5-1946

Economic Talc Deposits of Montana and Related Firing Problems

Charles J. Lyden

Follow this and additional works at: http://digitalcommons.mtech.edu/bach_theses

Part of the Ceramic Materials Commons, Environmental Engineering Commons, Geology Commons, Geophysics and Seismology Commons, Metallurgy Commons, Other Engineering Commons, and the Other Materials Science and Engineering Commons

Recommended Citation

http://digitalcommons.mtech.edu/bach_theses/208

This Bachelors Thesis is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in Bachelors Theses and Reports, 1928 - 1970 by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu.
ECONOMIC TALC DEPOSITS OF MONTANA
AND RELATED FIRING PROBLEMS

BY
Charles J. Lyden

A Thesis
Submitted to the Department of Geology
in Partial Fulfillment of the
Requirements for the Degree of
Bachelor of Science in Geological Engineering

Montana School of Mines
Butte, Montana
May, 1946.
ECONOMIC TALC DEPOSITS OF MONTANA
AND RELATED FIRING PROBLEMS

BY
Charles J. Lyden

A Thesis
Submitted to the Department of Geology
in Partial Fulfillment of the
Requirements for the Degree of
Bachelor of Science in Geological Engineering

Montana School of Mines
Butte, Montana
May, 1946
CONTENTS

Introduction.. 1
General Considerations of Talc.......................... 3
Occurrence... 3
Uses of Talc.. 5
Talc Production of the World............................ 7
Talc Production of the United States.................. 7
Microscopic Character of Talc.......................... 8
Montana Talc Deposits.................................. 9
The Helena Deposit...................................... 9
The Dillon Deposit..................................... 11
The Johnny Gulch Deposits............................... 14
Laboratory Tests on Montana Talc....................... 17
Conclusions... 27
Bibliography.. 29

Illustrations

Figure 1 Location of Montana talc deposits........... 1
Plate I Geologic map of Helena talc deposit and immediate surrounding area........... 10
II Geologic map of area southeast of Dillon, Montana, and of the Dillon talc mine............. 12
III Talc mine eight miles southeast of Dillon, Montana... 13
IV Geologic map of Johnny Gulch talc deposit... 16
V Graphs illustrating the percentage reduction of volume and weight of lava talc upon being burned at various temperatures up to 1030°C................... 22
VI Graphs illustrating the percentage reduction of volume and weight of cosmetic talc upon being burned at various temperatures up to 1030°C........... 23
VII Graphs illustrating the percentage reduction of volume and weight of ceramic talc upon being burned at various temperatures up to 1030°C........... 24
VIII Composite graph showing the reduction of volume of lava, ceramic, and cosmetic talc samples upon being burned at various temperatures up to 1030°C........... 25
IX Composite graph showing reduction of weight of lava, ceramic, and cosmetic talc samples upon being burned at various temperatures up to 1030°C........... 26
ECONOMIC TALC DEPOSITS OF MONTANA
AND RELATED FIRING PROBLEMS

INTRODUCTION

Montana is world famous for its metallic products, however little attention has been given to its many non-metallic materials, some of which promise a profit-producing future. One of these non-metallic materials, recently being worked on an economic scale, is talc.

This thesis has to do with a study of the production of talc in Montana, describing the local geology of each deposit, and a description of the laboratory tests that were made on various grades of Montana talc in an attempt to determine why some grades of talc can be burned in solid forms while others must be ground, mixed with a binder, and molded before they can be
The areas of Montana that are now producing, or have produced recently, talc on a commercial scale are the Helena area, one mile south of Helena, the Johnny gulch area about three miles south of Ennis, and an area about eight miles south-southeast of Dillon. Although there are other talc deposits scattered about the southwest portion of the state none has produced talc on a commercial scale.

All three deposits have produced ceramic and cosmetic talc and during World War II the Johnny Gulch deposits have produced some lava talc. This lava talc was produced at a very small margin of profit due to the cost of mining and hand sorting the lava grade talc from the gangue and other grades of talc.

The geology of these three deposits is in general similar. They all appear to have been formed by the alteration of dolomite of Cambrian or pre-Cambrian age and in each area there is evidence of igneous activity which could have furnished the solutions for hydrothermal alteration of these dolomites.

Of the three deposits considered the Dillon and the Johnny Gulch areas are producing ceramic talc at the present time. The Helena deposit has not been worked for several years.

The writer wishes to thank Dr. E. S. Perry of the Geology Department of the School of Mines for his guidance in preparing this thesis and for the great
volume of information he has provided concerning the
talc deposits of Montana.

Professor J. P. Spielman of the Metallurgy Depart-
ment of the school was most accommodating in making
available much of the equipment that made the research
possible and he also gave considerable time and advice
in developing a workable burning technique.

Dr. A. E. Koenig of the Chemistry Department of the
school gave much assistance in interpreting the results
of some of the research.

GENERAL CONSIDERATIONS OF TALC

Occurrence

Ford1 describes talc as an acid metasilicate of
magnesium having a chemical formula of \(\text{H}_2\text{Mg}_3(\text{SiO}_3)_4 \)
or \(\text{H}_2\text{O} \cdot 3\text{MgO} \cdot 4\text{SiO}_2 \). The theoretical percentage com-
position is given as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>63.5%</td>
</tr>
<tr>
<td>Magnesia</td>
<td>31.7%</td>
</tr>
<tr>
<td>Water</td>
<td>4.8%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Talc is usually foliated massive, but it is also
found as granular massive, fibrous, compact, or
cryptocrystalline. It has a greasy feel. The hard-
ness of talc is between 1 and 1.5, and the specific
gravity ranges from 2.7 and 2.8.

As presented in the literature, talc is generally
considered to have been formed by the hydrothermal
alteration of basic igneous rocks such as gabbro, pyroxenite, peridotite and hornblende,2-3,4 or by the hydrothermal alteration of limestone or dolomite.2-4

Spence5 states that "The formation of talc on a major scale usually takes place either (a) under conditions of intense dynamic disturbance, where the magnesian host rock has suffered severe deformation and squeezing by tectonic agencies, with attendant heat and pressure or (b) where such rock has been subjected to contact metamorphism thru the agency of igneous intrusions."

"Where the host rock is an older crystalline dolomite, or other similar carbonate rock, the first stage often appears to have been the formation, by silicification, of a lime-magnesia silicate, such as tremolite, which finally alters to talc. In such case, particularly where alteration has remained incomplete, the talc may contain considerable residual silicate, as in the deposits of fibrous talc of the Gouverneur district, New York. The principal impurities in tales of such origin are usually dolomite, quartz, and various residual silicate minerals."

"The finest and highest priced commercial talcs are found in deposits in younger bedded dolomites that have suffered relatively little metamorphism, or recrystallization. Recrystallization, especially under conditions of contact metamorphism, is usually attended with the introduction of foreign mineral elements, resulting in the formation of the varied range of secondary silicates common in the older pre-Cambrian
carbonate rocks and also in the talc deposits associated with them. In the younger and less highly altered dolomites, talc appears to have been formed by a direct process of silicification of the magnesia constituent, the lime being removed in solution.

"In the narrower mineralogical sense, the term "steatite" is generally applied to massive, compact, cryptocrystalline talc, without visible grain, and usually of a pale yellow or cream color. Such talc is generally derived from the alteration (silicification) of carbonate rocks, such as dolomite or magnesite, having a negligible iron content.

"Steatite is a much rarer material than ordinary talc, and commercial deposits that will yield sound material suitable for sawing and forming into lava articles are scarce."

Uses of Talc

Ladco\(^6\) lists over sixty uses for ground talc including its use as a filler and pigment in paints, filler in paper, kiln furniture, dusting of rubber vulcanizing molds and cosmetics.

Altho the uses he lists represent consumption of the majority of the talc produced, the steatite or lava talc was so vital to the electrical and electronic industries that it was listed as a most critical material during the war.

H. F. Carl\(^7\) states: "Talc also occurs, altho much less frequently, in massive, fine grained, fairly
homogeneous bodies; the impure varieties are the familiar soapstones, and the purer form is frequently called steatite. Because of certain properties, the purer grades of this massive variety have a monetary value about twenty times that of ground talc.

"One desirable property of this massive talc is its amenability to accurate cutting, machining, and working in many ways, similar to a hard wood or a soft metal, and then firing without warping or appreciable shrinkage into a hard, refractory, ceramic body. Consequently, shapes that cannot be formed conveniently by molding and pressing can be produced readily with ordinary machine tools. When talc is fired to 1000°C, it is converted to a ceramic body with certain very desirable physical properties. This fired material has a hardness and a toughness frequently superior to steel. It is a refractory and an exceptionally good electrical insulator. When formed from a high grade talc essentially free from iron, it has unusually low dielectric losses, even at very high frequencies.

"Recently this use alone has consumed about one million dollars worth of finished products per year. Altho substitutes are being developed and are used to some extent, no completely satisfactory one has been made for certain of the most essential uses."
Talc Production of the World

In 1937, the last year for which complete data is available, the world production of talc and soapstone is tabulated as follows: 8

<table>
<thead>
<tr>
<th>Country</th>
<th>Metric Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>80</td>
</tr>
<tr>
<td>Australia</td>
<td>1,570</td>
</tr>
<tr>
<td>Austria</td>
<td>14,088</td>
</tr>
<tr>
<td>Canada</td>
<td>11,301</td>
</tr>
<tr>
<td>Egypt</td>
<td>2,266</td>
</tr>
<tr>
<td>Finland</td>
<td>331</td>
</tr>
<tr>
<td>France</td>
<td>56,300</td>
</tr>
<tr>
<td>Germany</td>
<td>7,790</td>
</tr>
<tr>
<td>Greece</td>
<td>1,838</td>
</tr>
<tr>
<td>India</td>
<td>13,249</td>
</tr>
<tr>
<td>Indo-China</td>
<td>428</td>
</tr>
<tr>
<td>Italy</td>
<td>45,714</td>
</tr>
<tr>
<td>Manchukuo</td>
<td>111,140</td>
</tr>
<tr>
<td>Morocco (French)</td>
<td>841</td>
</tr>
<tr>
<td>Norway</td>
<td>24,701</td>
</tr>
<tr>
<td>Roumania</td>
<td>1,976</td>
</tr>
<tr>
<td>Spain</td>
<td>3,021</td>
</tr>
<tr>
<td>Sweden</td>
<td>7,937</td>
</tr>
<tr>
<td>South Africa</td>
<td>376</td>
</tr>
<tr>
<td>United States (sales)</td>
<td>208,650</td>
</tr>
<tr>
<td>Uruguay</td>
<td>437</td>
</tr>
</tbody>
</table>

Talc Production of the United States

Talc, pyrophyllite and ground soapstone sold in the United States during 1941 are listed as follows: 8

<table>
<thead>
<tr>
<th>State</th>
<th>Short Tons</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>59,203</td>
<td>$811,793.00</td>
</tr>
<tr>
<td>Georgia</td>
<td>28,511</td>
<td>$346,550.00</td>
</tr>
<tr>
<td>Maryland</td>
<td>15,628</td>
<td>$105,363.00</td>
</tr>
<tr>
<td>Nevada</td>
<td>13,178</td>
<td>$126,433.00</td>
</tr>
<tr>
<td>New York</td>
<td>153,560</td>
<td>$1,917,732.00</td>
</tr>
<tr>
<td>North Carolina</td>
<td>64,783</td>
<td>$567,921.00</td>
</tr>
<tr>
<td>Vermont</td>
<td>57,248</td>
<td>$633,468.00</td>
</tr>
<tr>
<td>Washington</td>
<td>6</td>
<td>$2,426.00</td>
</tr>
<tr>
<td>Montana, Pennsylvania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Virginia</td>
<td>24,252</td>
<td>$142,196.00</td>
</tr>
<tr>
<td>Total</td>
<td>416,369</td>
<td>$4,701,392.00</td>
</tr>
</tbody>
</table>

Carl 7 says that: "The present domestic production of the high-grade "critical" block talc has been extremely sporadic, amounting to only a few tons per year. As a
result, practically all high grade talc of this type has to be imported. In 1943 the demand amounted to about 55 tons per month. The price of imported material, in rough lump form, has ranged from $100 to $150 per ton, depending on size and grade, and the domestic rough lump is valued at about $160 per ton. Sawed prisms of acceptable size from any source bring $200 per ton."

Microscopic Character of Talc

In writing about the optical properties of talc L. E. Berkelhammer\(^9\) states that it is either monoclinic or orthorhombic, alpha = 1.539, beta = 1.589 and gamma = 1.589, biaxial negative with small axial angle (av = 5-30°, 2E = 9-48°) appearing almost uniaxial at times. The cleavage is perfect in one direction (001) and the talc particles colorless to transparent green under the microscope. Talc as observed microscopically occurs in plate, shred, or prismatic-acicular form.

Samples of massive ceramic, cosmetic, and lava (steatite) talc were all prepared in thin section and studied under a petrographic microscope. As far as could be determined by standard procedure there was no difference between the various types. Grain size was identical, and all three were of a platy structure. No well-formed crystals were observed. The largest grains observed had a maximum diameter of .029 inches and a minimum diameter of .010 inches. The average grains were .0015 inches long and .0005± inches wide.
MONTANA TALC DEPOSITS

The Helena Deposit

The talc deposit in the Helena area is about one half mile southwest of the Helena city limits, and is in an area that in past years has produced considerable limestone for burning to lime. The talc deposit is exposed on the quarry faces and has been developed by adits driven along the long axis of the deposit.

The formations in the immediate vicinity of the deposit are all Paleozoic in age and the talc occurs in the Cambrian Pilgrim dolomite.

The area is one of general folding and faulting and the talc producing area is along the axis of a northwest striking syncline. The talc carrying formation is faulted just to the southwest of the quarries by a right-throw fault.

On the accompanying map of this district a northstriking fault is easily determined by areal mapping, but the system of faults that produced the sequence of beds: Pilgrim, Dry Creek, Jefferson, Meagher, and Flathead has not been worked out at present. For convenience a south-southeasterly striking fault has been postulated to branch from the main fault in about the center of section 36.

The talc of this deposit was apparently produced by the alteration of the Pilgrim dolomite, and was of the massive pure white type that is required for use as a filler for high grade paper and as a base for cosmetics.
GEOLOGIC MAP
OF
HELENA TALC DEPOSIT
AND
IMMEDIATE SURROUNDING AREA

Dr. E. S. Perry

C.J.L. 5-46
Anderson12 describes the main talc body as being roughly lenticular with the long axis oriented a little west of south. It has a nearly vertical dip, and does not seem to follow any definite path such as a bedding plane or a fault zone.

The deposit has the general appearance of a fissure vein, and was probably developed by alteration spreading laterally into the walls of a minor fissure through which hydrothermal solutions passed.

The Dillon Deposit

The talc deposit southeast of Dillon, Montana, produces a ceramic grade talc and is operated by the Tri-State Minerals Company, a California firm.

This deposit was first developed by an open pit and then by two underground levels. The upper level is a series of drifts and crosscuts driven from an adit. The lower level constitutes a drift with crosscuts driven from it at various intervals to block out the ore. The lower level is serviced through a winze, and is sixty feet below the upper level, track to track.

The talc occurs in a massive gray dolomite that has been tentatively identified as equivalent to the Black Point dolomite of the Johnny Gulch area by Dr. E. S. Perry. The talc body has an irregular boundary where it is in contact with the dolomite, and conforms to the plane of a fault separating the dolomite from the gneiss, schist and quartzite, where the talc is
GEOLOGIC MAP
OF AREA SOUTHEAST OF DILLON
MONTANA AND OF THE DILLON
TALC MINE

T1b Lake beds
preCcc Gneiss, schist, and quartzite
preKp Black point? dolomite

Dillon
T75
T16
T1b
T85

Talc Mine
in contact with the fault.

The portion of the talc deposit that has been developed measures approximately 300 feet long and 150 feet wide. It has not been prospected below the lower level; but on this level, which is at a maximum depth of about 170 feet, good ceramic talc has been blocked out along the drift and most of the crosscuts. It is estimated that this single deposit contained between one quarter and one half a million tons of talc of various grades.

The talc is considered to be a product of hydrothermal alteration, as are the other Montana deposits. In the talc there are sometimes found "horses" or bodies of dolomite, as large as twenty feet in diameter, that are probably unaltered portions of the country rock.

The Johnny Gulch Deposits

The talc deposits at Johnny Gulch, three miles south of Ennis, Montana, are all found in dolomite that has been identified as pre-Cambrian Black Point dolomite. Dr. E. S. Perry describes it as being very similar over the entire area of the deposit except for suggestions of schistosity and massiveness that does vary from place to place. On a fresh break it is of a light to medium gray color with a fine to medium grain. Its surfaces weather to a chocolate brown color and it is sufficiently resistant to erosion to form ridges. The schistosity conforms to the bedding of the dolomite. The strike of the bedding varies from N100°E to N350°E and the dip from NW70° to vertical.
At present four main talc bodies have been developed. There are possibly two other large bodies of talc yet undeveloped, one northeast and one northwest of upper No. 5 pit.

The main talc bodies are irregular, locally crushed and broken, and may contain "ribs" of dolomite through them. They are fifteen to thirty feet wide, and fifty to one hundred feet long, with the long axis parallel to the bedding of the dolomite. This does not apply to the body developed in upper No. 5 pit which strikes at a slight angle to the strike of bedding.

The talc bodies pinch out against the dolomite in length, and along the sides and ends of the bodies there are numerous stringers of talc in the dolomite.

Numerous small lenses and vein-like bodies of talc are found scattered throughout the dolomite.

During the recent war, pit No. 9 attracted much of the attention of the Bureau of Mines, because this body produced about ninety per cent of the lava grade talc mined at Johnny Gulch. In this pit the talc appears to have been subjected to considerable movement and blocks of talc up to a foot in diameter are found in a matrix of clay and associated with MnO₂, Fe₂O₃, and some brown and blue jasper.

Pits No. 2 and 9 and an area of jasper eleven hundred feet southwest of No. 2 pit are apparently related although the connection between them is obscure.

The transition from dolomite to talc is not apparent
in the field, the talc stopping abruptly against clean dolomite. The talc bodies commonly protrude into the dolomite in bowl-like depressions.

Altho the contacts between the talc and the dolomite appear to be clean cut the talc probably was produced by hydrothermal alteration. In support of this contention are the rounded fingers of dolomite extending into the talc in No. 5 pit and the occasional small fragments of partially altered calcareous rock that are found in the talc.

Minerals such as barite, jasper and siderite which occur with the talc in varying quantities also point to the presence of hydrothermal solutions.

The United States Bureau of Mines13 in 1943 estimated that there were 35,000 tons of ceramic grade talc developed in No. 5 pit alone. With a planned system of prospecting and development it should be possible to block out many times this tonnage in the other pits and the potential areas.

LABORATORY TESTS ON MONTANA TALC

As the problems of this thesis were originally laid out it was intended to try to determine why talc coming from the same small area, and produced from the same country rock would be of at least three different types. It was also hoped that it might be possible to determine how massive ceramic or cosmetic talc could be beneficiated so that it could be machined and burned in solid blocks as is done with lava talc.
Due to the limitations of time, and equipment available, it was only possible to work on one problem that seemed to stand out as being the first problem to be solved, namely: Why do some types of talc have a 50% loss due to firing failures (checks or cracks) while others have only a 5 - 6% loss?

The only reasons which seemed to partially explain the cracking were the loss of water and reduction of volume, both of which may go on in such a way during burning that internal strains would result.

To determine where, during the burning, the water was driven off and the volume of the blocks began to reduce the following tests were developed:

Prisms of massive ceramic, cosmetic, and lava talc about 0.8 inch on each dimension were cut out with a diamond saw. These blocks were thoroughly scrubbed with water and then examined for cracks. If satisfactory they were dried for twenty-four hours in an electric furnace at 50°C. They were then weighed and their displacement volume measured in a Russel volumeter. The weights were accurate to 1/10,000 grams and the volumes within 0.05 cc.

The blocks were then placed on a bed of dried bone ash, each in an individual three inch scorifying dish and then covered with bone ash to a minimum depth of one-half inch. This bone ash bed and cover was found to be necessary because the type electric furnace used had a loosely fitting door in front and a
3/4" opening to the atmosphere at the back making it impossible to maintain an even temperature over the entire bottom surface of the muffel. By trial and error it was found, by covering the blocks with bone ash and keeping them in scorifying dishes, reproducible and consistent results could be obtained.

The furnace used was a Hevi-Duty Electric Furnace, Type HD96 of the muffel type. Its temperature range is 220°C to 1050°C and the temperature is controlled in increments of 20°C.

For a full test burn, five blocks of each type of talc to be tested were used. The capacity of the furnace being fifteen small scorifying dishes generally three types were tested on each burn. All the blocks were placed in the cold furnace and the furnace heated to 220°C. This temperature was held for about twenty hours and then the first blocks of each type of talc were removed and allowed to cool for twenty-four hours. After cooling the blocks were brushed well to remove any adhering bone ash and then weighed and displacement volume measured. As soon as the first set of blocks were withdrawn the temperature was increased to 420°C and this held for about twenty hours. The next set of blocks were then removed, cooled, weighed and volume taken. This was repeated at 620°C, 830°C and 1030°C.

The data obtained from these tests was plotted on semi-logarithmic paper with the increase in temperature on the arithmetic scale plotted against per cent reduc-
tion of volume and per cent reduction of weight on the logarithmic scale. This is shown on Plates I, II, and III.

Plate IV shows the relation of the three reduction of volume curves and Plate V the relation of the three reduction of weight curves to each other.

Study of these plates brings out two interesting details, one is the decrease and then the increase followed by another decrease in weight of all three types of talc as they pass from room temperature to above 420°C. The first decrease in weight is explained by Carl7 as due to the removal of loosely held water in excess of the one molecule present as part of the talc structure. The gradual increase of weight between 220°C and 420°C is thought to be partially explained by the change of ferrous to ferric iron which is an impurity present in all these talc samples. This oxidation of iron accounts for about sixty per cent of the increase in weight and at present the remaining increase is unexplained.

The first reaction upon seeing these weight-loss curves is to dismiss them as improbable, but several sets of blocks were run thru the temperature range from room temperature to 520°C and within the limits of accuracy used the curves obtained were similar.

Plate V shows a striking similarity of behavior of all three types of talc.

The other interesting and, as far as this report is
concerned, the most important fact that study of these curves brings out is the erratic shrinkage and swelling of the blocks as the temperature increases. This is explained by Dr. Koenig10 as probably being due to rearrangement of the molecules of the talc as water is driven off and by the molecules changed in physical form by the heat.

It is considered probable that the massive ceramic talc and the nodular cosmetic talc have a much higher frequency of breakage (about 50\% according to Carl7) than the lava-steatite talc (that had a frequency of breakage of 6\% when tested by the American Lava Corporation11) due to this erratic behavior. This shrinking and swelling would set up strains within the blocks that as the hardening of the material progresses would result in cracking. The lava talc shows the most nearly regular curve of the three types tested while the poorest burning talc, the cosmetic talc, shows the most irregular curve.

Altho Carl7 states that the proper burning temperature for talc is 1100°C the American Lava Corporation burns their talc at 1010°C in a hydrogen atmosphere.11 With the equipment that was available it was not possible to burn the material in a hydrogen atmosphere. The reason this is done commercially is to prevent the iron present from changing to ferric iron and staining the block. The closest temperature that could be maintained, comparable to that used by the American Lava
Graphs illustrating the percentage reduction of volume and weight of lava talc upon being burned at various temperatures up to 1030°C.
COSMETIC TALC

Graphs illustrating the percentage reduction of volume and weight of cosmetic talc upon being burned at various temperatures up to 1030°C.
Graphs illustrating the percentage reduction of volume and weight of ceramic talc upon being burned at various temperatures up to 1030°C.
Composite graph showing reduction of volume of lava, ceramic, and cosmetic talc samples upon being burned at various temperatures up to 1030°C.
Composite graph showing reduction of weight of lava, ceramic, and cosmetic talc samples upon being burned at various temperatures up to 1030°C.
Corporation was 1030° C and this was used as a final temperature in all the tests.

The maximum rate of increase of temperature that could be obtained with the furnace used in these experiments was about 80° C per hour and cracking of all types of talc except lava talc was observed. Carl states that in his tests a maximum rise of 150° C per hour was used thru the 500° C and 900° C phases of the burning and an increase of 500° C per hour was used from room temperature to 1100° C exclusive of the two phases noted above. His experiments yielded about 50% crack free specimens. He considers these good results and attributes them to the slow rise thru the two critical temperatures. With even a slower rise the writer did not obtain even 50% crack free specimens from non-lava tales.

CONCLUSIONS

Of the three commercial deposits of talc that have been developed in Montana up to this time the Johnny Gulch and the Dillon deposits are still in production while the Helena deposit has been exhausted for several years.

At Johnny Gulch a good grade of ceramic talc is produced and some lava grade talc is available although it is difficult to produce the latter at a profit due to the high cost of mining and sorting. However, this deposit still contains a considerable quantity of talc that can be produced if the market for this material is
The Dillon deposit still contains a large quantity of proved, probable, and possible ceramic grade talc but no lava grade talc that can be produced commercially.

In the general Dillon-Ennis area there are many smaller deposits of talc that are not definitely known to be of sufficient size to permit exploitation but there may be other, yet undiscovered deposits in this area that would rival any of the three discussed in this paper.

The problem of producing sufficient lava grade talc to satisfy the radio and electronic industries during times when foreign imports are sharply curtailed will have to be solved along one or more of three lines: (1) develop a process to beneficiate extruded talc so that it will have the desired minimum dielectric loss and maximum resistance to heat, (2) perfect a burning technique that will permit burning of solid pieces of ceramic grade talc that is machineable, or (3) produce more lava grade talc.

Since the last alternative is subject to the whims of nature it appears that it is up to industry to solve its problems, and to do it before our supply of foreign talc is again cut off.
BIBLIOGRAPHY

1. Ford, William E.

2. Keith, Arthur
 Talc Deposits of North Carolina

3. Hess, H. H.
 Origin of Talc and Soapstone
 Economic Geology, Volume 28, pages 634-657, 1933.

4. Berkelhamer, L. H.
 Petrographic Study of Domestic Tales
 American Ceramic Society Bulletin
 Volume 22, Number 7, July 15, 1943.

5. Spence, Hugh S.
 Talc, Steatite, and Soapstone; Pyrophyllite
 Canada Department of Mines and Resources
 Mines and Geology Branch Report No. 803, 1940.

6. Ladoo, B. B.
 Talc and Soapstone, Mining, Milling, Products and Uses

7. Carl, Howard F.
 Study of Firing Failure in Massive Talc
 United States Bureau of Mines
 Report of Investigation Number 3800
 February, 1945.

8. Roush, G. A.
 The Mineral Industry During 1941, Volume 50

9. Berkelhamer, L. H.
 Petrographic Study of Domestic Tales
 American Ceramic Society Bulletin, July 15, 1943
 Volume 22, Number 7, pages 227-230.

10. Conversations with Dr. A. E. Koenig, professor
 of chemistry, Montana School of Mines.

11. Thurnauer, Hans (American Lava Corp.)
 Report on Grude Talc Samples from Teutsch (Johnny
 Gulch) Property
 Personal report to L. F. Teutsch from the American
 Lava Corporation, Chattanooga, Tennessee
 December 7, 1942.
12. Anderson, H. N.
Helena and Ennis Talc Deposits
Senior Thesis submitted to Department of Geology,
Montana School of Mines, May, 1942.

United States Bureau of Mines.