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Abstract 

Gas dispersion in column flotation is critical for optimizing particle-bubble interaction and 
maximizing recovery. The effect of various flotation frothers on axial gas dispersion rates in a 
column flotation cell were measured using electrical resistance tomography (ERT). Tests 
included two-phase (gas-liquid) and three-phase (gas-liquid-solid) to determine the effect of 
mechanical parameters and the presence of solids on gas dispersion. Gas holdup can be measured 
using ERT and utilized in the determination of axial gas dispersion rate in the column. The ERT 
is constructed with two sensor planes making it possible to simultaneously capture gas holdup 
values at one cm and seven cm above the cavitation sparger. Three frothers of varying strengths 
were used to investigate axial dispersion rates. Experimental conditions were modified by 
altering the superficial gas rate, frother concentration, and sparger pump speed. The effects of 
varying experimental conditions were captured and are represented using concentration 
tomograms. There is a strong positive correlation between axial dispersion rate, frother strength, 
and machine operating parameters. 
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1. Introduction 
 

Flotation is a fundamental method of solid-solid separation used for the recovery of 

valuable minerals from ore (Wills, et al., 2016). Flotation uses air introduced into a liquid or ore 

slurry through aspiration or a pressurized air system to create bubbles. The air is sheared through 

an impeller, diffuser, or cavitation device, creating a swarm of bubbles which rise through the 

liquid to the surface of the flotation cell. Gas holdup (εg) in flotation is a measure of the volume 

of air present in the flotation cell in the form of bubbles (Finch, et al., 1990). To establish the 

effects of frother strength on εg, experiments were designed for a two-phase system. These tests 

demonstrated the differences between three frothers and their effect on εg.  

 After establishing the effects on εg with two-phase tests, three-phase tests were designed 

using talc, a naturally hydrophobic mineral. The ability of the valuable constituents in the ore to 

attach to bubble surfaces and be transported out of the liquid phase is dependent on the 

hydrophobicity of the particles. Most valuable mineral constituents in ore are not naturally 

hydrophobic which necessitates the addition of a collector. Collectors change the surface 

chemistry of the ore, inducing hydrophobicity, making different ore species amenable to flotation 

(Wills, et al., 2016). The use of talc eliminates the need to add a collector, making it unnecessary 

to quantify the effect of an additional variable (solution chemistry) and its effect on εg (Banisi, 

1995).  

Gas dispersion in flotation is critical in maximizing particle-bubble collision rates in the 

collection zone of a flotation column (Zhou et al, 1994). Liquid and solid axial dispersion in 

flotation has been modeled and is well defined for bubble columns (Dobby and Finch, 1984). 

Conversely, published data on the axial dispersion rate of the bubble swarm generated in 

flotation is scarce. Using a hydrodynamic cavitation sparger for bubble generation, electrical 
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resistance tomography (ERT) was used to determine gas holdup values and the axial dispersion 

rate of the bubble swarm. Multiple frothers were tested to compare performance in the column. 

Frothers enhance the control of bubble size in the column and promote bubble stability, 

improving gas dispersion and gas holdup (Kuan and Finch, 2010). Parameters controlled were air 

flow rate, sparger pump speed and frother concentration. 

 Solution chemistry influences flotation results and any discussion of bubble formation, 

size and stability must recognize chemistry and machine interaction (Nesset, 2005). Frothers are 

added to the slurry to promote bubble formation and stabilize the bubbles by preventing 

coalescence. Azgomi et al. (2006) tested a variety of frothers, comparing chemistry and 

classifying differences using gas holdup. It has been shown that frother concentration has a 

marked effect on bubble size which is strongly correlated to gas holdup. (Cho and Laskowski, 

2001, Azgomi et al, 2007, Banisi and Finch, 1994). The concentration of frother affects gas 

holdup and the axial dispersion rate. Bubble stability is dependent on the mechanical strength 

imparted to the bubble by the surfactants used in flotation (Zhou et al., 1994). Cho and 

Laskowski classified frothers by their ability to decrease bubble size and increase bubble 

stability (strength). Froth stability is also affected by particle size as shown by Farrokhpay and 

Bradshaw in their review of research on clay minerals in froth flotation (Farrakhpay, et al., 

2012). Frothers were chosen to test the effect of strength and performance characteristics on gas 

holdup. Critical coalescence concentration (CCC) is a measure of the frother concentration at 

which bubble coalescence is prevented (Cho and Laskowski, 2002). Concentrations were 

selected that were below, near and above the CCC.   

 Gas dispersion in flotation is quantified by superficial gas velocity (volumetric air flow 

rate per cross-sectional area, Jg), gas holdup (volumetric fraction of gas in liquid or liquid-slurry, 
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εg) and bubble size distribution (Db) (Gomez and Finch, 2007). The use of Jg allows gas 

dispersion comparisons to be made between columns with varying cross-sectional areas. 

Hydrodynamic cavitation was used for bubble generation because of the ability to produce nano-

bubbles (NB) and micro-bubbles (MB) (Ross et al., 2019). Zhou et al. (2009) discuss the effect 

of liquid velocity on gas holdup when using a cavitation tube for bubble generation. As shown in 

Figure 1, the design of the column has the pump feeding directly to the cavitation device. The 

pump speed controls fluid velocity and by association the amount of pressure drop through the 

cavitation tube which is critical to bubble formation and gas holdup. By creating a pressure drop, 

fluid pressure is lowered below the vapor pressure, resulting in the creation of NB and MB at the 

outlet of the sparger. Eriez, a manufacturer of flotation equipment, supplied a Cavtube sparger, 

shown in                     Figure 1, a type of hydrodynamic cavitation device (HCD), for bubble 

generation in the column. 
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 Combined with the shearing of additional gas, added between the pump and sparger, 

cavitation creates a supply of bubbles suitable for a range of particle sizes (Zhou, et al., 2009). 

Control of the additional air volume has a pronounced effect on the gas holdup in the column.  

Numerous sensors and devices have been used to measure gas dispersion in flotation machines 

and have been described elsewhere (Azgomi, et al., 2007). ERT uses conductivity changes in a 

fluid to measure gas holdup. Air bubbles in the liquid are highly conductive on the surface while 

the gas in the bubble has very low conductance. This effect can be measured by electrodes 

installed on the boundary of the column. Electrodes are arranged around the perimeter of a pipe 

and a current is applied to the fluid through the electrodes. The voltages on the electrodes are 

                    Figure 1: Eriez CavTube sparger 
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measured and the conductivity of the fluid for the cross section of the column is reconstructed 

using the measured voltages and known currents (Nissinen et al., 2014). The conductivity is 

displayed as a concentration tomogram, showing radial profiles of gas holdup in the flotation 

column. The accuracy of gas holdup measurements using the ERT have been compared to 

pressure transducers by Vadlakonda et al. (2018) and found to have minimum and maximum 

errors of 0.57% and 4.47% respectively. Singh et al. (2013) performed tests in a bubble column 

comparing ERT to voidage probe measurements and found that gas holdup values were closely 

aligned except at very low values (<2%) and very high values (>30%).    
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2. Methodology 

2.1. Experimental set-up 

 Figure 2 shows a schematic of the flotation column and installation locations of the ERT 

sensor. The location of the ERT sensor immediately above the sparger enables the capture of two 

distinct gas holdup measurements as the bubbles exit the sparger and enter the column. Plane 1 

and plane 2 measurements were taken from this location. Plane 3 and plane 4 measurements 

were taken from the middle location shown in the schematic. The measurements from planes 3 

and 4 were used to compare the gas holdup in the quiescent zone to the collection zone, 

immediately above the sparger. Gas holdup was tested using two phase (gas-water) and three 

phase (gas-water-solid) mixtures with the conductivity of the water and slurry adjusted to ~10mS 

for resolution. Frothers tested were methyl isobutyl carbinol (MIBC), polyoxyalkylene alkyl 

ether (H27C), and polypropylene glycol methyl ether (W31), the latter two supplied by 

Huntsman Chemical. H27C produces a moderately stronger froth than MIBC but is soluble in 

water. W31 is comparable to DowFroth 250, produces an intermediate strength froth and 

provides an increase in froth stability over the other frothers. Dried, pressurized air at 550 KPa 

(5.5 bar) is introduced at the bottom of the sparger as shown in Figure 2. Air is routed through a 

pressure regulator and rotameter to control total volume delivered to the sparger. A centrifugal 

pump is used to pressurize the fluid passing through the sparger and is powered by a 373 W (1/2 

HP) motor with a DC drive, allowing variable pump speeds from 0-3100 RPM. 
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2.2. ERT set-up  

 The ERT equipment has three parts: sensor, data acquisition system (DAS) and personal 

computer. Industrial Tomography Systems (ITS) supplied a 32-electrode pipe sensor with the 

sensors divided into 2, 16 electrode planes. Electrodes are 2 cm x 1 cm and the planes are 

Figure 2: Flotation column layout showing pump, 
inputs, ERT sensor planes and tails outlet. 
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separated by 5 cm, enabling separate data streams to be collected for each plane. Aw et al. (2013) 

discuss the importance of electrode placement and sizing to produce accurate results. 

Signal processing and data collection are handled through the ITS p2+ instrument and software 

(DAS). ITS uses a simplified version of Maxwell’s equation to calculate the non-conductive 

phase as shown in Equation 1. The non-conductive phase represents the air inside the bubbles 

and is used to calculate the total gas holdup. The conductive phase is calculated using the full 

Maxwell equation as shown in Equation Error! Reference source not found.. All calculations 

are completed by the software and gas holdup values are generated for each data frame. 

 

 
𝜶 ൌ

𝟐𝝈𝟏 െ 𝟐𝝈𝒎𝒄

𝝈𝒎𝒄 െ 𝟐𝝈𝟏
 

(1) 

 

𝜶 ൌ  
𝟐𝝈𝟏 ൅ 𝝈𝟐 െ 𝟐𝝈𝒎𝒄 െ

𝝈𝒎𝒄𝝈𝟐
𝝈𝟏

 

𝝈𝒎𝒄 െ 𝝈𝟐
𝝈𝟏

𝝈𝒎𝒄 ൅ 𝟐ሺ𝝈𝟏 െ 𝝈𝟐ሻ
 

(2) 

 

α = volume fraction of dispersed phase 

σ1 = conductivity of dispersed phase 

σ2 = conductivity of continuous phase 

σmc = reconstructed measured conductivity 

  

  A desktop computer is used to interface with the system and allows real-time gas holdup 

visualization and export of the tomographic data. Gas holdup is displayed as a concentration 

tomogram, Figure 3, using a color scale display showing variations in concentration over the 
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cross section of the column. In Figure 3, red represents the highest concentration of gas while 

blue is the lowest concentration. The color gradation from blue to red represents increasing gas 

holdup. Data is exported in .csv format to Microsoft Excel, allowing initial formatting prior to 

analysis in Design Expert statistical software. 

 

 Before collecting data, it is necessary to fill the column and calibrate the conductivity and 

gain of the liquid or slurry and take reference measurements relative to a known reference. This 

procedure must be repeated for each change in experimental parameters. Fluid conductivity is 

measured and adjusted for each new test.  The column is emptied and cleaned between 

concentration tests of the same frother and when frother types are changed in order to ensure 

consistent results.   

 Measurement of the axial dispersion in the column was accomplished by aligning the 

ERT sensor to capture gas dispersion effects as the bubble swarm developed near the outlet of 

the sparger. To allow comparison of the gas holdup between the area near the sparger and higher 

Figure 3: Concentration tomogram showing plane 1 (P1) 
and plane 2 (P2) gas holdup concentrations 
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in the column, experiments were repeated with the ERT sensor placed in the quiescent zone. This 

area is shown as plane 3 and plane 4 in Figure 2. 

2.3. Two-phase test procedures  

 Upper and lower limits for the three most influential factors were determined through 

testing and were found to give stable operation within the column. Factors that had the highest 

response were pump speed, air volume and frother concentration. Pump speed effects sparger 

performance in bubble production, air volume effects total gas holdup and frother concentration 

controls bubble stability and formation. Using Design Expert software from Stat-Ease, a two-

level factorial experiment (with midpoints to test for curvature) was created, consisting of 11 

tests. Each frother was tested using the conditions in the design of experiment. Error! Reference 

source not found. shows the values used to create the upper and lower bounds for the design of 

experiment.  

 

Table I: Design of Experiment Factors 

   
Factor  Units  Low  High 

Pump Speed  RPM  1500  2600 

Air Volume  LPM  2.5  4.5 

Concentration  PPM  5  25 
 

 The ITS system for ERT collects data in frames, each frame an average of electrode 

voltage measurements taken at approximately one second intervals. 150 frames were collected 

for each test, giving 1650 frames for each experiment. Each test was conducted with Butte, 

Montana tap water adjusted to a conductivity value of ~10mS using table salt (NaCl). A Mettler 

Toledo Seven Excellence Multiparameter meter with an Inlab 731 ISM probe was used for all 
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conductivity measurements. Vadlakonda (2018) showed that changes in liquid height affect gas 

holdup values so the liquid height was held constant for all tests. A pressure transducer coupled 

to the PLC was used to ensure consistent liquid height between experiments. Frother dosage was 

calculated as a function of column volume, with frother added from a dilute solution (2% by 

weight) by a peristaltic pump. Water was added at the same time to ensure complete mixing. The 

pump curve for the frother dosage pump was found through testing and linear regression was 

used to determine correct pump speed and timing for dosage requirements. The DC drive 

provides variable speed control of the pump motor and the installation of a digital tachometer 

allowed the pump RPM to be adjusted accurately. After starting the pump and air flow, data 

collection began after allowing time for bubbles to fill the full height of the column. 

2.4. Three-phase test procedures 

 The goal of three-phase testing was to determine the interaction of frother concentration 

and solids content. The initial design of experiment frother concentration range was set from 5 to 

25 ppm and solids concentration was set from 10 to 20 percent solids by weight. Due to the 

complexity of three-phase flow, air flow was fixed at 3.5 liters per minute, which equates to a 

superficial gas velocity (Jg) of 1.13 cm/s, and pump speed was fixed at 2400 RPM. This made the 

statistical model simpler for the initial experiments. MIBC, H27C and W31 were all tested using 

the same parameters. Conductivity testing indicated that 85 grams of NaCl gave consistent 

results between 10.8 and 11.0 mS for each test.  

  As shown in Figure 4 gas holdup decreases as the test progresses. This effect has also 

been shown to take place in the flotation of minerals with clay content (Farrakhpay, et al., 2012). 
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 To limit the effects of frother adsorption on test results, frother was only added after 

complete mixing of the talc slurry and testing of the conductivity. Frother mixing time was 

limited to 60 seconds prior to filling the column and calibrating the ERT for each test. This 

reduced total time before beginning each test to less than five minutes, minimizing the effects of 

frother adsorption on gas holdup results. 

2.4.1. Three-phase material preparation 

 Talc was selected for use in three-phase testing due to its naturally hydrophobic 

properties (Kuan, et al., 2010). Solution chemistry plays a role in flotation kinetics so eliminating 

the presence of a collector eliminates an additional variable that makes frother comparison more 

difficult (Nesset, 2005). Minerals Technologies in Dillon, Montana supplied raw talc ore for the 

three phase experiments. The raw talc was blended and reduced in a roll crusher to 5mm 

maximum particle size and a lab-scale ball mill was used to grind to the final product size. 
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Figure 4: Decrease in gas holdup showing effect of frother adsorption 
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Residence time in the ball mill was 30 minutes followed by screening of the 75 to 150 μm size 

range. Oversize material was returned to the ball mill for additional grinding. The -150 μm 

product was kept for future testing that will determine the effect of particle size on gas holdup. A 

Ro-Tap machine was used for all particle classifications. Particle distributions for the ball mill 

feed and product are shown in Table II..  

 

Table II: Talc ball mill feed and ball mill product distribution 

Ball Mill Feed       
Screen  Retained  % Retained  Cum Mass Retained  Cum % Retained  % Passing 

 3/8  0  0.00%  0.00  0.00%  100.00% 

20  272.8  65.48%  272.80  65.48%  34.52% 

50  64.6  15.51%  337.40  80.99%  19.01% 

70  15.2  3.65%  352.60  84.64%  15.36% 

100  13.7  3.29%  366.30  87.93%  12.07% 

200  18.2  4.37%  384.50  92.29%  7.71% 

Pan  32.1  7.71%  416.60  100.00%  0.00% 

Total Mass  416.6             

       
Ball Mill Product       
Screen  Mass  % Retained  Cum Mass Retained  Cum % Retained  % Passing 

 3/8  0  0.00%  0.00  0.00%  100.00% 

20  19.3  2.70%  19.30  2.70%  97.30% 

50  10.3  1.44%  29.60  4.14%  95.86% 

70  24.2  3.39%  53.80  7.53%  92.47% 

100  138  19.31%  191.80  26.84%  73.16% 

200  352  49.25%  543.80  76.09%  23.91% 

Pan  170.9  23.91%  714.70  100.00%  0.00% 

Total Mass  714.7             
 

 Figure 5 shows the product distribution curves for the ball mill feed and product. The P80 

is near the 150 μm top size for the flotation tests. Particle size used in the flotation experiments 

was 75 to 150 μm. As particle size increases, coalescence efficiency decreases so the top size of 
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150 μm was chosen to maintain the coalescence performance of the frothers chosen (Sarhan, et 

al., 2017).   
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3. Two-phase Results 

3.1. Two-phase gas holdup comparisons 

 Raw data from the ITS DAS was scrubbed using Microsoft Excel and compiled by 

frother type prior to being exported to Design Expert for analysis. The results of all the two-

phase tests for each frother are shown in Table III, Table IV and Table V. Values for Mean (the 

average of Plane 1 and Plane 2), Plane 1 and Plane 2 are all shown in percent gas holdup. The 

gas holdup values were exported to Design Expert and were analyzed for statistical significance. 

Table III: MIBC gas holdup results for two-phase tests 

Std  Run 
A:Pump 
Speed 

B:Air 
Volume 

C:Concentration  Mean  
Plane 
1 

Plane 
2 

10  1  2070  3.5  15  8.631  7.053  10.209 

7  2  1540  4.5  25  7.646  6.019  9.273 

6  3  2600  2.5  25  10.937  10.228  11.645 

11  4  2070  3.5  15  9.459  8.022  10.897 

2  5  2600  2.5  5  5.886  5.109  6.663 

1  6  1540  2.5  5  4.490  3.473  5.506 

4  7  2600  4.5  5  9.821  7.881  11.761 

3  8  1540  4.5  5  6.208  4.722  7.694 

8  9  2600  4.5  25  13.582  11.686  15.478 

9  10  2070  3.5  15  9.555  8.063  11.047 

5  11  1540  2.5  25  5.720  4.696  6.744 
Table IV: H27C gas holdup results for two-phase tests 

Std  Run 
A:Pump 
Speed 

B:Air 
Volume 

C:Concentration  Mean 
Plane 
1 

Plane 
2 

10  1  2070  3.5  15  10.495  9.058  11.932 

7  2  1540  4.5  25  8.767  7.140  10.394 

6  3  2600  2.5  25  12.456  11.966  12.946 

11  4  2070  3.5  15  10.421  9.231  11.611 

2  5  2600  2.5  5  9.686  9.027  10.346 

1  6  1540  2.5  5  5.534  4.530  6.538 

4  7  2600  4.5  5  12.412  10.753  14.070 

3  8  1540  4.5  5  7.634  5.943  9.325 

8  9  2600  4.5  25  14.399  12.730  16.068 

9  10  2070  3.5  15  10.179  9.279  11.079 

5  11  1540  2.5  25  5.663  4.582  6.754 
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Table V: W31 gas holdup results for two-phase tests 

Std  Run 
A:Pump 
Speed 

B:Air 
Volume 

C:Concentration  Mean 
Plane 
1 

Plane 
2 

10  1  2070  3.5  15  11.631  10.459  12.803 

7  2  1540  4.5  25  8.168  6.729  9.607 

6  3  2600  2.5  25  12.475  11.917  13.034 

11  4  2070  3.5  15  11.875  10.580  13.171 

2  5  2600  2.5  5  11.099  10.649  11.549 

1  6  1540  2.5  5  5.962  4.925  6.999 

4  7  2600  4.5  5  13.766  11.854  15.678 

3  8  1540  4.5  5  8.515  6.681  10.350 

8  9  2600  4.5  25  15.672  13.931  17.413 

9  10  2070  3.5  15  10.661  9.883  11.439 

5  11  1540  2.5  25  6.950  5.808  8.092 
 

Utilizing analysis of variance (ANOVA), Design Expert® tests the statistical validity of the 

results and creates an appropriate predictive model. Each test produced significant results and a 

model for each frother type was created. The ANOVA results for all tests are shown in Table 

VI. The p-values shown in the table are all less than 0.05, indicating that main effects A, B, C, 

and a two-factor interaction, AC, are all significant in each model. F-values indicate that results 

are not due to noise and that the lack of fit is not significant. A review of Table VI shows that all 

frother types produced significant results.  
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Table VI: ANOVA for all Experimental Results 

   Model 
A: Pump 
Speed 

B: Air 
Volume 

C: 
Concentration 

Lack of 
fit 

MIBC 

Mean 
F‐value  41.41  80.83  32.34  40.78  1.94 

p‐value  0.0005  0.0003  0.0023  0.0014  0.3578 

Plane 1 
F‐value  51.79  111.8  20.21  57.23  0.7923 

p‐value  0.0003  0.0001  0.0064  0.0006  0.5998 

Plane 2 
F‐value  19.86  27.13  18.95  13.49  8.73 

p‐value  0.0016  0.002  0.0048  0.0104  0.1054 

Eg 
F‐value  367.73  7.24  1051.11     0.9618 

p‐value  0.0001  0.0361  0.0001     0.5671 

H27C 

Mean 
F‐value  189.73  575  122.88  45.67  5.38 

p‐value  0.0001  0.0001  0.0001  0.0011  0.1608 

Plane 1 
F‐value  107.05  360.51  3032  27.6  20.52 

p‐value  0.0001  0.0001  0.0027  0.0033  0.0468 

Plane 2 
F‐value  149.72  390.95  165.17  32.45  0.5287 

p‐value  0.0001  0.0001  0.0001  0.0023  0.7059 

Eg 
F‐value  143.64     143.64     0.2888 

p‐value  0.0001     0.0001     0.9 

W31 

Mean 
F‐value  59.9  102.46  17.35     1.87 

p‐value  0.0001  0.0001  0.0042     0.3841 

Plane 1 
F‐value  115.73  318.37  18.88  9.93  1.99 

p‐value  0.0001  0.0001  0.0048  0.0198  0.3619 

Plane 2 
F‐value  44.43  65.85  23.01     1.23 

p‐value  0.0001  0.0001  0.002     0.5042 

Eg 
F‐value  81.46     81.46     0.8992 

p‐value  0.0001     0.0001     0.8992 
 

 Additional statistical tests performed by Design Expert include coefficient of variance 

(CV), adequate precision, R2, adjusted R2 and predicted R-squared. These values are shown in 

Table VII for all frothers tested. 
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Table VII: Statistical measures for frothers at Plane 1 and Plane 2 

  

  MIBC  H27C  W31 

  Plane 1  Plane 2  Plane 1  Plane 2  Plane 1  Plane 2 

Std. Dev.  0.535  1.110  0.415  0.365  0.480  0.986 

Mean  7.000  9.720  8.567  11.006  9.400  11.830 

C.V. %  7.640  11.400  4.843  3.318  5.100  8.330 

R²  0.976  0.909  0.988  0.992  0.983  0.927 

Adjusted R²  0.958  0.863  0.979  0.985  0.975  0.906 

Predicted R²  0.885  0.643  0.920  0.964  0.938  0.819 

Adeq Precision  21.670  13.881  28.480  36.689  26.576  15.140 
 

 After completing the analysis of the individual frothers all tests were combined in Design 

Expert to create a general model. Gas holdup values gathered during testing fell in the 5-25% 

range, similar to results found in tests comparing ERT and pressure transducers (Singh, et al., 

2017). Statistical analysis of data gathered in the tests performed in this study show that results 

are consistent and can be modeled reliably. 

 Using MS Excel, total gas holdup (εg) for each frother and test condition at 5 ppm and 25 

ppm were tabulated and charted to compare results. Table VIII and Table IX are the compiled 

results of the εg for each experiment. Figures 2a and 2b show direct comparisons of each plane 

for each test parameter. 
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Table VIII: Gas Holdup Comparison 5 PPM 

      
      

PPM  RPM  1540  1540  2070  2600  2600 

5  LPM  2.5  4.5  3.5  2.5  4.5 

MIBC 
Plane 1 εg  3.47  4.72  7.71  5.11  7.88 

Plane 2 εg  5.51  7.69  10.72  6.66  11.76 

H27C 
Plane 1 εg  4.53  5.94  9.19  9.03  10.75 

Plane 2 εg  6.54  9.32  11.54  10.35  14.07 

W31 
Plane 1 εg  4.92  6.68  10.31  10.65  11.85 

Plane 2 εg  7.00  10.35  12.47  11.55  15.68 

 

 

Figure 6: εg comparisons of all frothers types at 5 ppm concentration 
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Table IX: Gas Holdup comparison 25 PPM 

     
PPM  RPM  1540  1540  2070  2600  2600 

25  LPM  2.5  4.5  3.5  2.5  4.5 

MIBC 
Plane 1 εg  4.70  6.02  7.71  10.23  11.69 

Plane 2 εg  6.74  9.27  10.72  11.64  15.48 

H27C 
Plane 1 εg  4.58  7.14  9.19  11.97  12.73 

Plane 2 εg  6.75  10.39  11.54  12.95  16.07 

W31 
Plane 1 εg  5.81  6.73  10.31  11.92  13.93 

Plane 2 εg  8.09  9.61  12.47  13.03  17.41 

 

 

Figure 7: εg comparisons of all frothers types at 25 ppm concentration 
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 Using Figure 6 and Figure 7 as a starting point, charts were created in Design Expert to 

compare the influential factors simultaneously. Figure 8 through Figure 19 show 3-dimensional 

(3D) surfaces for the results of the 5 and 25 ppm tests comparing Plane 1 and Plane 2 of MIBC, 

H27C and W31, respectively. Pump speed and air flow are shown as x1-axis and x2-axis with 

gas holdup shown on the y-axis.  

Table X quantifies the rate of change for gas holdup relative to changes in air flow. Table XI is 

similar but shows the rate as RPM increases.  

 

Table X: Change in gas holdup relative to air flow change 

      

  5 PPM  25 PPM 

  RPM  MIBC  H27C  W31  MIBC  H27C  W31 

dεg/dQAir Plane 1 
1540  0.624  0.707  0.878  0.661  1.279  0.461 

2600  1.386  0.863  0.602  0.729  0.382  1.007 

dεg/dQAir Plane 2 
1540  1.094  1.393  1.675  1.265  1.820  0.758 

2600  2.549  1.862  2.065  1.916  1.561  2.190 
 

 

Table XI: Change in gas holdup rate relative to RPM change 

      

  5 PPM  25 PPM 

  Qair  MIBC  H27C  W31  MIBC  H27C  W31 

dεg/dVRPM Plane 
1 

2.5  0.00154  0.00424  0.00540  0.00522  0.00697  0.00576 

4.5  0.00298  0.00454  0.00488  0.00535  0.00527  0.00679 

dεg/dVRPM Plane 
2 

2.5  0.00109  0.00359  0.00429  0.00462  0.00584  0.00466 

4.5  0.00384  0.00448  0.00503  0.00585  0.00535  0.00736 
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Figure 9: MIBC, Plane 2, 5 ppm 

 

Figure 10: MIBC, Plane 1, 25 ppm 

 

Figure 11: MIBC, Plane 2, 25 ppm 

  

 

 

Figure 8: MIBC, Plane 1, 5 ppm 
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Figure 12: H27C, Plane 1, 5 ppm 

 

Figure 13: H27C, Plane 2, 5 ppm 

 

Figure 14: H27C, Plane 1, 25 ppm 

 

Figure 15: H27C, Plane 2, 25 ppm 
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Figure 16: W31, Plane 1, 5 ppm 

 

Figure 17: W31, Plane 2, 5 ppm 

 

Figure 18: W31, Plane 1, 25 ppm 

 

Figure 19: W31, Plane 2, 25 ppm 

 

 Comparisons of gas holdup results between plane 2 and plane 3 were made to determine 

if maximum gas holdup value is achieved near the sparger. Table XII and Table XIII show the 

results from the ERT and the differences in gas holdup values between plane 2 and plane 3. 

Values at 5 ppm show some instability relative to 25 ppm, having a maximum difference of -
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4.53%, a loss from the maximum at the sparger. The 25 ppm tests have a maximum change of 

1.98% over 40.5 cm, showing that gas holdup achieves maximum or near maximum values near 

the sparger. 

Table XII: Plane 2 to Plane 3 Gas Holdup 5 ppm 

     
PPM  RPM  1540  1540  2070  2600  2600 

5  LPM  2.5  4.5  3.5  2.5  4.5 

MIBC 

Plane 2 εg  6.74  9.27  10.72  11.64  15.48 

Plane 3 εg  6.01  8.97  9.82  7.11  12.20 

Δ εg  ‐0.74  ‐0.30  ‐0.90  ‐4.53  ‐3.28 

H27C 

Plane 2 εg  6.75  10.39  11.54  12.95  16.07 

Plane 3 εg  6.77  9.62  11.91  11.82  13.39 

Δ εg  0.02  ‐0.78  0.37  ‐1.12  ‐2.67 

W31 

Plane 2 εg  8.09  9.61  12.47  13.03  17.41 

Plane 3 εg  7.10  10.44  13.52  11.79  16.04 

Δ εg  ‐0.99  0.83  1.05  ‐1.24  ‐1.37 
 

Table XIII: Plane 2 to Plane 3 Gas Holdup 25 PPM 

     
PPM  RPM  1540  1540  2070  2600  2600 

25  LPM  2.5  4.5  3.5  2.5  4.5 

MIBC 

Plane 2 εg  6.74  9.27  10.72  11.64  15.48 

Plane 3 εg  7.44  10.38  9.82  11.02  17.46 

Δ εg  0.70  1.11  ‐0.90  ‐0.62  1.98 

H27C 

Plane 2 εg  6.75  10.39  11.54  12.95  16.07 

Plane 3 εg  7.64  11.86  11.91  12.86  17.70 

Δ εg  0.88  1.47  0.37  ‐0.09  1.63 

W31 

Plane 2 εg  8.09  9.61  12.47  13.03  17.41 

Plane 3 εg  8.02  10.75  13.52  12.84  18.48 

Δ εg  ‐0.07  1.14  1.05  ‐0.20  1.06 
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4. Gas holdup rate 

  

Table XIV displays gas holdup percentage increases for each frother at 5 ppm ad 25 ppm. The 

table calculates the percentage increase between minimum and maximum values achieved for 

each plane, shown as Min to Max. Plane 1 to Plane 2 compares the increase factor between 

planes for minimum and maximum values for each frother. Factors for each frother are similar 

both between minimum and maximum runs and between planes on the same test. Total gas 

holdup increases in ascending order from MIBC to W31 with the factor increase of gas holdup 

between the sensor planes ranging from 10 – 20%. The results shown in  

Table XIV suggest a relationship between the rate at which gas holdup builds relative to the 

height 

 

Table XIV: Gas holdup increase percentage 

       

  5 PPM   25 PPM 

   MIBC  H27C  W31  MIBC  H27C  W31 

Plane 1 εg  Min to Max  227%  237%  241%  249%  278%  240% 

Plane 2 εg  Min to Max  214%  215%  224%  230%  238%  215% 

P1 to P2 
εg 

Min  159%  144%  142%  144%  147%  139% 

Max  149%  131%  132%  132%  126%  125% 

 

of the column. Gas dispersion terms were used to derive an equation that considers the increase 

in gas holdup within the distance between the sensors. 

 

 𝐸௚ ൌ  
𝜀ଶ െ 𝜀ଵ

ℎ
∗ 𝐽௚    ሺ

𝜀௚

𝑠
ሻ (2) 
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Where Eg is the gas dispersion rate, ε1 and ε2 are gas holdup values at each sensor plane, h is the 

distance between sensor planes and Jg is the superficial gas velocity.  

 Table XV shows the values for Eg compiled for the 5 ppm and 25 ppm tests for each 

frother. Pump speeds and gas flow rates are listed from the design of experiment. Comparing 

values in the table, Eg is influenced primarily by air flow rates with smaller changes as pump 

speed increases. 

 

Table XV: Gas dispersion rates 

      

 RPM  LPM  Jg (cm/s)  Eg 5 ppm  Eg 25 ppm 

MIBC 

1540  2.5  0.809  0.33  0.33 

1540  4.5  1.455  0.87  0.95 

2600  2.5  0.809  0.25  0.23 

2600  4.5  1.455  1.13  1.10 

H27C 

1540  2.5  0.809  0.32  0.35 

1540  4.5  1.455  0.98  0.95 

2600  2.5  0.809  0.21  0.16 

2600  4.5  1.455  0.97  0.97 

W31 

1540  2.5  0.809  0.34  0.37 

1540  4.5  1.455  1.07  0.84 

2600  2.5  0.809  0.15  0.18 

2600  4.5  1.455  1.11  1.01 

 

The Eg values from Table 11 were added to Design Expert to test the results within the model. 

ANOVA results were significant for all three frothers and chart of the response are shown in 

Figure 20, Figure 21 and Figure 22. 
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Figure 20: Eg, MIBC 

 

Figure 21: Eg, H27C 
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Figure 22: Eg, W31 
 

 Comparing Figure 20 to Figure 22, there is no change in Eg as pump speed increases for 

both H27C and W31. Eg increased by 0.264 εg/s for MIBC at 4.5 LPM air flows but decreased by 

0.078 εg/s for 2.5 LPM air flow. High pump speed and low air flow rates gave the lowest Eg. This 

is the effect of higher fluid flow rates through the sensing volume. Varying concentration levels 

had no effect on Eg. To understand when dispersion is maximized, Eg was also calculated from 

plane 2 to plane 3. Referring to                     Figure 1, plane 2 and plane 3 are separated by 40.5 

cm. Differences in gas holdup values for plane 3 and plane 4 are statistically insignificant so 

mean value was used to calculate the values shown in  

 

Table XVI. Increases in Eg over the distance between plane 2 and plane 3 are insignificant 

compared to the rapid rate seen directly above the sparger. 
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Table XVI: Plane 2 to Plane 3 mean gas dispersion rate comparison 

     

 RPM  LPM  Jg (cm/s)  Eg 5 ppm  Eg 25 ppm  Eg Mean 

MIBC 

1540  2.5  0.809  0.33  0.33  0.010 

1540  4.5  1.455  0.87  0.95  0.046 

2600  2.5  0.809  0.25  0.23  0.009 

2600  4.5  1.455  1.13  1.10  0.016 

H27C 

1540  2.5  0.809  0.32  0.35  0.005 

1540  4.5  1.455  0.98  0.95  0.011 

2600  2.5  0.809  0.21  0.16  0.030 

2600  4.5  1.455  0.97  0.97  ‐0.024 

W31 

1540  2.5  0.809  0.34  0.37  0.002 

1540  4.5  1.455  1.07  0.84  0.003 

2600  2.5  0.809  0.15  0.18  0.005 

2600  4.5  1.455  1.11  1.01  0.013 
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5. Three-phase results 

5.1. Three-phase results and comparisons 

 To reduce the complexity in the initial three-phase testing the design of experiment only 

used frother concentration and percent solids as variables. Pump speed was set at 2300 RPM 

with air flow set at 4.0 LPM (Jg = 1.13 cm/s). Using the same methods as the two-phase testing, 

the data from the three-phase frother tests was analyzed in Design Expert and compiled in  

Table XVII. Results had a high degree of variance between frothers. MIBC has significant 

models for  

Table XVII: Three-phase ANOVA results 

   Model  A: Concentration  B: % Solids  Lack of fit 

MIBC 

Mean 
F‐value  14.63  14.63     2.73 

p‐value  0.0187  0.0187    0.268 

Plane 1 
F‐value  9.46  9.46     20.89 

p‐value  0.0371  0.0371     0.0457 

Plane 2 
F‐value  16.44              16.44     0.7328 

p‐value  0.0154             0.0154     0.5771 

Eg 
F‐value        0.0186 

p‐value        0.9039 

H27C 

Mean 
F‐value  9.54  9.54     1.19 

p‐value  0.0366  0.0366     0.4573 

Plane 1 
F‐value  10.85  10.85     0.8722 

p‐value  0.0301  0.0301     0.5341 

Plane 2 
F‐value  8.3  8.3     1.58 

p‐value  0.0449  0.0449     0.3882 

Eg 
F‐value  44.66     42.27  0.0097 

p‐value  0.0001     0.0001  0.9 

W31 

Mean 
F‐value  34.13  43.78  24.48  6.57 

p‐value  0.0086  0.007  0.0158  0.1245 

Plane 1 
F‐value  41.47  53.38  29.56  5.38 

p‐value  0.0065  0.0053  0.0122  0.1462 

Plane 2 
F‐value  27.73  34.8  19.65  6.21 

p‐value  0.0119  0.0097  0.0213  0.1304 

Eg 
F‐value             

p‐value             
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plane 1 and plane 2 while the mean and Eg models had F and p-values outside of significant 

range. All the models created for H27C and W31 were both significant apart from the Eg model 

for W31. Comparing H27C and W31 shows that the model for H27C is dependent on frother 

concentration except for Eg, which is related to solids content. The solids content is not a 

significant factor for the gas holdup values for H27C. The model for W31 shows that both 

frother concentration and solids content affect gas holdup. Eg for W31 is not significant for any 

of the variables. Given the highly variable results for the three-phase testing, results for each 

frother are discussed separately. 

5.1.1. MIBC Results 

 Table XVIII shows the compiled results of the MIBC tests. The midpoint values (15 

ppm, 15 % solids) were averaged from the three tests performed. Reviewing Table XVII shows 

that statistical significance varies by plane. The model for plane 1 is significant but the lack of fit 

is also significant, meaning that the test results cannot be used to predict outcomes.  

Table XVIII: MIBC Three-phase test results 

Frother 
Conc 
ppm  % Solids 

Plane 1 
εg 

Plane 2 
εg  Mean εg  Eg  Δ εg P1‐P2  

MIBC 

5  10  8.070  10.420  9.245  0.532  2.350 

5  20  8.851  10.375  9.613  0.345  1.524 

15  15  9.347  11.572  10.460  0.504  2.225 

25  10  12.256  14.820  13.538  0.580  2.564 

25  20  9.993  13.185  11.589  0.723  3.192 
 

Conversely, plane 2 and the mean can be used for prediction. Eg values only worked for the lack 

of fit test. Overall, this shows that MIBC results do not create a stable model. Comparing Eg 

values in Table XVIII shows that there is a factor of 2.1 between the lowest and highest values. 

Review of the last column of Table XVIII shows that at a concentration of 5 ppm and 20 percent 
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soilds, the Δεg is 1.524 which indicates that coalescence is a major factor in the low gas holdup 

increase between plane 1 and plane 2. This agrees with earlier findings that an increase in solids 

content decreases gas holdup and increases coalescence (Sarhan, et al., 2017). As frother 

concentration decreases below the critical coalescence concentration, coalescence increases, 

leading to a decrease in gas holdup (Cho, et al., 2002) . At 25 ppm, above the critical coalescence 

concentration, Eg values stabilize and are the same as H27C for both low and high solids 

concentration and are less than 10% different than W31. Although the MIBC tests did not create 

a significant model, Design Expert will create charts representing the results that were recorded 

as shown in Figure 23, Figure 24, Figure 25, and Figure 26 This serves as a useful visual 

method to compare the effects relative to the other frothers. The variable with the greatest effect 

in the initial tests was the frother concentration level. This compares well with the two-phase 

results where frother concentration has a significant effect on total gas holdup. 
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Figure 23: MIBC plane 1 gas holdup results 

 

Figure 24: MIBC plane 2 gas holdup results 

 

Figure 25: MIBC mean gas holdup results 

 

Figure 26: MIBC Eg results 

  

  

5.1.2. H27C Results 

 The increased strength of H27C creates a more stable system compared to MIBC. 

Reviewing Table XVII shows that H27C produces significant models for each factor, the only 

change being the Eg model which is dependent on percent solids rather than frother 

concentration. It is hypothesized that with the increase in solids and molecular weight of the 

frother, bubble momentum decreases and improves dispersion within the column. This effect will 
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require more testing and research to confirm. Comparing Eg values in Table XIX, there is only a 

factor of 1.2 between the lowest and highest values. This is attributable to the increased strength 

of the bubbles in the H27C system which decreases coalescence and stabilizes gas holdup. 

Comparing the last column in Table XVIII and Table XIX (Δεg P1-P2) at 5 ppm and 20% solids it 

can be seen that coalescence leads to lower gas holdup values between plane 1 and plane 2. This 

demonstrates the importance of frother characteristics in maintaining bubble competence in the 

pulp zone which is the most turbulent area in the column. The values at 25 ppm are within 0.03 

of each other, indicating that frother performance is similar at concentrations above the CCC. 

 

Table XIX: H27C three-phase test results 

  

 Charts for the H27C tests results are shown Figure 27, Figure 28, Figure 29, and Figure 

30. Results are like those for MIBC apart from the changes in the Eg results. As concentration 

increases at low solids content, gas dispersion decreases. This could be a result of the increased 

velocity caused by a decrease in the mass of the particle laden bubbles as they move through the 

two sensor planes. Testing of frothers with higher molecular weights will aid in understanding 

this effect. This is further reinforced by the sharp increase as the solids loading increases. This is 

an area that needs further research and additional testing.  

Frother 
Conc 
ppm  % Solids 

Plane 1 
εg 

Plane 2 
εg  Mean εg  Eg  Δ εg P1‐P2  

H27C 

5  10  8.746  11.636  10.191  0.654  2.890 

5  20  7.882  10.741  9.312  0.647  2.860 

15  15  8.525  11.779  10.152  0.737  3.255 

25  10  10.396  12.968  11.682  0.582  2.573 

25  20  11.703  14.864  13.284  0.716  3.161 
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Figure 27: H27C plane 1 gas holdup results 

 

Figure 28: H27C plane 2 gas holdup results 

 

Figure 29: H27C mean gas holdup results 

 

Figure 30: H27C Eg results 

 
 

5.1.3. W31 Results 

 W31 gave the most stable results of the three frothers. Table XX shows the values for 

W31. The factor between the lowest and highest values for Eg is only 1.09 compared to 2.1 and 

1.2 for MIBC and H27C, respectively. Similarly, the difference in gas dispersion rate between 

plane 1 and plane 2 is a maximum of 0.3 %/s, indicating that coalescence is more controlled with 

a stronger frother. At 5 ppm and 20% solids, the most unstable test for MIBC, W31 maintains 
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stable gas holdup and gas dispersion values relative to tests at higher concentrations. As with 

H27C, W31 decreases coalescence in the turbulent pulp zone, stabilizing the bubbles as they 

move from the collection zone into the froth phase.     

Table XX: W31 three-phase test results 

Frother 
Conc 
ppm  % Solids 

Plane 1 
εg 

Plane 2 
εg  Mean εg  Eg  Δ εg P1‐P2  

W31 

5  10  6.690  9.597  8.143  0.658  2.907 

5  20  3.992  6.656  5.324  0.603  2.663 

15  15  7.535  10.094  8.711  0.626  2.558 

25  10  8.963  11.773  10.368  0.636  2.809 

25  20  7.419  10.323  8.871  0.657  2.904 
  

 Charts for the W31 results are shown in Figure 31, Figure 32, Figure 33, and Figure 34. 

These figures show the influence of solids content on total gas holdup, reducing total gas holdup 

as shown in previous research (Banisi, 1995). An interesting observation from comparing charts 

is that only W31 shows the effect of the increase in solids content. This effect could be the result 

of the increased stability of the bubbles in the W31 tests, allowing the effect to be captured by 

the ERT.   
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Figure 31: W31 plane 1 gas holdup results 

 

Figure 32: W31 plane 2 gas holdup results 

 

Figure 33: W31 mean gas holdup results 

 

Figure 34: W31 Eg results 

 

5.1.4. H27C block test results 

 Given the variability between frother results, after completing the two factor tests for all 

three frothers a block test was designed to determine if conditions such as barometric pressure 

and temperature play a role in test results. Air flow was added as an additional parameter for the 

block tests to determine the role of air flow on gas holdup in the presence of solids. A total of 14 
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tests were conducted, seven tests on two separate days. Results were compiled and Design 

Expert produced the ANOVA results shown in Table XXI. Significant results were achieved for 

the block test with frother concentration and air flow as the significant factors in the tests.  

Table XXI: Block test ANOVA results 

   Model  A: Concentration  B: % Solids  C: Air Volume 
Lack of 
fit 

H27C 

Mean 
F‐value  37.51  37.37     34.1  0.1971 

p‐value  0.0001  0.0003     0.0004  0.9276 

Plane 
1 

F‐value  38.47  37.74     27.84  0.1947 

p‐value  0.0001  0.0003     0.0007  0.929 

Plane 
2 

F‐value  32.66  32.62     35.59  0.2553 

p‐value  0.0001  0.0004     0.0003  0.8927 

Eg 
F‐value  30.03        30.03  0.8405 

p‐value  0.0003        0.0003  0.5964 
 

 While there were differences between the conditions for each of the tests, the results 

achieved still produced a significant model. In addition, a confirmation test was performed to 

verify the results of the block test. The confirmation test was created in Design Expert and the 

results are shown in Table XXII.  

Table XXII: Block test confirmation results 

Confirmation Test           

Concentration  % Solids 
Air 

Volume        
30  15  4.5        

Response 
Data              

Plane 1  Plane 2  Mean        
9.438  13.122  11.280        

Response 
Predicted 
Mean 

Predicted 
Median 

Std Dev  SE Pred 
95% PI 
low 

Data 
Mean 

95% PI 
high 

Plane 1*  9.72203  9.72203  0.80278  0.96549  7.496  9.438  11.948 

Plane 2*  11.3646  11.3646  1.24875  1.50184  7.901  13.122  14.828 

Mean*  6.64715  6.64715  2.10779  2.18176  1.845  11.280  11.449 
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 As shown in Figure 35 to Figure 37 gas holdup is a combination of frother concentration 

and air volume in the block test. Gas dispersion effects are principally reliant on air volume 

which matches the findings of the two-phase tests as shown in Figure 20, Figure 21 and  

Figure 22.  

 

Figure 35: Plane 1 gas holdup for H27C block 
test 

 

Figure 36: Plane 2 gas holdup for H27C block 
test 

 

Figure 37: Mean gas holdup for H27C block 
test 

 

Figure 38: Eg for H27C block test 
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5.2. Three-phase results discussion 

 The models created by Design Expert are essential in comparing the results of the testing 

completed for each frother. There are significant differences in the results between the three 

frothers tested and Design Expert allows for these differences to be analyzed and visualized 

quickly.  

  The unique results of the W31 tests in which the gas holdup decreases with the increase 

in percent solids of the slurry requires further investigation and possibly the testing of even 

stronger frothers to determine if the results can be repeated. Understanding the possible 

mechanisms for this effect, in the stronger frothers when compared to weaker frothers, is 

essential in predicting the behavior of various frothers. 

 MIBC starts to perform more like the stronger frothers as concentration increases past the 

CCC. At low concentration MIBC is unstable and results becomes unreliable. Coupled with the 

poor performance for gas dispersion rate, the MIBC data indicates that there is the possibility of 

poor solids flotation rates and collection efficiency at the lab scale and possibly at the plant scale. 

This does not appear to be the case with H27C or W31 which performed more consistently 

across the range of concentrations tested.  
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6. Conclusions and future work 
 

‐ ERT is an effective method to determine gas holdup concentrations throughout a flotation 

column. By positioning the sensor near the sparger it is possible to quantify the behavior 

of various frothers, frother concentrations and mechanical parameters and their effect on 

gas holdup. 

‐ Stronger frothers increase gas holdup when frother concentration, pump speed and air 

flow are increased. This is due to the increased stability imparted to the froth by higher 

concentrations and stronger frother. The relative increase in gas holdup is similar for all 

frothers with stronger frothers producing higher overall gas holdup values.  

‐ The gas dispersion rate is correlated to the air flow passing through the sparger. Increased 

gas added to the system increases the bubble surface area flux, increasing gas holdup. 

Frother type, concentration and pump speed have little or no effect on the gas dispersion 

rate. Gas dispersion does not substantially increase after the first few centimeters past the 

sparger outlet.  

‐ Continued testing of stronger frothers will determine the effect of slurry solids content on 

gas dispersion and the stability of the axial dispersion rate.  

‐ Future testing will correlate fundamental gas dispersion values and frother strength to 

total recovery of solids and recovery efficiency.   

‐ Additional ore types need to be investigated, as well as the effect of collector and 

depressant chemicals, as they relate to total gas holdup in the column. 
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