10.7	0	0.4	0.8	0.4	NO
BRW18-PZ04	7.5	8.3	9.6	10.4	0.8	1.3	2.1	0.8	NO
BRW18-PZ05	6.8	6.8	8.9	9.4	0	2.1	2.6	0.5	NO
BRW18-PZ06	9.1	9.1	9.6	10.1	0	0.5	1.0	0.5	NO
BRW18-PZ08	8.5	8.5	9.5	9.8	0	1.0	1.3	0.3	NO
BRW18-PZ10	No Waste	No Waste	6.5	11.3	N/A	N/A	11.3	4.8	NO
BRW18-PZ12	2.9	2.9	2.9	3.8	0	0.0	0.9	0.9	NO
BRW18-PZ13	2.7	2.7	2.7	3.2	0	0.0	0.5	0.5	NO
BRW18-PZ14	No Waste	No Waste	8.3	12.8	N/A	N/A	12.8	4.5	NO
BRW18-PZ17	7	7	7.0	7.4	0	0.0	0.4	0.4	NO
BRW18-PZ21	27.2	27.2	27.1	27.9	0	-0.1	0.7	0.8	NO
BRW18-PZ22	26.2	26.2	22.2	26.7	0	-4.0	0.5	4.5	NO
BRW19-PZ27	8.4	8.4	8.3	9.3	0	-0.1	0.9	1.0	NO
BRW19-PZ28R	8.7	8.7	9.3	10.0	0	0.6	1.3	0.7	NO
BRW19-PZ29	15	15	15.4	16.0	0	0.4	1.0	0.6	NO
BRW19-PZ30	8.7	8.7	9.3	10.0	0	0.4	1.0	0.8	NO
BRW19-PZ30	10	10	9.5	10.1	-		0.6		
	-	_			0	0.0		0.6	NO
BRW19-PZ32	11.3	11.3	11.5	12.0	0	0.2	0.7	0.5	NO
BRW19-PZ40	18.2	18.2	19.4	19.8	0	1.2	1.6	0.4	NO
BRW19-PZ41	16	16	16.0	16.8	0	0.0	0.8	0.8	NO
BRW19-PZ42	16.9	16.9	16.9	18.3	0	0.0	1.4	1.4	NO
BRW19-PZ43	10	10	10.0	10.7	0	0.0	0.7	0.7	NO
BRW19-PZ44	10	10	10.0	10.6	0	0.0	0.6	0.6	NO
BRW19-PZ45	7.8	7.8	7.8	8.2	0	0.0	0.4	0.4	NO
BRW19-PZ47	15	15	15.2	15.7	0	0.2	0.7	0.5	NO
BRW19-PZ49	No Waste	No Waste	2.8	3.3	N/A	N/A	3.3	0.5	NO
BRW19-PZ50	No Waste	No Waste	4.1	4.7	N/A	N/A	4.7	0.6	NO
BRW18-TP01	BOW ND	BOW ND	6.3	6.3	N/A	N/A	N/A	0.0	NO
BRW18-TP05	3.7	3.7	3.7	3.6	0	0.0	-0.1	-0.1	NO
BRW18-TP08	BOW ND	BOW ND	4.8	5.2	N/A	N/A	N/A	0.4	NO
BRW18-TP14	2.5	2.9	3.1	4.3	0.4	0.2	1.4	1.2	NO
BRW18-TP15	BOW ND	BOW ND	4.9	6.0	N/A	N/A	N/A	1.1	NO
BRW20-TP51	BOW ND	BOW ND	23.4	24.1	N/A	N/A	N/A	0.7	NO
BRW20-TP57	BOW ND	BOW ND	10.0	10.0	N/A	N/A	N/A	0.0	NO
BRW20-TP58	BOW ND	BOW ND	5.9	8.7	N/A	N/A	N/A	2.8	NO
BRW20-TP59	BOW ND	BOW ND	12.0	12.0	N/A	N/A	N/A	0.0	NO
BRW20-TP59	BOW ND	BOW ND	8.5	12.0	N/A N/A	N/A N/A	N/A N/A	3.0	NO
BRW20-TP60 BRW20-TP62	2.9	2.9	2.9	3.4	0	0.0	0.5	0.5	NO
BRW20-TP62 BRW20-TP64	2.9	_	5.3	3.4 9.5	_				
DRVV20-1P64			5.3		N/A 0	N/A 0.3	N/A	4.2	NO
	BOW ND	BOW ND					0.5		NO
BRW20-TP66	5	5	5.3	5.5	_				
BRW20-TP66 BRW20-TP68	5 BOW ND	5 BOW ND	5.3 5.0	8.3	N/A	N/A	N/A	3.3	NO
BRW20-TP66 BRW20-TP68 BRW20-TP69	5 BOW ND BOW ND	5 BOW ND BOW ND	5.3 5.0 26.5	8.3 26.8	N/A N/A	N/A N/A	N/A N/A	3.3 0.3	NO
BRW20-TP66 BRW20-TP68 BRW20-TP69 BRW20-TP70	5 BOW ND BOW ND BOW ND	5 BOW ND BOW ND BOW ND	5.3 5.0 26.5 13.0	8.3 26.8 13.0	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	3.3 0.3 0.0	NO NO
BRW20-TP66 BRW20-TP68 BRW20-TP69 BRW20-TP70 BRW20-TP71	5 BOW ND BOW ND BOW ND BOW ND	5 BOW ND BOW ND BOW ND BOW ND	5.3 5.0 26.5 13.0 6.0	8.3 26.8 13.0 6.0	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	3.3 0.3 0.0 0.0	NO NO NO
BRW20-TP66 BRW20-TP68 BRW20-TP69 BRW20-TP70 BRW20-TP71 BRW20-TP72	5 BOW ND BOW ND BOW ND BOW ND BOW ND	5 BOW ND BOW ND BOW ND BOW ND BOW ND	5.3 5.0 26.5 13.0 6.0 6.0	8.3 26.8 13.0 6.0 6.0	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	3.3 0.3 0.0 0.0 0.0	NO NO NO NO
BRW20-TP66 BRW20-TP68 BRW20-TP69 BRW20-TP70 BRW20-TP71	5 BOW ND BOW ND BOW ND BOW ND BOW ND 6.7	5 BOW ND BOW ND BOW ND BOW ND BOW ND 6.7	5.3 5.0 26.5 13.0 6.0 6.0 8.5	8.3 26.8 13.0 6.0 6.0 1.4	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	3.3 0.3 0.0 0.0	NO NO NO YES
BRW20-TP66 BRW20-TP68 BRW20-TP69 BRW20-TP70 BRW20-TP71 BRW20-TP72	5 BOW ND BOW ND BOW ND BOW ND BOW ND	5 BOW ND BOW ND BOW ND BOW ND BOW ND	5.3 5.0 26.5 13.0 6.0 6.0	8.3 26.8 13.0 6.0 6.0	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	3.3 0.3 0.0 0.0 0.0	NO NO NO NO
BRW20-TP66 BRW20-TP68 BRW20-TP69 BRW20-TP70 BRW20-TP71 BRW20-TP72 BRW18-BH30	5 BOW ND BOW ND BOW ND BOW ND BOW ND 6.7	5 BOW ND BOW ND BOW ND BOW ND BOW ND 6.7	5.3 5.0 26.5 13.0 6.0 6.0 8.5	8.3 26.8 13.0 6.0 6.0 1.4	N/A N/A N/A N/A N/A 0	N/A N/A N/A N/A N/A 1.8	N/A N/A N/A N/A -5.3	3.3 0.3 0.0 0.0 0.0 -7.1	NO NO NO YES
BRW20-TP66 BRW20-TP68 BRW20-TP69 BRW20-TP70 BRW20-TP71 BRW20-TP72 BRW18-BH30 BRW18-PZ09	5 BOW ND BOW ND BOW ND BOW ND 6.7 6.2	5 BOW ND BOW ND BOW ND BOW ND 6.7 6.2	5.3 5.0 26.5 13.0 6.0 6.0 8.5 7.2	8.3 26.8 13.0 6.0 6.0 1.4 4.8	N/A N/A N/A N/A 0 0	N/A N/A N/A N/A N/A 1.8 1.0	N/A N/A N/A N/A -5.3 -1.4	3.3 0.3 0.0 0.0 -7.1 -2.4	NO NO NO YES YES
BRW20-TP66 BRW20-TP68 BRW20-TP69 BRW20-TP70 BRW20-TP71 BRW20-TP72 BRW18-BH30 BRW18-PZ09 BRW18-PZ15	5 BOW ND BOW ND BOW ND BOW ND BOW ND 6.7 6.2 16	5 BOW ND BOW ND BOW ND BOW ND BOW ND 6.7 6.2 16	5.3 5.0 26.5 13.0 6.0 6.0 8.5 7.2 11.2	8.3 26.8 13.0 6.0 6.0 1.4 4.8 15.3	N/A N/A N/A N/A 0 0 0 0	N/A N/A N/A N/A 1.8 1.0 -4.8	N/A N/A N/A N/A -5.3 -1.4 -0.7	3.3 0.3 0.0 0.0 0.0 -7.1 -2.4 4.1	NO NO NO YES YES YES

Definitions and Color Coding

BOW ND - Bottom of Waste Not Determined.

No Waste - The borehole contained only soil samples that passed the Waste Identification Criteria.

Point of Concern for the Borehole Data Waste Geological Model (Leapfrog Model) - Modeled Waste Depth is less than Upper 95% Bottom of Waste Depth.

Point of Concern for Excavation Design - Excavation Depth is Less than Upper 95% Bottom of Waste Depth or Less than Modeled Waste Depth.

Points on the Edge of the Excavation have an Excavation Depth less than the Modeled Waste Depth or Upper 95% Bottom of Waste Depth due to excavation slope constraints.

Modeled COC Waste Depth - Depth of Waste as Modeled in Leapfrog using the COC concentrations to determine waste extents. See Appendix C for more information on the Leapfrog Model.

Statistics on Points within Removal Corridor (Excludes those on Edge of the Excavation) Including Areas with no identified Waste

Removing Areas with no identified Waste

1.1 Average Excavation Depth Below Upper 95% Bottom of Waste

0.8 Average Excavation Depth Below Modeled COC Waste

0.9 Average Excavation Depth Below Modeled COC Waste

1.6 Average Excavation Depth Below Upper 95% Bottom of Waste

APPENDICES

(Provided electronically with this document)

- **Appendix A Data Summary Reports for the Phase I and Phase II Site Investigations**
- Appendix B Lithology Logs for Phase I and Phase II Site Investigation Locations
- **Appendix C Leapfrog Model Results**
- Appendix D Butte Reduction Works Multichannel Analysis of Surface Waves Survey Final Report
- Appendix E 2019 Butte Reduction Works Waters of the U.S. Delineation Report
- Appendix F Risk-Based Corrective Action Guidance Evaluation for Hydrocarbon-Impacted Material at Butte Reduction Works Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site
- Appendix G Butte Reduction Works (BRW) Pumping Tests Interpretation Technical Memorandum
- Appendix H BRW Hydraulic Control and Construction Dewatering Technical Report
- Appendix I Hydrologic Evaluation of Landfill Performance at Butte Reduction Works Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site
- Appendix J Further Remedial Elements Scope of Work Remedial Design/Remedial Action, Butte Priority Soils Operable Unit Cultural Resource Inventory, Evaluation, and Recommendations
- Appendix K Structural Assessment of Existing Bridge and Historic Structures, Butte Reduction Works Smelter Site, Butte, Montana