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Abstract 

 Historic placer mining operations along the Middle Fork John Day River (MFJD) north 

of Galena, Oregon have left the MFJD channel straightened, incised and lacking in riverbed 

structure. This lack of riverbed structure makes this stretch of the MFJD poor habitat for trout 

and migrating salmon. In order to restore this stretch of the MFJD to better serve aquatic species, 

Inter-Fluve Inc. (IF), United States Forest Service (USFS) and The Freshwater Trust (TFT) will 

be performing restoration to both the MFJD channel as well as Bear Creek, a tributary of the 

MFJD. The proposed restoration work will consist of re-routing of the MFJD and Bear Creek, re-

meandering of the MFJD and construction of riverbed structure throughout the MFJD. 

 In preparation for this proposed restoration, the connectivity of groundwater and surface 

water throughout the reach must be assessed. The main focus of this groundwater and surface 

water connectivity assessment will be to characterize how wetlands located along the reach 

interact with surface water features via groundwater. Characterizing the connection between 

groundwater and surface water will aid in determining the potential risk of proposed restoration 

having negative impacts on wetlands located along the reach. In order to fully characterize the 

groundwater and surface water connectivity at the site, a monitoring plan focused on geologic, 

hydrogeologic and hydrologic characteristics was implemented. Data obtained from site 

monitoring was used to support a groundwater model for the site. This groundwater model was 

used to make predictions of how proposed restoration would impact the site wetlands. 

 Steady state and transient groundwater models of observed conditions calibrated 

relatively well producing low error values. Groundwater models revealed that initial restoration 

performed on Bear Creek has had a negative impact on the site wetlands. When all proposed 

restoration work is modeled, an overall increase in wetland water elevations is predicted 

throughout most the wetland area. Water elevations near the abandoned Bear Creek channel 

however, show a decrease in water elevation when all restoration work is implemented. This 

decrease in water elevation only occurs between May and July; modeling of July through 

October in this area show an increase in water elevation levels. Overall when all proposed 

restoration is completed, the site wetlands and entire site in general will benefit in terms of 

higher water elevations, especially during base flow conditions. 

 

 

 

 

 

 

 

Keywords: wetlands, monitoring, re-meandering, Middle For John Day River 



iii 

Dedication 

I’d like to dedicate this thesis to those who have stubbornly and constantly kept faith in me as a 

person. There have been times I didn’t even believe in myself on this journey and I have been 

blessed to be surrounded by the greatest support group on the planet. To quote the great Batman, 

“Sometimes people deserve to have their faith rewarded.” This thesis is my reward to those who 

have shown faith in me as an individual, a friend, a brother, a son and a fellow passenger on this 

unforgettable journey we call life. None of this would be possible without my friends and family. 

Thank you all for everything. 

 

I’d like to end this dedication with a quote from Jack Kerouac that I think accurately describes 

the people who shaped me into the person I am today.  

 

“Here’s to the crazy ones. The misfits, the rebels, the troublemakers. The round pegs in the 

square holes. The ones who see things differently. They’re not fond of rules. And they have no 

respect for the status quo. You can quote them, disagree with them, disbelieve them, glorify or 

vilify them. About the only thing that you can’t do, is ignore them because they change things. 

They invent. They imagine. They heal. They explore. They create. They inspire. They push the 

human race forward. Maybe they have to be crazy. Because the ones who are crazy enough to 

think that they can change the world, are the ones who do.” 

 

This work is also dedicated to my good friend, Chad Young. You’ll always remain an inspiration 

to my life. 

 

 



iv 

Acknowledgements 

 Professor Glenn Shaw 

 Committee members 

o Professor Larry Smith 

o Professor Robert Pal 

o Professor Raja Nagisetty 

o Professor Liping Jiang 

 Andy Bobst, MBMG 

 Donna Conrad 

 Nick Barney 

 Jeffrey & Cathy Lunzer 

 Gardner Johnston 

 Matt Cox 

 Pollyanna Lind 

 The Freshwater Trust 

 United States Forest Service 

 



v 

Table of Contents 

 

ABSTRACT ............................................................................................................................................. II 

DEDICATION ........................................................................................................................................ III 

ACKNOWLEDGEMENTS ........................................................................................................................ IV 

LIST OF TABLES ..................................................................................................................................... IX 

LIST OF FIGURES .................................................................................................................................... X 

LIST OF EQUATIONS ........................................................................................................................... XIII 

1. PROJECT OVERVIEW ........................................................................................................................... 1 

1.1. Purpose .............................................................................................................................. 1 

1.2. Site description ................................................................................................................... 2 

1.3. Modeling objectives ........................................................................................................... 3 

2. SITE BACKGROUND AND CONDITIONS .................................................................................................... 6 

2.1. History ................................................................................................................................ 6 

2.2. Topography ........................................................................................................................ 6 

2.3. Geology .............................................................................................................................. 7 

2.3.1. Surficial ................................................................................................................................................ 7 

2.3.2. Subsurface ........................................................................................................................................... 8 

2.3.3. Aquifer ................................................................................................................................................. 8 

2.1. Surface water flows ............................................................................................................ 9 

2.2. Watershed area ................................................................................................................. 9 

2.3. Climate ............................................................................................................................... 9 

3. METHODS ...................................................................................................................................... 11 

3.1. Groundwater monitoring ................................................................................................. 11 

3.1.1. Monitoring Wells ............................................................................................................................... 12 



vi 

3.1.2. Staff Gauges ...................................................................................................................................... 13 

3.1.3. Temperature and Specific Conductivity ............................................................................................ 14 

3.2. Surface water monitoring ................................................................................................ 14 

3.2.1. Middle Fork John Day River ............................................................................................................... 14 

3.2.2. Bear Creek ......................................................................................................................................... 15 

3.3. Hydraulic conductivity ...................................................................................................... 16 

3.3.1. Slug tests ........................................................................................................................................... 16 

3.3.2. Soil sieve analysis .............................................................................................................................. 16 

3.4. Silt/clay layer thickness .................................................................................................... 17 

3.5. Vegetation mapping ........................................................................................................ 18 

3.6. Groundwater modeling .................................................................................................... 19 

3.6.1. Computer program and code ............................................................................................................ 19 

3.6.2. Model domain ................................................................................................................................... 19 

3.6.3. Aquifer properties ............................................................................................................................. 20 

3.6.3.1. Type and thickness .................................................................................................................... 20 

3.6.3.2. Hydraulic conductivity and storativity....................................................................................... 21 

3.6.4. Boundary conditions ......................................................................................................................... 21 

3.6.4.1. Middle Fork John Day River ....................................................................................................... 21 

3.6.4.2. Restored Middle Fork John Day River ......................................................................................... 1 

3.6.4.3. Bear Creek ................................................................................................................................. 25 

3.6.4.4. Groundwater flux ...................................................................................................................... 25 

3.6.5. Initial conditions (steady-state model) .............................................................................................. 26 

3.6.6. Flow Budget ....................................................................................................................................... 26 

3.6.7. Sensitivity analysis ............................................................................................................................. 27 

3.6.8. Transient (unsteady) model .............................................................................................................. 27 

3.6.9. Predictive models .............................................................................................................................. 28 

3.6.9.1. Pre-Restoration ......................................................................................................................... 28 

3.6.9.2. Complete Bear Creek Removal.................................................................................................. 28 

3.6.9.3. Post-Restoration ....................................................................................................................... 29 



vii 

3.6.10. Predictive Model Uncertainty ......................................................................................................... 29 

4. RESULTS ......................................................................................................................................... 30 

4.1. Groundwater .................................................................................................................... 30 

4.1.1. Hydrographs ...................................................................................................................................... 30 

4.2. Surface water flows .......................................................................................................... 31 

4.2.1. Middle Fork John Day and Bear Creek ............................................................................................... 31 

4.3. Hydraulic conductivity ...................................................................................................... 31 

4.4. Silt/clay layer thickness .................................................................................................... 33 

4.5. Vegetation mapping ........................................................................................................ 33 

4.6. Groundwater modeling .................................................................................................... 36 

4.6.1. Boundary conditions inputs............................................................................................................... 36 

4.6.2. Steady state model ............................................................................................................................ 37 

4.6.3. Flow budget ....................................................................................................................................... 38 

4.6.4. Sensitivity analysis ............................................................................................................................. 39 

4.6.5. Transient model ................................................................................................................................ 40 

4.6.6. Predictive models .............................................................................................................................. 41 

4.6.7. Predictive model uncertainty ............................................................................................................ 45 

5. DISCUSSION .................................................................................................................................... 46 

5.1. Groundwater modeling .................................................................................................... 46 

5.1.1. Steady state and transient model error ............................................................................................ 46 

5.1.2. Sensitivity analysis ............................................................................................................................. 46 

5.1.3. Predictive model uncertainty ............................................................................................................ 46 

5.1.4. Evapotranspiration ............................................................................................................................ 47 

5.2. Model predictions ............................................................................................................ 48 

5.3. Vegetation predictions ..................................................................................................... 49 

6. CONCLUSIONS ................................................................................................................................. 50 

7. RECOMMENDATIONS ........................................................................................................................ 51 

8. REFERENCES CITED (OR BIBLIOGRAPHY) ............................................................................................... 52 



viii 

9. APPENDIX A – SITE DATA .................................................................................................................. 54 

10. APPENDIX B – MONITORING AND FIELD DATA ....................................................................................... 57 

11. APPENDIX C – DATA ANALYSIS ........................................................................................................... 80 

12. APPENDIX D – GROUNDWATER MODEL INPUTS ..................................................................................... 88 

  



ix 

List of Tables 

Table I: Summary of subsurface conditions from publicly available well logs ..................8 

Table II: Site precipitation levels for 2018 and average years. ..........................................10 

Table III: Hydraulic conductivity results by test and geologic unit ...................................32 

Table IV: Summary of hydraulic conductivity data based off geologic unit .....................32 

Table V: Species present in each zone and plot. ................................................................34 

Table VI: River conductance inputs for MFJD and Bear Creek ........................................36 

Table VII: Darcy law inputs for groundwater flux (south and north boundaries) .............36 

Table VIII: Steady state model flow budget estimated and modeled values. ....................38 

Table IX: Predictive model uncertainty analysis ...............................................................45 

Table X: Rough approximation of domain evapotranspiration .........................................47 

 

 

 

  



x 

List of Figures 

 

Figure 1: Inset maps showing the location of the Galena Tailings Site (GTS). Imagery and data 

from Oregon.gov. .....................................................................................................3 

Figure 2: Current site conditions map depicting Middle Fork John Day River (solid, blue), Bear 

Creek channels (dotted, blue) and wetlands extent (solid, white). Yellow arrows indicate 

flow direction of surface water features. Imagery from GoogleEarth. ....................4 

Figure 3: Simplified post-restoration conditions map depicting Middle Fork John Day River 

main channel (solid, blue), Middle Fork John Day River secondary channel (dashed, 

blue), Bear Creek channel (dotted, blue) and wetlands extent (solid, white). Yellow 

arrows indicate flow direction of surface water features. Not all secondary channels are 

shown. Imagery from GoogleEarth. .........................................................................4 

Figure 4: Simplified Bear Creek post-restoration conditions map depicting Bear Creek existing 

channels to remain (red), Bear Creek channels to be removed (blue), Bear Creek channels 

to be constructed (black) and the Middle Fork John Day River (pink). Yellow arrows 

indicate the flow direction of surface water features. Imagery from GoogleEarth. 5 

Figure 5: Geologic map with the study area outlined in red. Study area is underlain by volcanic 

and sedimentary rock. Quaternary alluvium sediments make up the study area surficial 

deposits. Geologic map of the Canyon City quadrangle, northeastern Oregon [Brown & 

Thayer, 1966]. ..........................................................................................................7 

Figure 6: Monitoring equipment locations. Monitoring wells (MW) marked in yellow, staff 

gauges (SG) marked in red. ...................................................................................11 

Figure 7: Hand cutting well screen slots with a hacksaw ..................................................12 

Figure 8: Monitoring well installed at GTS .......................................................................12 

file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684130
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684130
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684131
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684131
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684131
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684132
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684132
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684132
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684132
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684132
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684133
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684133
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684133
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684133
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684135
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684135
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684136
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684137


xi 

Figure 9: Staff gauge installed in a tailings pond at the GTS ............................................13 

Figure 10: Multi 340i probe measuring temperature and specific conductivity in a monitoring 

well .........................................................................................................................14 

Figure 11: Map depicting the location of all Bear Creek channels ....................................15 

Figure 12: Soil sieves setup in accordance with ASTM D6913. .......................................17 

Figure 13: Vegetation survey plot being used at the GTS .................................................18 

Figure 14: Model domain with relevant site features labeled. ...........................................20 

Figure 15: Ground surface elevations of the restored MFJD model domain. ....................24 

Figure 16: Water elevations in monitoring equipment between May 10, 2018 and October 13, 

2018. Monitoring wells are solid lines, staff gages are dashed lines. ....................30 

Figure 17: Combined discharge measurements of the MFJD (black) and Bear Creek (red) 

capturing high flow levels on the MFJD. Left vertical axis depicts MFJD discharge and 

the right vertical axis depicts Bear Creek discharge. .............................................31 

Figure 18: Total depth of silt/clay layer below ground surface from MW1 to SG8 ..........33 

Figure 19: Map showing the location and extent of each vegetation zone at the GTS. .....34 

Figure 20: Normalized percent cover of native (N) and exotic (E) species for each mapped 

vegetation zone ......................................................................................................35 

Figure 21: Wetland indicator value for each mapped vegetation zone. (a) zones and (b) zones are 

statistically different from one another. .................................................................35 

Figure 22: Head contours for the July 9, 2018 steady state model. ...................................37 

Figure 23: Computed vs. observed head plot and error summary for the July 9, 2018 steady state 

model......................................................................................................................38 

Figure 24: Pie charts depicting estimated and modeled inflows and outflows. .................39 

file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684138
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684139
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684139
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684140
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684141
file://///mtfiles01/GrantFiles$/John_Lunzer_Thesis_FINAL.docx%23_Toc7684142


xii 

Figure 25: Sensitivity plot depicting RMS error vs. percent change in parameter. ...........40 

Figure 26: Transient model modeled water elevation plots, calibration target range and error 

summary. ................................................................................................................42 

Figure 27: Four locations selected throughout the site where modeled water elevations were 

plotted to determine the impacts of restoration across the site. .............................43 

Figure 28: Predictive model water elevation plots. ...........................................................44 



xiii 

. 

List of Equations 

Equation 1: Modified Hazen's equation .............................................................................17 

Equation 2: River conductance equation ...........................................................................21 

Equation 3: Manning's equation ........................................................................................23 

Equation 4: Darcy's Law ....................................................................................................25 



1 

1. Project Overview 

1.1. Purpose 

River restoration has become a rapidly growing industry and field of science. Generally 

the focus of river restoration efforts is on restoring channel structure by altering sinuosity, riffle-

pool sequences, spawning habitat, secondary channels and vegetation. These efforts usually 

consider hydrologic parameters such as design flow rate, flood frequency and connectivity to 

floodplain [Groot et al., 2008]. Typically river restoration projects have not had a focus on 

groundwater monitoring or modeling. 

Currently groundwater – surface water interactions are often investigated with 

groundwater modeling techniques in situations where aquifer withdrawal begins to inhibit stream 

base flows. The complexity of these groundwater – surface water systems often requires the need 

for detailed monitoring of both groundwater and surface water features [Baird et al., 2005, 

Fleckenstein et al., 2014]. These studies are often larger scale and seek to predict long terms 

impacts to an aquifer system. 

Hyporheic exchange is also an area of relatively intense study in regards to characterizing 

groundwater – surface water interactions. These studies are typically small scale with a focus on 

understanding how river restoration efforts serve to increase hyporheic exchange in a system. 

These studies can range from groundwater models of restored systems to theoretical models 

quantifying the increase in hyporheic exchange based off increasing channel sinuosity [Kasahara 

& Hill, 2008, Boano et al., 2006]. 

 In the past ten years information on baseline conditions and monitoring after most river 

restoration work has slowly begun to draw more scientific interest. By monitoring and studying 

groundwater –surface water interaction before and after systems are restored, the ability to create 
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efficient and effective, science based restoration design plans will improve. Monitoring and 

modeling river systems before they are restored will allow for the ability to make predictions of 

long-term effects of proposed restoration work. This in turn will directly aid in the prevention of 

unforeseen or unintended consequences from restoration efforts. [Schneider et al., 2011, Rogiers 

et al., 2011]. 

Typically baseline conditions surveys and restoration monitoring studies do not 

investigate groundwater on a detailed scale and even fewer use monitoring efforts to support 

groundwater models. The potential usefulness of groundwater models in river restoration is 

abundantly apparent and a major proponent of the objectives of this project. The main objectives 

of this thesis project are to; i) implement a pre-restoration monitoring plan for a site that is going 

to be restored with common river restoration techniques, ii) use collected monitoring data and a 

field site investigation study to produce a groundwater model, iii) use the constructed 

groundwater model to make predictions of how proposed restoration work will impact 

groundwater – surface water interactions at the site, iv) use the model results to provide practical, 

sound recommendations to directly aid the proposed restoration design. 

1.2. Site description 

The Middle Fork John Day River (MFJD) is located in east-central Oregon near the town 

of Galena in Figure 1. Historic placer mining in the region has left sections of the MFJD 

channelized and surrounded by piles of remnant mine waste rock. In this channelized state, the 

MFJD has limited floodplain connection and provides little spawning habitat for salmon and 

trout species. One such mining impacted section of the MFJD located 2.0 miles north of Galena, 

known as the Galena Tailings Site (GTS), is currently in the design process for restoration 

(Figure 1). This restoration will be performed through a collaborative effort between Inter-Fluve, 
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Inc. (IFI), the United States Forest Service (USFS) and The Freshwater Trust (TFT). Restoration 

plans aim to re-meander and reconnect the MFJD to its floodplain and reconnect nearby tributary 

Bear Creek to the MFJD. Existing wetlands at the GTS are primarily fed by a channel of Bear 

Creek; this channel will be removed as per current restoration plans.  

 

1.3. Modeling objectives 

The proposed restoration plans pose a potential risk to the long-term health of the GTS 

wetlands. Both the re-meandering of the MFJD as well as the removal of the Bear Creek channel 

that feeds the wetlands will change hydrologic stresses on the wetlands. Current site conditions, 

Figure 1: Inset maps showing the location of the Galena Tailings Site (GTS). Imagery and data 

from Oregon.gov. 
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proposed-restoration conditions and detailed Bear Creek proposed-restoration conditions are 

depicted in Figures 2, 3 and 4 respectively. In order to determine the net impacts of proposed 

restoration on the GTS wetlands, a groundwater study was performed in order to produce a 

groundwater flow model of the GTS under pre- and post-restoration conditions. Groundwater 

modeling was supported by a field monitoring program. Pre- and post-restoration conditions 

were modeled and recommendations were made for a restoration plan that meets all MFJD 

restoration goals while maintaining the health of the wetland area. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2: Current site conditions map depicting Middle Fork John Day River (solid, blue), Bear Creek 

channels (dotted, blue) and wetlands extent (solid, white). Yellow arrows indicate flow direction of surface 

water features. Imagery from GoogleEarth. 

Figure 3: Simplified post-restoration conditions map depicting Middle Fork John Day River main channel 

(solid, blue), Middle Fork John Day River secondary channel (dashed, blue), Bear Creek channel (dotted, 

blue) and wetlands extent (solid, white). Yellow arrows indicate flow direction of surface water features. Not 

all secondary channels are shown. Imagery from GoogleEarth. 
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Figure 4: Simplified Bear Creek post-restoration conditions map depicting Bear Creek existing channels to 

remain (red), Bear Creek channels to be removed (blue), Bear Creek channels to be constructed (black) and 

the Middle Fork John Day River (pink). Yellow arrows indicate the flow direction of surface water features. 

Imagery from GoogleEarth. 
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2. Site Background and Conditions 

2.1. History 

Mining operations have taken place in the MFJD watershed, formally known as the 

Susanville mining district, since placer mining began along Elk Creek in 1864 [Lindgren, 1901]. 

Significant placer mining operations continued until the 1950s when most operations were 

abandoned. These placer mining operations moved large amounts of waste rock through dredges, 

sluices and other pieces of mining equipment [Dept. of Geology & Mineral Industries, 1957]. 

Additionally mining operations channelized the MFJD in several reaches as well as channelized 

many of the main tributaries to the MFJD. At the GTS, placer mining operations channelized the 

MFJD and left large piles of mine waste rock directly west of the MFJD. These piles of mine 

waste rock stretch the entire length of the site from south to north along the MFJD. This mine 

waste rock consists predominantly of coarse sand, cobbles and boulders with metal scraps 

throughout. The GTS is currently owned and managed by the USFS as public land used for 

recreation, grazing and logging. 

2.2. Topography 

Topography at the GTS consists of valley and mountain terrain between 3375 ft and 3450 

ft above sea level. The majority of the site lies within a relatively flat mountain valley that 

experiences a drop of roughly 15 ft across the GTS. The west boundary of the GTS is made up of 

mountain terrain that is significantly steeper than the rest of the terrain at the GTS. The 

northwest boundary of the GTS is an alluvial fan. This terrain is not as steep as the mountain 

terrain to the west but is significantly steeper than the valley terrain. 

Light detection and ranging data (LiDAR) were available for the site from the State of 

Oregon Department of Geology and Mineral Industries [Dept. of Geology & Mineral Industries, 
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2010]. This LiDAR survey was shot in August 2010 with roughly 30 returns per square meter 

providing high resolution data (Appendix A-1). Additionally the LiDAR data were available in 

formats that showed both bare ground surface and vegetation at the site.  

2.3. Geology 

2.3.1. Surficial  

Site geology was characterized using the United States Geological Survey (USGS) 

produced Geologic map of the Canyon City quadrangle, northeastern Oregon [Brown & Thayer, 

1966]. The site scale geology can generally be described as Mesozoic metasedimentary and 

volcanic rocks. These units typically are present as subsurface bedrock and surface exposures 

throughout the region. At the site, these Mesozoic rocks are typically basalts that are overlaid by 

Quaternary alluvium deposits that consist of sands, gravels and cobbles. Figure 5 shows the 

USGS geologic map with site boundary marked. 

Figure 5: Geologic map with the study area outlined in red. Study area is underlain by volcanic and 

sedimentary rock. Quaternary alluvium sediments make up the study area surficial deposits. Geologic map of 

the Canyon City quadrangle, northeastern Oregon [Brown & Thayer, 1966]. 
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2.3.2. Subsurface  

Data describing subsurface conditions are available through the Oregon Water Resources 

Department Well Report Query [Oregon Water Resources Dept., 2019]. In total nine public well 

records were available within 4.0 miles of the site (Appendix A-2). Pertinent information from 

these well records included distance from the GTS, well depth, depth to bedrock and whether the 

well was located in the valley or on the mountain front (Table I). The four wells located 0.75 

miles south of the GTS in the valley sediments revealed bedrock to be between 22.0 feet (ft) and 

42.0 ft below ground surface (bgs). 

 

Table I: Summary of subsurface conditions from publicly available well logs 

Well ID 
Approximate distance 

from site (miles) 

Well depth 

(ft) 
Well location 

Depth to 

bedrock (ft) 

GRAN_51292 0.75 106.0 Valley 22.0 

GRAN_50256 0.75 87.0 Valley 35.0 

GRAN_50052 0.75 150.0 Valley 29.0 

GRAN_50965 0.75 96.0 Valley 42.0 

GRAN_51307 4.00 122.0 Mountain front 36.0 

GRAN_50572 3.25 180.0 Mountain front 45.0 

GRAN_50730 2.75 117.0 Mountain front 38.0 

GRAN_50924 2.50 100.0 Mountain front 60.0 

GRAN_51024 3.50 200.0 Mountain front 45.0 

2.3.3. Aquifer  

Based off surficial, subsurface and observed geologic data, the GTS aquifer is made up of 

two distinct materials. The valley aquifer material itself is relatively coarse sands, gravels and 

cobbles ranging from 22.0 ft to 42.0 ft thick. The material making up the second major aquifer 

unit at the GTS is the finer alluvial fan sediment which is predominantly sands, silts and clays. 

The majority of the GTS is made up of the coarser valley aquifer sediment while the alluvial fan 

sediment makes up only the northwest portion of the GTS. The location of these two aquifer 

materials is determined based off the location of the alluvial fan. The coarse valley aquifer in 
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places is overlaid with a thin 0.5 ft to 5.0 ft layer that consists predominantly of silt and clay. 

This unit is typically present in the wetland region and is overall discontinuous throughout the 

site. 

2.1. Surface water flows 

Discharge data for the MFJD was obtained from the USGS National Water Information 

System, USGS 14043840 [USGS, 2019]. The gage station producing this data is located 3.15 

river miles upstream of the GTS and is located at the confluence of the MFJD and Camp Creek. 

This station records MFJD stage and discharge every 15 minutes. The station also records river 

temperature every 15 minutes. The MFJD experiences flow rates between 10.0 cubic feet per 

second (cfs) and 1000.0 cfs depending on the time of year. 

2.2. Watershed area 

The entire MFJD watershed is roughly 507,000 acres in area and terminates were the 

MFJD joins the North Fork John Day River. The watershed area contributing to the MFJD 

upstream of the GTS is roughly 275,000 acres. The Bear Creek watershed area is roughly 11,000 

acres; approximately 4.0% the size of the MFJD watershed area contributing to the MFJD flow 

at the GTS [Oregon BLM, 2019].  

2.3. Climate 

The climate conditions of the GTS can be generally characterized as similar to the nearby 

town of John Day, Oregon. During the period of May 2018 through September 2018, the area 

received slightly less precipitation than normal and experienced slightly colder temperatures. The 

exception to this is October 2018 which experienced more precipitation than normal. Typically 

the period of May through October experiences around 5.12 inches (in) of total precipitation, 

however May 2018 through October 2018 experienced 4.09 in of total precipitation. Table II 
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displays a summary of average and 2018 precipitation totals for the John Day area [U.S. Climate 

Data, 2018] 

Table II: Site precipitation levels for 2018 and average years. 

Month Average Precipitation (in) 2018 Precipitation (in) 

May 1.80 1.62 

June 1.40 1.01 

July 0.51 0.10 

August 0.72 0.08 

September 0.70 0.04 

October 1.01 1.24 
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3. Methods 

3.1. Groundwater monitoring 

In order to monitor groundwater conditions at the site, monitoring wells and staff gauges 

were installed throughout the entire GTS. Monitoring wells were placed in the open valley 

grasslands to the southwest of the wetlands as well as east of Bear Creek. Staff gauges were 

placed throughout the tailings ponds and wetlands, which were considered groundwater ponds. 

Figure 6 shows the location of all installed monitoring equipment. All monitoring equipment was 

surveyed by IFI using pre-surveyed rebar and control points. Surveying was performed with a 

Topcon GR-5 base and rover system. 

Figure 6: Monitoring equipment locations. Monitoring wells (MW) marked in yellow, staff gauges (SG) marked 

in red. 
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3.1.1. Monitoring Wells 

Monitoring wells were constructed by first excavating a 

boring using post hole diggers and a 2.0 inch diameter bucket 

auger. During excavation of the boring, subsurface lithology was 

recorded and in several borings soil samples were taken. Boring 

continued until auger refusal was met which typically occurred 

between two ft and five ft bgs on 

coarse gravel and cobbles. Once 

the boring was constructed a 1.0 

inch diameter PVC pipe was 

inserted into the boring. The bottom 18 in of each well pipe was 

slotted every 0.25 inches using a hacksaw and the bottom end of 

the pipe was capped (Figure 7). Once the well pipe was lowered 

into the boring, engineered well pack sand was poured into the 

boring, around the well pipe until the bottom 24 inches of the 

boring was filled with sand. This ensures that the entire well screen is surrounded by sand pack. 

Next bentonite clay chips were poured into the boring around the well pipe. Bentonite was added 

until the boring was filled nearly to the surface. This ensures no surface water enters the boring 

and well. A well construction and geologic log were created for each well and can be found in 

Appendix B-1.  Once the well pipe was placed and the boring was filled properly, each well pipe 

was cut off roughly three ft above the ground surface, labeled and capped (Figure 8). Nine totals 

monitoring wells were installed at the site between May 10, 2018 and June 23, 2018. 

Water levels in monitoring wells were manually measured twelve times between May 10, 

2018 and October 13, 2018. Manual measurements were taken in each monitoring well using a 

Figure 7: Hand cutting well 

screen slots with a hacksaw 

Figure 8: Monitoring well installed 

at GTS 
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Slope Indicator Company – Water Level Indicator. Marks were placed on the rim of each well 

pipe to ensure that the water levels were measured from the same side of the well pipe each time. 

In addition to manual measurements, Solinst Levelogger Edge pressure transducers were placed 

in several monitoring wells between July 14, 2018 and October 13, 2018. A separate barometric 

pressure transducer was placed in open air at the site to allow each transducer data set to be 

corrected for changes in barometric pressure. 

3.1.2. Staff Gauges 

Staff gauges used at the GTS consisted of 1.5 inch by 0.5 inch by 36.0 inch wood slats. 

These slats were hand painted with alternating white strips marking every tenth of a foot along 

the slat. Metal cattle fence posts were then pounded into the pond bottom with a fence post 

pounder. Once the fence posts were pounded into the pond bottom, the painted wood slats were 

attached firmly to the fence post with multiple zip 

ties and labeled (Figure 9).  Twelve staff gauges were 

installed at the site between May 26, 2018 and June 

22, 2018. Distance from the top of the staff gauge to 

the water surface was recorded visually twelve times 

between May 26, 2018 and October 13, 2018. 

Additionally, Solinst Levelogger Edge pressure 

transducers recording water levels every 15 minutes 

were placed at the bottom of SG6 and SG9 between 

August 10, 2018 and October 13, 2018 using fishing 

Figure 9: Staff gauge installed in a tailings 

pond at the GTS 
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line and zip ties. A separate barometric pressure transducer was placed in open air at the site to 

allow each transducer data set to be corrected for changes in barometric pressure. 

3.1.3. Temperature and Specific Conductivity 

In addition to water level measurements, 

temperature and specific conductivity were 

measured in each monitoring well and each 

tailings pond. These measurements were taken 

using a Hand-held pH/Cond Mutli 340i probe. 

For monitoring wells the probe was inserted into 

each well and left until the temperature stabilized at which point temperature and specific 

conductivity were recorded (Figure 10). For staff gauges, the probe was placed at a depth in the 

middle of the pond water column immediately next to the staff gauge. The probe was left in the 

pond until temperature stabilized at which point temperature and specific conductivity were 

recorded.  

3.2. Surface water monitoring 

3.2.1. Middle Fork John Day River 

In addition to discharge and stage data for the MFJD provided by the USGS gauge station 

discussed in Section 2.4, two sets of manually measured stage and discharge were taken at the 

GTS. Manual measurements were taken to confirm that the discharge on MFJD at the GTS was 

the same as the discharge measured at the upstream USGS gauge station. Additionally this 

manual measurement was made to determine the stage based on discharge at the GTS. Manual 

discharge and stage measurements were made on the MFJD at the GTS using a Marsh-McBirney 

flow meter and the velocity-area discharge calculation method [Fetter, 2014]. Two complete 

Figure 10: Multi 340i probe measuring temperature 

and specific conductivity in a monitoring well 
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cross sections of the channel were measured on December 12, 2018. These cross sections were 

compared with USGS gauge data to determine stage in the MFJD at the GTS based off 

discharge. 

3.2.2. Bear Creek 

Bear Creek discharge was measured in all flowing channels during each site visit. Before 

restoration, Bear Creek consisted of five separate channels named A, B, C, D and E (Figure 11). 

After restoration, Bear Creek consists of four separate channels named A, C, D and F also seen 

in Figure 11. Each site visit, discharge was measured in all channels with measureable flow. 

Typically flow measurements were taken with the salt slug tracer method [Winter, 2014, Day, 

1976, Hongue, 1987]. This technique involved using rhodamine dye to first determine with a 

given injection point in the channel at what point downstream complete mixing occurs. This 

point is made apparent as the point in which the entire stream channel is uniformly pink from the 

Figure 11: Map depicting the location of all Bear Creek channels 
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dye. Once this point was determined, a Mutli 340i probe was placed at the point of complete 

mixing and background specific conductivity and temperature were recorded. After recording 

background channel conditions, a 100 mL salt slug with 12.5 g of dissolved salt was injected 

upstream of the Mutli 340i probe. Upon injection of the slug, specific conductivity 

measurements were taken from the Mutli 340i probe downstream. These specific conductivity 

measurements were typically taken every 2 seconds until the conductivity in the stream returned 

to background levels indicating the entire salt slug had passed through the stream. This process 

was repeated three times in each channel to produce a range of discharges for that particular 

channel and day. Time since injection and conductivity levels were input into a Montana 

Technological University owned Microsoft Excel spreadsheet, which converted the input data 

into discharge in cubic feet per second. 

All salt slugs were created by weighing 125.5 g of NaCl and mixing the NaCl in 1000 mL 

of deionized water using an Erlenmeyer flask. Once the NaCl was completely dissolved in the 

deionized water, the solution was split into ten 100 mL slugs using a 250 mL beaker and glass 

funnel. All slugs were placed in 125 mL HDPE plastic sample bottles, capped and labeled with 

their contents. 

On one such occasion, channel flow was too low to use the salt slug tracer method. 

Instead the velocity area method was used to estimate discharge for this channel [Fetter, 2014]. 

Channel area was estimated using a tape measure to record the width and depth of the channel 

for one reach. After measuring channel area, a leaf was placed in this reach and the time for this 

leaf to travel 1.0ft and 2.0ft was recorded to determine channel velocity. 

In total discharge measurements were made on all flowing channels of Bear Creek eight 

times between April 21, 2018 and October 13, 2018. 
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3.3. Hydraulic conductivity 

3.3.1. Slug tests 

To determine hydraulic conductivity of the discontinuous silt and clay sediment and the 

alluvial fan sediment, slug tests were performed in several of the monitoring wells screened in 

these sediments. Solinst Levelogger Edge pressure transducers were placed in the bottom of the 

well and set to record water levels every second. Once the transducers were placed in the well, 

they were allowed to sit for at least one hour to ensure water levels returned to static levels 

before the addition of the slug. Since the monitoring wells were 1.0 inch diameter PVC pipe, 

conventional cylindrical slugs could not be used to raise water levels. Instead approximately 240 

mL of water was poured into each well, raising water levels roughly 18 inches. After adding the 

water slug to the well, the well was left for at least two hours to ensure water levels returned to 

static conditions before removing the transducer. Once the data was retrieved from the 

transducers, the slug test was input into the computer program AQTESOLV and analyzed using 

the Hvorslev method [Fetter, 2014]. Analysis was performed on each slug test for both a high 

and low estimates of hydraulic conductivity with the Hvorslev method. 

In total eight separate slug tests were performed on MW1, MW3, MW8 and MW9 on 

7/14/2018 and 7/21/2018. 

3.3.2. Soil sieve analysis 

To estimate hydraulic conductivity of the coarse sand, gravel and cobble aquifer, soil 

samples were collected and analyzed using a soil sieve analysis. Slug tests could not be used to 

determine hydraulic conductivity due to the fact that no monitoring wells were screened 

completely in the aquifer. Soil samples were collected near MW6 using a two-foot deep soil pit 

dug with a shovel. Soil samples were taken to Montana Technological University where sieve 
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analyses were performed on each sample in accordance with 

ASTM Standard D6913, seen in Figure 12 [ASTM D6913]. 

Once the sieve analyses were performed, the particle size 

distribution curves were used to determine the D10 particle size 

for each sample. The D10 particle size is the particle size in 

which 10% of the sample by mass is finer than. These D10 

particle sizes were used with a modified Hazen’s Equation to 

estimate hydraulic conductivity (Equation 1). Constant C was 

found in literature to be 0.0 to 1.5 seen in Equation 1 [Svensson, 

2014, Uma et al., 1989]. 

Equation 1: Modified Hazen's equation 

𝑲 = 𝑪(𝒅𝟏𝟎)𝟐 

Where: 

K = hydraulic conductivity (cm/sec) 

C = constant (typically 0.0 - 6.0) 

𝑑10= particle size that 10% of sample is finer than by weight (mm) 

 

3.4. Silt/clay layer thickness 

To determine the thickness of silt and clay layer throughout the GTS a 0.375 inch 

diameter, 5.0 ft-long steel rod was used to probe the soil. This probing was performed every 20 ft 

in a transect spanning 691.0ft between MW1 and SG8 (Appendix B-7). Starting at MW1, the 

probe was inserted into the ground and pushed through the silt and clay layers until refusal was 

met. Typically refusal could be felt as contact with coarse gravel or cobbles. Multiple 5.0ft steel 

rods could be threaded together if silt/clay thickness was greater than 5.0 ft. Once refusal was 

met, the total amount of steel rod inserted into the ground was recorded and a tape measure was 

Figure 12: Soil sieves setup in 

accordance with ASTM D6913. 
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used to determine the next probing point. A total of thirty two silt/clay thickness measurements 

were made along the 691.0ft transect. 

3.5. Vegetation mapping 

Vegetation at the GTS was mapped visually and paired with several vegetation surveys. 

The visual vegetation mapping focused on determining zones throughout the site in which 

vegetation types were of similar species. 

Within each vegetation zone, vegetation 

survey plots were performed. These 

vegetation plots were performed by placing 

a 1.0 meter by 1.0 meter survey grid 

randomly throughout each vegetation zone 

seen in Figure 13 [Daubenmire R, 1959]. 

Within each of these one square meter grids, all plant species present were recorded and percent 

cover of each species was estimated. Additionally samples of each species in each plot were 

taken and placed in labeled paper bags. These vegetation samples were brought to Montana 

Technological University and reviewed with Professor Robert Pal (Department of Biological 

Sciences, Montana Technological University) to confirm plant species type. Using the United 

States Army Corps of Engineers “Wetland Indicator Rating”, a wetland indicator value was 

assigned to each zone. A Mann-Whitney U test was performed to determine which zones were 

statistically different based off wetland indicator value. 

 

 

 

Figure 13: Vegetation survey plot being used at the 

GTS 
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3.6. Groundwater modeling 

3.6.1. Computer program and code 

Groundwater modeling was performed using the program Groundwater Modeling System 

(GMS) produced by Aquaveo, Inc. This program uses the USGS produced MODFLOW version 

2000 finite difference code to model groundwater flow. GMS serves as the model program 

interface in which information is placed into and pulled from MODFLOW code. 

3.6.2. Model domain 

The model domain consists of a roughly 1,500 ft long by 1,100 ft wide grid. This domain 

features 10,860 active cells that are each 10 ft by 10 ft seen in Figure 14. The shape of the model 

domain is based off aerial LiDAR data imported into GMS from Geographic Information System 

(GIS). The grid is bounded by the mountain front to the west, MFJD to the east, Bear Creek to 

the north and the southern border is located where the valley aquifer narrows significantly. Grid 

cells were assigned top elevations based off the imported GIS LiDAR data. For a detailed 

description of how GIS LiDAR data was imported into GMS, see Appendix C-3. 
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Figure 14: Model domain with relevant site features labeled. 

3.6.3. Aquifer properties 

3.6.3.1. Type and thickness 

Based off the geologic conditions at the GTS, the valley aquifer was modeled as an 

unconfined aquifer. This aquifer was assumed to be 30.0 ft thick from available subsurface data 

(Table 1). Although this 30.0 ft thickness was used for the modeling, variation in model 

thickness was explored in the sensitivity analysis. The model consists of one layer, which 

represents the valley aquifer unit as well as the adjacent alluvial fan. The relatively thin silt and 

clay layers were not included in the groundwater model due to their observed discontinuous 

nature throughout the GTS. 
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3.6.3.2. Hydraulic conductivity and storativity 

Two hydraulic conductivity values were used in the groundwater model. The alluvial fan 

sediments were given a hydraulic conductivity of 1.0 ft per day. This hydraulic conductivity was 

determined from slug tests performed in the alluvial fan sediments. The valley aquifer material 

was given a hydraulic conductivity of 70.0 ft per day. This hydraulic conductivity was 

determined from soil sieve analyses and Hazen’s equation. An average hydraulic conductivity 

from the three separate soil sieve analyses was used.  

Storativity of the valley aquifer and alluvial fan materials was estimated based off the 

hydraulic conductivity of the aquifer material and geology. These values were determined to be 

0.15 and 0.05 respectively. These value falls within an acceptable range for their geologic 

composition and estimated hydraulic conductivity in reviewed literature [Fetter, 2014].  

3.6.4. Boundary conditions 

3.6.4.1. Middle Fork John Day River 

The MFJD was modeled using the river package. River conductance was calculated using 

Equation 2. Inputs for Equation 2 came from measured MFJD width, a hydraulic conductivity 

similar to the aquifer sediment and an assumed aquifer thickness. The calculated river 

conductance was relatively high compared to the aquifer sediment indicating the aquifer 

sediment and water table will control whether water enters or leaves the MFJD. This works well 

in the context of the boundary conditions because the MFJD is a gaining stream throughout most 

of the GTS and simply allows groundwater to exit the model through the MFJD. 
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Equation 2: River conductance equation 

𝑪 =
𝒘𝒌

𝒕
 

Where: 

C = conductance (ft2/day) 

k = hydraulic conductivity (ft/day) 

w = width of river 

t = thickness of river bed sediment 

 

 River stage inputs for the MFJD were acquired by predicting stage levels at the GTS 

from USGS gauge station discharge values and manual stage measurements. Using these stage 

predictions and LiDAR determined river bottom elevations. 

3.6.4.2. Restored Middle Fork John Day River 

The final proposed restoration work on the MFJD calls for the construction of a main 

meandering channel with several secondary channels. The geometry of these channels was 

obtained from a HEC-RAS hydraulic model constructed by IFI. This hydraulic model contained 

ground surface elevation data describing the post restoration site terrain as well as surveyed 

sections throughout the GTS. These elevation data were imported directly into GMS to define 

the top of the model and geometry of the new MFJD channels (Figure 15). In order to determine 

stage in each respective channel of the re-designed MFJD, a hydraulic model was constructed 

using Microsoft Excel. Using MFJD discharge records between May 10, 2018 and October 13, 

2018, a discharge value was placed into the hydraulic model and the stage in all channels was 

determined at that time. Whether or not secondary channels were active or not at a given 

discharge was determined based off the bottom elevation of the main channel at the confluence 

of that secondary channel, the stage in the main channel and the elevation of the bottom of the 

secondary channel. Secondary channels were considered active when main channel stage was 

high enough to exceed the bottom elevation of the secondary channel at a given discharge. In 

order to determine stage in the main channel based off an input discharge, the Manning’s 
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equation was used and is described in Equation 3 [Akan, 2006]. Manning’s equation requires a 

Manning’s roughness coefficient, channel width, discharge and channel slope to be input in order 

to determine channel stage. Manning’s roughness coefficient, channel width and channel slope 

were all either measured or pulled from the IFI HEC-RAS model.  

Equation 3: Manning's equation 

𝑸 = (
𝟏. 𝟒𝟗

𝒏
) 𝑨 𝑹

𝟐
𝟑 √𝑺 

Where: 

Q = discharge (ft3/day) 

n = Manning’s roughness coefficient 

A = channel area (ft2) 

R = channel hydraulic radius (ft) 

S = channel slope (ft/ft) 

 

The restored channels of the MFJD were all modeled in GMS using the river package. By 

using river package the restored channels of the MFJD could be simplified to head-dependent 

boundaries that supplied the proper amount of water to the aquifer. Given rivers typically act as 

groundwater hydraulic boundaries; channels east of the main channel of the restored MFJD were 

left out of the groundwater model. River conductance for these restored channels was relatively 

uncertain compared to other model inputs due to the fact that restoration will be performed with 

whatever sediment can be located on site. To account for this uncertainty in river conductance, a 

value of 1687.5 ft2/day or 25% lower than the river conductance value used in the pre-restored 

MFJD groundwater model was used. By using a lower river conductance, the river will be less 

capable of transferring water to the aquifer. Since the main question is whether or not enough 

water is supplied to the wetlands by the restored MFJD channels, a lower river conductance will 

produce a conservative estimate of the amount of water moving from the restored MFJD into the 

aquifer and subsequently the wetlands.  

 Two of the modeled secondary MFJD channels only flow from May 10, 2018 to June 19, 

2018. In order to properly account for these channels no longer carrying flow with the river 
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package, the model was split into two models. The first model ran from May 10, 2018 to June 

19, 2018 with both secondary MFJD channels simulated with river package. The second model 

ran from June 20, 2018 to October 13, 2018 with both secondary MFJD channels removed from 

the model. Removing the two channels from the model ensured that the river package did not 

properly apply head to the model when no flow was occurring in the channel. In order to tie the 

two models together transiently, the second model was given the initial head conditions from the 

last time step of the first model. This ensured that the second model started from where the first 

model ended and thus properly simulated the entire modeling period.  

 

Figure 15: Ground surface elevations of the restored MFJD model domain. 
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3.6.4.3. Bear Creek 

The channels of Bear Creek were all modeled using the river package. River conductance 

was relatively unknown compared to other model inputs for these channels however, a rough 

conductance was calculated using Equation 2 and conductance inputs seen in Table 3. The creek 

bed sediments in Bear Creek were visually observed as being slightly coarser than subsurface 

alluvial fan sediment. Given the large variation in river conductance, river conductance was used 

as a tool in model calibration in order to properly match observed water levels. 

Stage inputs for Bear Creek were determined from manual discharge and stage 

measurements as well as from LiDAR determined stream bottom elevations. Appendix D-2 

displays the stage values used for the various Bear Creek channels. 

3.6.4.4. Groundwater flux 

Groundwater fluxes into the south end of the model and out of the north end of the model 

were calculated using Darcy’s Law (Equation 4). Cross sectional area was determined by 

measuring the valley width at each location and multiplying that by the aquifer saturated 

thickness of 26.0 ft. Hydraulic conductivity was assumed to be the same as the hydraulic 

conductivity of the aquifer sediment. Hydraulic gradients were measured from hand drawn water 

table contours based off observed water elevations. These hand drawn contours can be found in 

Appendix B-5. Table 4 displays the range of groundwater flux for each end of the model. The 

variability in the value of groundwater flux was considered in the model sensitivity analysis. 

Equation 4: Darcy's Law 

𝑸 = −𝒌𝑨
𝒅𝒉

𝒅𝒍
 

Where: 

Q = flow rate (ft3/day) 

k = hydraulic conductivity (ft/day) 

A = aquifer cross sectional area (ft2) 
𝑑ℎ

𝑑𝑙
 = hydraulic gradient (ft/ft) 
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3.6.5. Initial conditions (steady-state model) 

The initial conditions for the transient model and subsequent predictive models were 

derived from a steady state model based off GTS conditions on July 9, 2018. Boundary condition 

inputs for Bear Creek, MFJD and groundwater flux were acquired from field measurements and 

performed calculations. Observation points were given a 0.75 ft target calibration range based off 

the 7.5 ft of head drop across the site. The model was run several times using Bear Creek river 

conductance as the primary calibration tool.  

3.6.6. Flow Budget 

In order to determine how modeled flows in and out of the model domain compared to 

real-world estimated flows in and out of the model domain, a flow budget analysis was 

performed. Modeled in and out flows were determined directly from the GMS model outputs for 

the steady-state model.  

Real-world estimated in and out flows were determined from surface flow data and hand-

drawn water table contours. The MFJD was assumed to be gaining throughout most the entire 

reach and thus only considered a groundwater flow output. An estimation of groundwater flow 

into the MFJD was determined by measuring the length of the MFJD at the site and saturated 

aquifer thickness from nearby staff gauges and wells. A rough hydraulic gradient near the MFJD 

was determined from hand-drawn water table contours maps. Finally the aquifer hydraulic 

conductivity was acquired from soil sieve analyses. Using these inputs, a rough flow of 

groundwater into the MFJD was determined using Darcy’s Law. On the date of the steady-state 

model (July 9, 2018) all flow from Bear Creek was into the wetlands and thus was considered a 

groundwater input. Flow into the groundwater from Bear Creek was determined using measured 

discharge measurements of Bear Creek upstream of the wetlands. Finally groundwater fluxes in 
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and out of the real-world estimated flow budget were determined with the methodology 

described in Section 3.6.4.4. 

3.6.7. Sensitivity analysis 

In order to assess the sensitivity of the model to different model inputs, an extensive 

model sensitivity analysis was performed on the steady state model. MFJD conductance, Bear 

Creek Channel B conductance, Bear Creek conductance, groundwater flux in, groundwater flux 

out and hydraulic conductivity were all allowed to vary -50%, -25%, 0%, 25% and 50% from 

their initial input. Additionally model thickness was varied -33%, 0% and 33% from its initial 

input. 

3.6.8. Transient (unsteady) model 

The transient model or unsteady state model was set to simulate GTS conditions from 

May 10, 2018 to October 13, 2018. Daily stress periods were used throughout the modeling 

period, producing a total of 156 stress periods. These stress periods were broken into eight 3.0 

hour time steps. Boundary condition inputs for Bear Creek, MFJD and groundwater flux were 

acquired from field measurements and performed calculations. Observation points were given a 

0.8 ft target calibration range which was calculated as 10% of the total 8.0 ft head drop across the 

site during the transient period. The transient model was run several times using logical 

adjustments in Bear Creek stage during periods where actual conditions on Bear Creek were not 

observed. 



28 

3.6.9. Predictive models 

3.6.9.1. Pre-Restoration 

In order to determine the impact of restoration work on the wetlands, a predictive model 

simulating the conditions that would have occurred over the entire monitoring period if no 

restoration was constructed. This required allowing Bear Creek channel B to continue normal 

base flow conditions after late-July. In reality after late-July, restoration work decreased Bear 

Creek Channel B flow dramatically. Since no data exist on Bear Creek channel B flow between 

late-July and October, the characterized flow relationship between Bear Creek’s main and 

channel B as well as the recorded base flow prior to restoration were used to determine the 

theoretical stage in channel B [Appendix D-2]. This model provided a baseline of conditions at 

the site, and specifically the wetlands, prior to any restoration work. The water table elevation 

data from this model will be used in comparison with models simulating restored conditions. 

3.6.9.2. Complete Bear Creek Removal 

Proposed restoration plans call for the complete removal of flow in channel B. Observed 

post-restoration conditions showed that although dramatically reduced, flow in channel B 

persisted. In order to properly determine the total impact of removing channel B flow into the 

wetlands, an additional model was constructed to simulate site conditions if channel B was 

completely removed. Since channel B was completely removed, the appropriate amount of water 

was added to the main Bear Creek channel to account for water no longer flowing down channel 

B. The water table elevation data from this model will be used in comparison with pre-

restoration water elevations to determine the complete impact of Bear Creek restoration on the 

GTS. 
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3.6.9.3. Post-Restoration 

The final model ran for this investigation simulated the conditions following the 

completion of all proposed restoration work. This includes removal of channel B, re-meandering 

of MFJD, construction of new secondary channels on the MFJD, and grading throughout the site. 

This grading ultimately raises MFJD channel elevations on the east portion of the site. Section 

3.6.4.2 describes how restored MFJD channel inputs were obtained. Bear Creek inputs were the 

same as the model in which Bear Creek channel B was completely removed as described in 

section 3.6.9.2. The water table elevations from this model were used to determine the overall 

impacts of all proposed restoration work on the GTS. 

3.6.10. Predictive Model Uncertainty 

In order to address model uncertainty in certain parameters, several post-restoration 

models were constructed with varying values of hydraulic conductivity and specific yield. By 

varying these parameters a range of water table elevations indicative of post-restoration 

conditions were created. These water table elevations were used to determine average and 

maximum gain or drop in water table elevation caused by varying either hydraulic conductivity, 

specific yield or both simultaneously. Water table elevation changes were observed at MW6 

because this point is located near the wetlands and showed the most sensitivity to changes in 

hydraulic conductivity and specific yield.  
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4. Results 

4.1. Groundwater 

4.1.1. Hydrographs 

Recorded water elevations levels in all the equipment over the entire monitoring period, 

May 10, 2018 through October 13, 2018 are transposed in Figure 16. During this period of time, 

15 pieces of monitoring equipment dried up in late July 2018 and stayed dry through September 

2018. Appendix B-4 shows relative change in head for each piece of monitoring equipment for 

the entire monitoring period. All water elevation data can be found in Appendix B-2 and B-3 in 

tabular form. 

In addition to tabular and graphical data, water elevation was used to construct several 

water contour maps. Appendix A shows rough groundwater contours as well as groundwater 

flow direction for June 23, 2018 and July 9, 2018 respectively. 

 

Figure 16: Water elevations in monitoring equipment between May 10, 2018 and October 13, 2018. 

Monitoring wells are solid lines, staff gages are dashed lines. 

3378.5

3379.5

3380.5

3381.5

3382.5

10-May 30-May 19-Jun 9-Jul 29-Jul 18-Aug 7-Sep 27-Sep 17-Oct

El
ev

at
io

n
 (

ft
)

Date

MW1
MW2
MW3
MW4
MW5
MW6
MW7
MW8
MW9
SG1
SG2
SG3
SG4
SG5
SG6
SG7
SG8
SG9
SG10
SG11
SG12



31 

Temperature and specific conductivity measurements taken with the Multi 340i probe are 

in Appendix B-6. Transducer recorded temperature data is available upon request. 

4.2. Surface water flows 

4.2.1. Middle Fork John Day and Bear Creek 

Bear Creek discharge measurement results can be seen in tabular form in Appendix B-10. 

MFJD discharge measurements were made by the USGS gauge station for the entire period of 

monitoring. MFJD discharge measurements made on the same days as Bear Creek discharge 

measurements can be seen in Appendix B-10. Figure 17 shows a combined hydrograph of both 

MFJD and Bear Creek during the period of monitoring. 

4.3. Hydraulic conductivity 

 

Figure 17: Combined discharge measurements of the MFJD (black) and Bear Creek (red) capturing high 

flow levels on the MFJD. Left vertical axis depicts MFJD discharge and the right vertical axis depicts Bear 

Creek discharge. 
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Hydraulic conductivity results showing slug test data and Hvorslev estimation lines are in 

Appendix C-2. These tests produced a range of hydraulic conductivity for the silt/clay layer and 

alluvial fan sediments as seen in Table III. 

Raw sieve analysis data and particle size distribution curves for each sample are in 

Appendix C-1. Using the Hazen equation and several equation constants, these samples produced 

a range of hydraulic conductivities for the gravel aquifer seen in Table III. 

Table III: Hydraulic conductivity results by test and geologic unit 

Location Test # Test Type Geologic Unit Low hydraulic 

conductivity 

estimate (ft/day) 

High hydraulic 

conductivity estimate 

(ft/day) 

MW1 1 

Hvorslev slug 

test 

Silt/clay layer 

0.01 0.05 

MW3 

1 0.03 0.10 

2 0.03 0.03 

3 0.02 0.02 

MW8 1 Alluvial fan sediment 0.55 1.57 

MW9 

1 

Silt/clay layer 

0.05 0.11 

2 0.03 0.47 

3 0.02 0.12 

MW6 

1 Sieve analysis 

w/ Hazen’s 

equation 

Sand, gravel, cobble 

aquifer material 

20.4 61.2 

2 36.3 108.9 

3 41.0 122.9 

 
 

Combining all of these hydraulic conductivity analyses produces ranges of hydraulic 

conductivity for each of the three geologic units; clay/silt, sandy silt and aquifer gravel. Table IV 

summarizes these hydraulic conductivity results based off geologic unit. 

Table IV: Summary of hydraulic conductivity data based off geologic unit 

Geologic unit Range of hydraulic conductivity (ft/day) 

Silt/clay layer 0.01 - 0.12 

Alluvial fan sediment 0.55 - 1.57 

Sand, gravel, cobble aquifer 

material 
20.4 - 122.9 
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4.4. Silt/clay layer thickness 

Raw silt/clay layer thickness data can be seen in tabular form in Appendix B-8. Figure 18 

shows a cross section view of this transect. Typically silt/clay thickness ranged from 0.2 ft to 5.0 

ft. Generally the silt/clay unit is thicker on the south end of the site near MW1, shallower near 

MW6 and deepens again in the wetlands near SG8 on the north end of the site.  

 

Figure 18: Total depth of silt/clay layer below ground surface from MW1 to SG8 

4.5. Vegetation mapping 

Seven different vegetation zones were mapped, the extents of which are shown in Figure 

19. Eight total vegetation plots were performed throughout these vegetation zones and twenty 

total plant species were encountered. Vegetation species data can be seen in Table V. The site 

was dominated by non-native grasses and showed phreatophytes (water loving plants) 

exclusively in the wetlands area. When comparing native and exotic species in each zone, it was 

found that zones 2, 3, and 4 are dominantly natives while zones 1, 5, and 6 are dominantly exotic 

(Figure 20). When applying wetland indicator values based of species presence to each zone, 

zones 1, 2 , 4, 5, and 6 are all given a relatively low wetland indicator value and are not 

statstically different from one another (Figure 21). Zone 3 was given a high wetland indciator 

value and was noted as being statistcally different than all the other zones. Given zone 3 makes 

up the wetland area, a high wetland indicator value is expected. 
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Figure 19: Map showing the location and extent of each vegetation zone at the GTS. 

 

Table V: Species present in each zone and plot. 
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Figure 20: Normalized percent cover of native (N) and exotic (E) species for each mapped vegetation zone 

 

 

Figure 21: Wetland indicator value for each mapped vegetation zone. (a) zones and (b) zones are statistically 

different from one another. 
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4.6. Groundwater modeling 

4.6.1. Boundary conditions inputs 

Tables VI and VII show the boundary conditions inputs for river conductance and 

groundwater flux respectively. All other model inputs can be found in Appendix D. 

Table VI: River conductance inputs for MFJD and Bear Creek 

Input MFJD Bear Creek 

Hydraulic conductivity (ft/day) 70.0 5.0 

Width of river (ft) 25.0 5.0 

Thickness of river bed sediment (ft) 0.5 – 1.0 0.2 – 0.5 

   

Calculated conductance (ft2/day) 1750.0 – 3500.0 50.0 – 125.0 

 

Table VII: Darcy law inputs for groundwater flux (south and north boundaries) 

Input South boundary North boundary 

Hydraulic conductivity (ft/day) 70.0 70.0 

Aquifer cross sectional area (ft2) 11,000 4,750 

Hydraulic gradient (ft/ft) 0.004 0.004 

   

Flow rate (ft3/day) 2917.9 1400.0 
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4.6.2. Steady state model 

The steady-state model ran for July 9, 2018 produced water table contours seen in Figure 

22. This model was well-calibrated producing an observed vs. modeled chart seen in Figure 23. 

Additionally this chart shows the absolute mean error and root mean squared error (RMS error) 

as 0.31 ft and 0.37 ft respectively.  

 

Figure 22: Head contours for the July 9, 2018 steady state model. 
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Figure 23: Computed vs. observed head plot and error summary for the July 9, 2018 steady state model.  

 

4.6.3. Flow budget 

Tabular and graphical data displaying estimated and modeled in- and outflows can been 

seen in Table VIII and Figure 24. Modeled inflow was 619.2 cubic feet per day (cfd) more than 

estimated inflow or 2.42% of total estimated inflow. Modeled outflow was 273.2 cfd greater than 

estimated outflow or 1.07% of total estimated outflow. 

Table VIII: Steady state model flow budget estimated and modeled values. 

 Estimated Modeled Difference 

Source Inflow Outflow Inflow Outflow Inflow Outflow 

MFJD River(ft3/day) 0 24,500.0 53.8 24,764.8 53.8 264.8 

Bear Creek (ft3/day) 22,636.8 0 23,201.5 8.4 564.7 8.4 

Groundwater flux 

(ft3/day) 

2917.9 1400.0 2917.9 1400.0 0 0 

       

Total(ft3/day) 25,554.7 25,900.0 26,173.9 26,173.2 619.2 273.2 
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Figure 24: Pie charts depicting estimated and modeled inflows and outflows. 

 

4.6.4. Sensitivity analysis 

Figure 25 shows change in RMS error for each model parameter based off percent change 

in that particular model parameter. The plot shows that the main channel of Bear Creek 

conductance (main channel consists of channels A, C, D, E and F in Figure 11), MFJD 

conductance, groundwater flux into the model and groundwater flux out of the model have 

relatively low impact on the error in the model. Bear Creek (Channel B) has a moderate impact 
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on model error. Finally hydraulic conductivity and model thickness have a significant impact on 

model error. 

 

Figure 25: Sensitivity plot depicting RMS error vs. percent change in parameter. 

4.6.5. Transient model 

 Figure 26 shows water elevation levels over time plots at four different locations 

throughout the site. The gray lines on these plots indicate the modeled water elevation, the white 

dots show the observed values, the boxes show the difference between modeled and observed 

and the brackets how the calibration target range. If a box is green the modeled water elevation 

falls within the calibration target range, if the box is yellow the modeled water elevation is 

within two times the calibration target range and if the box is red the modeled water elevation is 
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outside of two times the calibration target range. Generally all modeled water elevations fall 

within the calibration target range throughout the entire model, MW8 and MW9 represent the 

two observation points in the transient model with the most modeled water elevations outside the 

calibration target range. Error for the transient model seen on Figure 26 shows a mean error of -

0.03 ft, an absolute error of 0.44 ft and a RMS error of 0.52 ft for the entire transient model. 

4.6.6. Predictive models 

Water elevations from all three predictive models were used to create water elevation 

plots for four separate observations points throughout the model domain. Figure 27 shows the 

location of these four observations points; MW1, MW6, SG9 and WET. Figure 28 shows the 

four water elevations at all four observation points for the observed, pre-restoration, complete 

removal of Bear Creek channel B, and post MFJD restoration models.  
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Figure 26: Transient model modeled water elevation plots, calibration target range and error summary. 
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Figure 27: Four locations selected throughout the site where modeled water elevations were plotted to 

determine the impacts of restoration across the site. 
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Figure 28: Predictive model water elevation plots. 
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4.6.7. Predictive model uncertainty 

In order to quantify uncertainty of the predictive model, hydraulic conductivity and 

specific yield were adjusted by -71.4%, 0.0%, 71.4% and -67.0%, 0.0%, 67.0% respectively. 

Table IX shows the results of the uncertainty analysis in terms of hydraulic conductivity and 

specific yield values input into the model and the subsequent average and maximum impact on 

water elevations at observation point MW6 relative to the post MFJD restoration model water 

elevations. Overall out of the eight total models ran, four showed a rise in water elevation and 

four showed a lowering of water elevation at MW6.  

Table IX: Predictive model uncertainty analysis 

Run Hydraulic 

conductivity (ft/day) 
Specific yield 

Average change to 

water elevation (ft) 

Maximum 

change (ft) 

1 70 0.25 0.09 0.26 

2 20 0.15 0.35 0.79 

3 20 0.25 0.66 1.01 

4 20 0.05 0.10 0.23 

5 120 0.15 -0.10 -0.26 

6 120 0.25 -0.03 -0.04 

7 70 0.05 -0.09 -0.42 

8 120 0.05 -0.13 -0.59 
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5. Discussion 

5.1. Groundwater modeling 

5.1.1. Steady state and transient model error 

Overall both the steady state and transient models produced RMS errors of 0.37 ft and 

0.52 ft respectively. These RMS errors both fall within 10% (0.8 ft) of the total head drop across 

the flat portion of the model. Additionally only three observed water elevations fall outside the 

calibration target range of 0.8 ft throughout the entire transient model. These low RMS error 

values and overall well-calibrated nature of the models indicate that model inputs and parameters 

are relatively accurate. 

5.1.2. Sensitivity analysis 

The steady state model sensitivity analysis results seen in Figure 23 reveal the model is 

the most sensitive to hydraulic conductivity and model thickness. Hydraulic conductivity in 

particular is the parameter the model is most sensitive to due to the control hydraulic 

conductivity has one flow rates through the model. Given the wide range of experimentally 

determined hydraulic conductivities described in section 4.3, hydraulic conductivity was applied 

in the predictive model uncertainty analysis. This allowed for quantification of how impactful 

hydraulic conductivity is on the predictive model results. 

5.1.3. Predictive model uncertainty 

As seen in Table 8 in section 4.6.6, varying hydraulic conductivity and specific yield has 

varying degrees of impact on predictive model results. Inputting a hydraulic conductivity of 20 

ft/day and specific yield of 0.25 produced a maximum increase in modeled water elevation at 

MW6 of 1.08 ft. Inputting a hydraulic conductivity of 120 ft/day and specific yield of 0.05 

produced a maximum decrease in modeled water elevation at MW6 of 0.593 ft. Essentially this 
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shows that if the predictive model hydraulic conductivity and specific yield are both significantly 

differ from the true value, the model will predict water elevations that are within under a foot of 

the originally predicted water elevations. Given the uncertainty of hydraulic conductivity and 

specific yield as well as the sensitivity of the model to these parameters, the lack of significant 

change in predicted water elevations increases confidence of model water elevation results and 

subsequent predictions.  

5.1.4. Evapotranspiration 

Evapotranspiration was not considered in this model domain for several reasons; (1) 

limited site data regarding evapotranspiration rates throughout the site. (2) a significant amount 

of the site area is currently bare, waste rock material which has no vegetation and are 

unsaturated. (3) the amount of water leaving the model domain through evapotranspiration is 

relatively small compared to other model inputs and outputs. This amount was determined with a 

rough conservative approximation from available USGS “Annual average evapotranspiration 

rates” [USGS, 2019]. The results of this rough approximation can seen below (Table X).  

Table X: Rough approximation of domain evapotranspiration 

Parameter Units Value 

Average annual ET rate per year [USGS] 
(m/yr) 0.396 

(ft/yr) 1.299 

(ft/day) 0.0036 

Model area  (ft2) 1,089,900 

Estimated waste rock area (ft2) (ft2) 300,000 

Total area contributing to ET (ft2) 789,900 

   

Volume of water removed from ET (cfd) 2843.64 

Percent of total modeled outflow (%) 10.86 

Average drop in water elevation across model (ft/ft2/day) 0.0026 
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5.2. Model predictions 

Figure 26 (section 4.6.5) reveals the impacts of restoration throughout the GTS. Both 

MW1 and SG9 show post-restoration water elevations being significantly higher than pre-

restoration water elevations throughout the entire modeling period. MW6 shows a similar trend 

although the magnitude of water elevation increase between pre- and post-restoration conditions 

is not as high. Finally the observation point in the middle of the wetlands (WET) shows a slight 

reduction in water elevations post-restoration from pre-restoration conditions from May 13 until 

July 28. This drop in water elevation is at its greatest magnitude of 0.69 ft on July 10. After July 

28, the post-restoration model shows an increase in water elevation at WET from pre-restoration 

conditions. All four water elevation plots show a drop in water elevations in the post-restoration 

model after June 19 when flow into secondary channels of MFJD ceases, reducing water supply 

to much of the domain. 

Post-restoration conditions overall increase the water elevations from pre-restoration 

conditions across the model domain. In particular, MW6 will have surface water present three 

more days out of the modeling period compared to pre-restoration conditions. A reduction in 

water elevations can be observed in the portion of the wetlands nearest the location of abandoned 

Bear Creek Channel B during the May to July period. This is likely due to the fact that during 

pre-restoration conditions, Bear Creek Channel B input a significant amount of surface water to 

the aquifer during the May to July period. This significant input of surface water to the aquifer 

produced a groundwater mound near the mouth of channel. In the post-restoration conditions, 

Bear Creek Channel B no longer inputs surface water to the aquifer and the pre-restoration 

groundwater mound is flattened out producing the lower modeled water elevations for May 

through July in this location. This flattening of the groundwater mound means at location WET, 
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surface water will be present eight fewer days out of the modeling period compared to pre-

restoration conditions. 

5.3. Vegetation predictions 

Based off the groundwater mode predictions, two general trends are anticipated for site 

vegetation; (1) as water elevations rise from restoration, vegetation zone 3 is expected to grow. 

Higher water levels in zone 6 will allow wetland adapted species found in zone 3 to spread. (2) 

this spread of wetland adapted species will cause the wetland indicator value for zone 6 to rise 

significantly as species with a higher wetland indicator value spread into the zone. (3) as species 

adapted to wetlands spread into zone 6, the zone will change from exotic dominated to native 

dominated. This is due to the fact that native species perform better in the wetland area than 

exotics. 
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6. Conclusions 

Model error, sensitivity and uncertainty were all described and quantified well. Any 

uncertainty in sensitive parameters was accounted for in the analysis of predictive model 

uncertainty which revealed changes to sensitive parameters having relatively little impact on 

model results. The constrained nature of the model produced this lack of sensitivity to drastic 

changes. When comparing pre-restoration to post-restoration modeled conditions across the 

GTS, an overall increase in water elevations across the model domain is observed. In regards to 

the wetland area, a decrease in water elevation is observed near the abandoned Bear Creek 

Channel B, however, an increase in water elevation is observed in portions of the wetlands 

further from this abandoned channel. Post-restoration conditions will overall increase the extent 

of the wetland area across the model domain. 
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7. Recommendations 

1. Perform further testing at the site to better characterize hydraulic conductivity and specific 

yield of the aquifer material. This will help lower overall uncertainty in model predictions. 

2. Continue to monitor groundwater conditions during and after all restoration work is 

completed. This will allow for the ability to post-audit the groundwater model to further 

lower predictive uncertainty. 

3. Monitor wetland vegetation between now and when work on the MFJD restoration work 

begins. With Bear Creek Channel B currently cut off from the wetlands, several seasons of 

low water conditions might negatively impact wetlands plant species and warrant replanting 

efforts after MFJD restoration is complete. 
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9. Appendix A – Site Data 
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Appendix A-1: LiDAR derived DEM imagery for study area [State of Oregon]. 
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Appendix A-2: Locations of publicly available well logs relative to the study area [State of Oregon]. 
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10. Appendix B – Monitoring and Field Data 
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Appendix B-1-1: Geologic and well construction log for MW1. 

 

 



59 

 

Appendix B-1-2: Geologic and well construction log for MW2. 
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Appendix B-1-3: Geologic and well construction log for MW3. 
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Appendix B-1-4: Geologic and well construction log for MW4. 
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Appendix B-1-5: Geologic and well construction log for MW5. 

 



63 

 

Appendix B-1-6: Geologic and well construction log for MW6. 
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Appendix B-1-7: Geologic and well construction log for MW7. 
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Appendix B-1-8: Geologic and well construction log for MW8. 
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Appendix B-1-9: Geologic and well construction log for MW9. 
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Appendix B-2: Hand measured water elevations for the entire monitoring period. 

 

 

Appendix B-3-1: Transducer measured water elevations (July 2018). 
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Appendix B-3-2: Transducer measured water elevations (August 2018). 
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Appendix B-3-3: Transducer measured water elevations (September 2018). 
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Appendix B-3-4: Transducer measured water elevations (October 2018). 
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Appendix B-4: Relative change in water elevation for all monitoring equipment over the entire monitoring 

period. 
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Appendix B-5-1: Hand drawn water elevation contours for June 23, 2018. 
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Appendix B-5-2: Hand drawn water elevation contours for July 9, 2018. 
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Appendix B-6-1: Temperature measurements in all monitoring equipment measured during site visits. 
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Appendix B-6-2: Specific conductivity measurements in all monitoring equipment measured during site 

visits. 
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Appendix B-7: Location of the silt/clay layer thickness probing cross section. 
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Appendix B-8: Raw data from silt/clay layer thickness probing 
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Appendix B-10-1: Measured discharge in all Bear Creek channels. 

 

 

Appendix B-10-2: Discharge in the Middle Fork John Day River on the dates Bear Creek was measured. 
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11. Appendix C – Data Analysis 
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Appendix C-1-1: Particle size distribution curve for Sample #1 taken near MW6. 

 

 

Appendix C-1-2: Particle size distribution curve for Sample #2 taken near MW6. 
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Appendix C-1-3: Particle size distribution curve for Sample #3 taken near MW6. 
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Appendix C-2-1: Hvorselv analysis – low hydraulic conductivity estimate in MW3 (07/21/2018) 
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Appendix C-2-2: Hvorselv analysis – high hydraulic conductivity estimate in MW3 (07/21/2018) 
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Appendix C-2-3: Hvorselv analysis – low hydraulic conductivity estimate in MW8 (07/21/2018) 
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Appendix C-2-4: Hvorselv analysis – high hydraulic conductivity estimate in MW8 (07/21/2018) 
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Appendix C-3: GMS – GIS Notes 

A variety of data can be imported into GMS from GIS. This includes but is not limited to, 

observed water levels, top and bottom model elevations and stage level data. When bringing in 

elevations data from GIS, GMS can read a couple different formats including DEMs and single 

point data. One should note that GMS will not read multi point data from GIS. Brining these 

elevations in from raw LiDAR data is a relatively simple process in GIS. The raw las data file 

must be converted to single point format or DEM/raster format. There are a wide variety of ways 

to accomplish this task. The one used in this thesis was first converting the raw las data to a LAS 

Dataset. This LAS Dataset was then converted to a multipoint format file. Once in multipoint 

format, the file was converted to a single point data file. This single point data file was brought 

into GMS and used to provide elevations for the top of the model domain. Although this process 

was relatively simple, newer versions of GMS have powerful built in tools for bringing in raw 

LiDAR data. 

The GMS “Lidar” tutorial describes how to bring raw LiDAR data straight into GMS 

without using GIS. This tutorial shows how in GMS one can bring in raw las formatted data, 

process it to the appropriate density and then apply the elevation to either a UGrid or 2D Scatter 

Data. These built in tools are incredibly powerful and offer the best method for bringing in, 

processing and applying las data formats into the GMS. 
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12. Appendix D – Groundwater Model Inputs 
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Appendix D-1: Middle Fork John Day River stage level plot input into pre- and post-restoration 

groundwater models (main channel). 
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Appendix D-2-1: Bear Creek – Main Channel stage level plot input into pre-, observed and post-

restoration groundwater models (main channel). 

 

 

 

Appendix D-2-2: Bear Creek – Channel B stage level plot input into pre-, observed and post-restoration 

groundwater models. 
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