
Montana Tech Library
Digital Commons @ Montana Tech

Graduate Theses & Non-Theses Student Scholarship

Spring 2019

Raspberry Pi Cluster for Parallel and Distributed
Computing
Ngoc Ha

Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch

Part of the Geological Engineering Commons, and the Geophysics and Seismology Commons

https://digitalcommons.mtech.edu?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtech.edu/grad_rsch?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtech.edu/stdt_schr?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtech.edu/grad_rsch?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1400?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages

Raspberry Pi Cluster for

Parallel and Distributed Computing

by

Ngoc Ha

A project report submitted in partial fulfillment of the

requirements for the degree of

Master of Science:

Geosciences/Geophysical Engineering

Montana Technological University

2019

ii

Abstract

 Parallel and distributed computing have become an essential part of the ‘Big Data’

processing and analysis, especially for geophysical applications. The main goal of this project

was to build a 4-node distributed computing cluster system using the Raspberry Pi single-board

computers for educational and research purposes. After assembling together the system, a

standard test was performed to check the system functionality. A Monte Carlo simulation to

calculate π (pi) was used to demonstrate the advantages and drawbacks of parallelization and

distribution of tasks and data within the cluster. Challenges encountered during installation of the

software and testing phase, and their resolutions were also discussed.

Keywords: Raspberry Pi, computer cluster, parallel computing, distributed system.

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. Khalid Miah, for

providing financial support for buying the equipment and offering his invaluable guidance

throughout the course of the project. Without him, this project would not have been possible.

I also acknowledge with a deep sense of reverence, my gratitude towards Dr. Phillip

Curtiss for the many important advice that he gave me.

 Finally, I would like to thank Dr. Richard Rossi and Dr. Mohamed Khalil,

members of my graduate committee, for their helpful comments and suggestions

on my project report.

iv

Table of Contents

ABSTRACT ... II

ACKNOWLEDGEMENTS .. III

LIST OF TABLES .. V

LIST OF FIGURES ... VI

1. INTRODUCTION ... 1

2. BACKGROUND INFORMATION ... 1

2.1. Parallel Computing ... 1

2.2. Distributed Computing ... 3

2.3. Raspberry Pi ... 4

3. BUILDING THE SYSTEM .. 5

3.1. Components and Costs ... 5

3.2. General Architecture .. 5

3.3. Operating System ... 6

3.4. MPI and programming language ... 7

4. TESTING THE SYSTEM .. 8

4.1. Functionality testing ... 8

4.2. Monte Carlo approximation of Pi ... 8

4.2.1. Parallel Processing on a single RPi ... 9

4.2.2. Parallel vs Distributed Computing ... 11

4.2.2.1. 4 cores: single node vs four nodes .. 11

4.2.2.2. 16 cores vs 4 cores .. 12

4.3. Challenges encountered ... 14

5. CONCLUSIONS ... 14

REFERENCES .. 15

v

List of Tables

Table 1: Components and Costs ..5

vi

List of Figures

Figure 1: Sequential Algorithm (Barney, 2018) ..2

Figure 2: Parallel Algorithm (Barney, 2018) ...2

Figure 3: Flow diagram of a distributed system ..3

Figure 4: Raspberry Pi (Stanton, 2018) ...4

Figure 5: Main network architecture..6

Figure 6: Basic functionality test ...8

Figure 7: Monte Carlo approximation of Pi ...9

Figure 8: a) Sequential; b) Parallel (4 subtasks) ..10

Figure 9: Single-core vs Multi-core run time ..10

Figure 10: 4 subtasks: a) single node; b) 4 nodes ..11

Figure 11: Overhead of Distribution Computing ...12

Figure 12: a) 4 subtasks, 1 node; b) 16 subtasks, 4 nodes ...13

Figure 13: 4 cores vs 16 cores..13

1

1. Introduction

Big data analysis is increasingly becoming essential to many fields in science and

engineering. The sheer size of data often leads to a slow runtime with computationally intensive

algorithms, such as 3-D Fourier transform or 3-D prestack migration in geophysics (Yilmaz,

2001). Another difficulty occurs when the data set is bigger than the available RAM (random

access memory) in a computing system. In this case, the data must be divided into smaller data

sets and processed separately, which entails even longer processing time. As data sets are getting

larger and the Moore’s Law is approaching its limits (Kumar, 2015), traditional sequential

algorithms are becoming too inefficient to handle the state-of-the-art data analysis tasks.

A plausible solution to improve the efficiency of seismic processing is to develop parallel

and distributed algorithms, such as distributed-memory Fast Fourier Transform (Gholami et. al.,

2016) or parallel Reverse Time Migration (Araya-Polo et. al., 2011). As parallel and distributed

computing is becoming increasingly prevalent, so is the need to study them. In this project, we

built a distributed computing system using 4 Raspberry Pis and tested this system using simple

parallel and distributed algorithms.

2. Background information

This section will explain the concepts of parallel computing, distributed computing, and

Raspberry Pi.

2.1. Parallel Computing

Traditionally, algorithms operate in a sequential fashion (Figure 1):

 A problem is broken into a discrete series of instructions

 Instructions are executed sequentially

 All instructions are executed on a single processor

 Only one instruction is executed at any moment in time

2

Figure 1: Sequential Algorithm (Barney, 2018)

Multiple computing resources are utilized in parallel computing to solve a computational

problem simultaneously (Figure 2):

 A problem is broken into discrete parts that can be solved concurrently

 Each part is further broken down to a series of instructions

 Instructions from each part execute simultaneously on different processors

 An overall control/coordination mechanism is employed

Figure 2: Parallel Algorithm (Barney, 2018)

By dividing a task into X subtasks and executing them simultaneously, execution speed can be

improved up to a factor of X times.

3

2.2. Distributed Computing

A distributed computing system is a hardware-software combination consisting of

components that are located on different networked computers and communicate and coordinate

actions among each other through passing messages. The components interact with one another

in order to achieve common goals/tasks (Steen & Tanenbaum, 2017). A common distributed

architecture is demonstrated in Figure 3:

Figure 3: Flow diagram of a distributed system

Each node in a distributed system consists of a memory component (RAM) and a

processor component (CPU). The master nodes oversee distributing and managing data/tasks

across the system, and slave nodes execute the tasks assigned to them by the master. The goal of

a distributed system is to utilize all available memory and the processing power of different

computers to solve a computational problem efficiently and in a fault-tolerant manner (i.e. even

if a few nodes fail, the system will continue to function).

4

2.3. Raspberry Pi

A Raspberry Pi (RPi) is a credit-card-sized, inexpensive single-board computer that is

capable of running Linux and other lightweight operating systems based on ARM processors. An

ARM processor belongs to a family of multi-core CPUs based on the RISC (reduced instruction

set computer) architecture developed by Advanced RISC Machines (ARM). Figure 4 features a

detailed description of the RPi 3 Model B+ components.

Figure 4: Raspberry Pi (Stanton, 2018)

RPis, equipped with 1GB of RAM, a quad-core CPU at 1.4GHz, built on a robust

motherboard, are used in this project. Each RPi is perfectly compatible with another RPi and

thus, makes it easier to scale up just by adding more RPi units. After considering other options

(i.e., Qualcomm DragonBoard, ASUS Tinker Boad, etc.) we decided that RPi was a suitable

choice for this project in terms of cost, functionality, portability, and scalability.

5

3. Building the system

3.1. Components and Costs

The total cost for this project is $262.71, which is detailed in table 1. We were able to use an

existing monitor with HDMI-VGA cable, keyboard and mouse in the lab room, so there was no

cost for those components.

Table 1: Components and Costs

Components Quantity Unit

Price

Cost

Element14 Raspberry Pi 3 B+ 4 $38.30 $153.20

Ethernet Cable 5-pack 1 $18.00 $18.00

USB 2.0 Cable 2-pack 2 $4.00 $8.00

16 GB MicroSDHC Flash Card 4 $4.00 $16.00

TP-Link 5 Port Fast Ethernet Switch 1 $11.99 $11.99

Dual USB Wall Charger (2-pack) 1 $8.00 $8.00

15-piece Heatsink pit 1 $8.00 $8.00

USB Micro Charger DC 5V 3A 4 $9.88 $39.52

Total $262.71

3.2. General Architecture

The major components needed to build a computing cluster are:

 Computer hardware

 Operating System (OS)

6

 An MPI (Message Passing Interface) library

 An Ethernet switch

Figure 5 shows the main network architecture. The system design includes 4 RPi nodes,

5-port Ethernet switch, Raspbian OS, and MPICH with Python wrapper (MPI4PY). The RPis

were connected to Montana Tech network through the Ethernet switch.

Figure 5: Main network architecture

3.3. Operating System

For this project we considered two different operating systems for the Raspberry Pi:

Raspbian and Arch Linux ARM. Raspbian is a Debian-based OS optimized for the RPi, which

comes pre-installed with a full desktop environment and a large set of precompiled packages. For

these reasons, Raspbian is great for getting started with RPi and Linux. The downside of using

Raspbian is that it is bloated with many unnecessary packages leading to slower installation and

start-up.

7

However, the Raspbian takes the fully-featured approach while Arch Linux ARM takes the

minimalist approach. The default installation provides a bare-bone, minimal environment, which

boots (in 10 seconds) to a command line interface (CLI) with the network support. With Arch

Linux, the users can start with the cleanest, fastest setup and install only packages as needed,

allowing the system to be optimized for different purposes (e.g. data processing, system

administration, etc.). The disadvantage of Arch Linux is it has a much steeper learning curve for

new users, who will have to manually install many packages and their dependencies using an

unfamiliar CLI.

As the main goal of this project is to explore RPi, Linux, parallel and distributed computing,

Raspbian was chosen for the OS for our system. Arch Linux may be considered for users more

fluent in Linux operating system.

3.4. MPI and programming language

MPICH is a high performance and widely portable implementation of the MPI standard. We

chose MPICH because it supports both synchronous and asynchronous message passing.

Installation of MPICH and its Python wrapper (mpi4py) on RPi is also fast and simple. MPICH

requires that all nodes have password-less Secure Shell (SSH) access to one another. We

achieved this by generating a pair of public-private keys for each node, and then copying the

public keys of all nodes into each node’s list of authorized keys.

Python was an obvious choice of programing language due to its ubiquity in the scientific

computing world and our own familiarity with the language. Python is especially suited for fast

prototyping due to its syntax and the fact that it is interpreted and dynamically typed.

Performance tradeoffs with Python include lack of type safety and slower execution time.

However Python was sufficient for the purpose of this project.

8

4. Testing the system

Once the system was built, we proceeded to test its basic functionality with a simple MPI

program. Subsequently, we ran a Monte Carlo simulation in three different methods

(sequential/parallel/distributed) and compare the performances among the methods.

4.1. Functionality testing

A simple “hello world” Python test script was sent by MPI from the master node to the slave

nodes. Each of the 16 processor on the network needed to report back to the master to confirm

that all of the processors were working correctly (Figure 6).

Figure 6: Basic functionality test

4.2. Monte Carlo approximation of Pi

The Monte Carlo methods are a broad class of computational algorithms that rely on

repeated random sampling to obtain numerical results. The essential idea in Monte Carlo

methods is that randomness can be used to solve problems that might be deterministic in nature.

In this project, we used a Monte Carlo algorithm to approximate the number π (Figure 7).

9

Figure 7: Monte Carlo approximation of Pi

The steps are:

1. Generate a random point inside the unit square

2. Check if the point falls inside the circle enclosed by the unit square. Record the result.

3. Repeat steps 1 and 2 N times.

4. Count how many points fall in the circle enclosed by the unit square (n)

5. Calculate Pi by:

𝜋

4
=

𝑛

𝑁
 → 𝝅 = 𝟒 ×

𝒏

𝑵
 (for very large N)

This algorithm is highly parallelizable because each point that is generated is completely

independent of every other point.

4.2.1. Parallel Processing on a single RPi

The second phase of testing was the Monte Carlo simulation. First, we ran the Monte

Carlo algorithm with a sample size of 3 million in a sequential order meaning only 1 processor is

involved in executing the task. Next, we used Python multiprocessing library to parallelize the

task to 2, 3, and 4 subtasks, with each subtask being executed on a separate processor (or core) in

a single node (Figure 8). In this case, the sample size was 3 million.

10

Figure 8: a) Sequential; b) Parallel (4 subtasks)

Prior to running the experiment, we expected that parallelization would greatly reduce the

run time of the Monte Carlo algorithm, since the workload would be shared across multiple

processors instead of a single processor. The results (Figure 9) confirm this expectation. A near-

linear improvement in run time was observed as more cores participated in sharing the workload.

Figure 9: Single-core vs Multi-core run time

11

4.2.2. Parallel vs Distributed Computing

After examining runtimes of sequential and parallel algorithms in a single node, we

proceeded to explore the distribution of tasks and data across the network. First, we wanted to

examine the effect of converting the data into TCP/IP format and sending them back and forth

between the nodes in the network. Next, we distributed the task to all 16 nodes in the network to

demonstrate the benefit of utilizing all available computing resources.

4.2.2.1. 4 cores: single node vs four nodes

To examine the effect of data conversion and transfer, we divided a Monte Carlo simulation

into 4 subtasks. Then we compared the performance of running 4 subtasks in a single node and

of running 4 subtasks in four different nodes (Figure 10). The sample sizes that we used are 100

thousand, 1 million, 5 million, and 10 million.

Figure 10: 4 subtasks: a) single node; b) 4 nodes

The results are shown in Figure 11. For the first 3 data points, the results were as we

expected. The overhead involved data conversion and transfer increased the runtime when we

distributed the subtasks across the network. For the final simulation with sample size of 10

million, the results were surprising. Distributing the 4 subtasks across different nodes actually

outperformed processing the 4 subtasks in a single node. A likely explanation for this

12

phenomenon is that for computationally-intensive tasks (e.g. large sample sizes), a single RPi

would produce a lot of heat and slow down due to thermal throttling. This would no longer be

the case if we distribute the subtasks across the network. Unfortunately, due to time constraints,

we could not verify this hypothesis.

Figure 11: Overhead of Distribution Computing

4.2.2.2. 16 cores vs 4 cores

For the final experiment, the goal was to demonstrate the benefit of a fully distributed,

fully parallel system where all computing resources were utilized. To achieve this, we

compared the performance of running 16 subtasks across the network and 4 subtasks in a

single node (Figure 12).

13

Figure 12: a) 4 subtasks, 1 node; b) 16 subtasks, 4 nodes

The results (Figure 13) show dramatic improvement in runtime when the other 3 nodes

participated in sharing the workload. For a sample size of 10 million, run time was improved by

almost a factor of 4.

Figure 13: 4 cores vs 16 cores

14

4.3. Challenges encountered

The first problem we encountered was with installation of the software packages. Initially we

tried to compile most packages from their source code, which was an extremely tedious and

error-prone process. We had multiple compatibility issues due to missing dependencies, for

which we had to completely reformat the SD cards and reinstall the operating systems. Later, we

realized that we could use the Advanced Package Tool (APT) to install packages, which

automatically installs in standard directories and takes care of dependencies. The only downside

of using APT is a lack of customizability.

We also encountered another challenge with supplying enough power to the RPi. At first, our

power sources could only deliver 1.1 A to each RPi, which was insufficient for running intensive

computational tasks. Our master node kept rebooting whenever we attempted to execute a

computationally-intensive task. We resolved this problem by using more powerful power sources

that are capable of delivering 2.0~2.5 A to each RPi.

5. Conclusions

We successfully assembled and tested a 4-node computing cluster using Raspberry Pis.

Using the cluster, we also demonstrated that parallelization and distribution of tasks and data are

beneficial. Our cluster is a robust, low-cost distributed system that can be used for training and

research activities in parallel and distributed computing.

In the future, we hope to scale up the system to hundreds of processors. In order to achieve

this, we will need to design a physical structure that can house the RPis, and a method of

delivering sufficient power to the system reliably. We will also consider optimizing this

prototype by using a more compact operating system and/or a more performant programming

language.

15

References

Araya-Polo, M., Cabezas, J., Hanzich, M., & Pericas, M. (2011). Assessing accelerator-based

HPC reverse time migration. IEEE Transactions on Parallel and Distributed Systems, 22

(1), 147-162.

Barney, B. (2018, June 25). Introduction to parallel computing. Retrieved from Lawrence

Livermore National Laboratory: https://computing.llnl.gov/tutorials/parallel_comp/

Gholami, A., Hill, J., Malhotra, D., & Biros, G. (2016). AccFFT: A library for distributed-

memory 3-D FFT on CPU and GPU architectures. arXiv:1506.07933.

Kumar, S. (2015). Fundamental Limits to Moore's Law. arXiv:1511.05956.

Stanton, C. (2018, March 8). Raspberry Pi 3 Model B Plus (B+) Technical Specifications.

Retrieved from Element14: https://www.element14.com/community/docs/DOC-

88853/l/raspberry-pi-3-model-b-plus-b-technical-specifications

Steen, M. v., & Tanenbaum, A. S. (2017). Distributed Systems.

Yilmaz, O. (2001). Seismic data analysis: processing, inversion and interpretation of seismic

data. SEG.

	Montana Tech Library
	Digital Commons @ Montana Tech
	Spring 2019

	Raspberry Pi Cluster for Parallel and Distributed Computing
	Ngoc Ha

	OFFICIAL SIGNATURE PAGE TEMPLATE (To be turned in to the Graduate School with your one certified copy

