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Abstract 

Biofilms occur when planktonic bacteria attach to a surface, forming a sticky, 
extracellular matrix that makes them difficult to remove. Biofilms are especially troublesome in 
water filtration membrane systems due to their strong adhesive properties. Once attached, 
biofilms cause a decrease in water production (biofouling) and an increase in membrane 
degradation. Traditional cleaning methods use harsh chemicals and require modules being taken 
offline, which reduces water production rates.  Moreover, despite current cleaning efforts, 
irreversible biofouling inevitably leads to membrane module replacement. The implementation 
of low-intensity UV irradiation for biofilm prevention could decrease waste and increase 
production. However, while much is known about the effects of high-intensity UV on planktonic 
bacteria death, we know little about the impact of low-intensity UV on biofilm formation. 

This study evaluated the effects of low-intensity UV on biofilm formation. To 
accomplish this task, this thesis also evaluated the effect of low-intensity UV irradiation on 
planktonic bacteria under stagnant growth conditions, identified a relevant disinfection kinetics 
model, and determined the effect of UV on bacterial motility. 

This study investigated the model bacterium E. coli in three media: a newly designed 
medium referred to as HT medium (publishing pending by Clemson University), tryptic soy 
broth (TSB), and M9 minimal medium. Both M9 medium and TSB medium are commonly 
utilized in bacterial cultivation. HT medium is specially formulated to augment biofilm growth 
while minimizing UV absorbance encountered with TSB medium.   

Overall, no statistically significant decrease in biofilm formation was observed under 
sub-lethal irradiation with UVC in the three media tested. For E. coli in HT medium, biofilm 
growth was only reduced at the highest, lethal applied dose (p = 0.001). At all intensities studied 
(12.96 to 240.5 mJcm-2), biofilm growth in TSB (p ≥ 0.989) and M9 (p ≥ 0.366) was not 
significantly reduced.   

It was observed, however, that low-intensity UVC irradiation may reduce bacterial 
motility. Swimming motility of E. coli was significantly reduced (p ≤ 0.003) at all intensities 
studied. Similarly, swarming motility was significantly reduced (p ≤ 0.046) at all intensities 
above 53.64 mJcm-2. Therefore, while sub-lethal irradiation by UVC may significantly reduce 
swimming and swarming motility in E. coli, there was no evidence that biofilm formation is 
significantly affected. 

 
 
 
 
 
 
 
 
 
 
 
 

Keywords: Ultraviolet Irradiation, Biofilm prevention, E. coli, Swimming Motility, Swarming 
Motility  
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1. Overview 

 The exponential growth of the world’s population in the last 200 years [1] has strained 

freshwater resources. Today, it is estimated that approximately 66% of the global population 

endure severe water scarcity at least one month every year [2], and the situation is only expected 

to worsen. For example, in late 2017, 3.81 million residents [3] of Cape Town, South Africa 

were limited to a water usage rate of 6.6 gallons of water per day due to a projected complete 

water outage by February 2018 [4]. As a comparison, the United States Environmental 

Protection Agency estimates that the average American family utilizes 300 gallons of water a 

day [5]. Of those 300 gallons, almost 45% percent (135 gallons per day) used for showering and 

flushing toilets. In fact, flushing a standard toilet just four times uses 6.4 gallons of water, nearly 

the same volume that Cape Town residents were allotted per day.  By reducing water usage and 

receiving much-needed precipitation, the city never ran out of water and is in the process of 

building a seawater desalination plant [4]. 

 Desalination, or the conversion saltwater into freshwater, is a promising solution for 

today’s water crisis because seawater is the most abundant water source on earth, making up 

96.5% of earth’s total available water. Saltwater is 88.9 times more abundant than freshwater [6] 

and 1.3 million times the current global freshwater demand [7]. Desalination can either be 

performed by thermal separation such as distillation or physical separation such as reverse 

osmosis [8]. 

 Reverse osmosis (RO) is a promising desalination technology [9]. Accounting for 66% of 

the online capacity, RO removes salt from water by applying pressure to a semi-permeable 

membrane. The applied pressure works to overcome osmotic pressure and drive a separation 

between clean water and a concentrated salt solution, or brine. RO is particularly reliable and 
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scalable technology for desalination. For instance, Tampa Bay, Florida has an RO system that 

produces 25 million gallons of drinking water per day [10]. Similarly, a plant in Algiers, Algeria 

was completed in 2016 that produces 53 million gallons of clean water per day [9]. Additionally, 

Israel acquires half of all their drinking water by desalination [11].  

 Despite the apparent advantages of RO technology, operational detriments exist making a 

new operating approach essential. One such issue is biofouling, or the formation of biofilms on a 

membrane surface [12]. While biofilms are helpful in wastewater treatment and mammalian 

digestion, excessive biofilm formation is particularly troublesome in membrane operations for 

multiple reasons. First, biofouling decreases system productivity as it increases energy use.  

Second, biofouling leads to accelerated membrane degradation, as biofilms produce acids that 

degrade membrane surfaces. Additionally, biofilms are extremely difficult to remove [12], and 

they can self-replicate. Therefore, a single bacterium surviving a physical or chemical pre-

treatment can cause biofouling [12].   

 Within membrane systems specifically, the sticky extracellular polymeric substance 

(EPS) produced by bacteria prevents penetration of biocides, causes biofilms to be difficult to 

remove, and contributes to irreversible fouling [14] [15]. One traditional foulant removal 

technique is physical cleaning. Physical cleaning on micro-and ultrafiltration membranes 

normally occurs in the form of backwashing whereby clean water is pushed backwards through 

the membrane, dislodging loosely adhered material [16]. Chemical cleaning is also utilized for 

foulant removal. Chemical cleaning occurs when a chemical agent, such as chlorine, is used to 

break down materials not removed during backwashing [16] [15]. Due to the nature of reverse 

osmosis membranes, they can be neither backwashed nor cleaned with chlorine, therefore 

turbulence is the primary physical cleaning method [15]. Chemical cleaning in RO systems is 
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done using surfactants and ethylenediaminetetraacetic acid  (EDTA). Traditional cleaning 

methods, however, are inefficient as they tend to waste clean process water and create an 

abundance of chemicals that are released to the environment [14].  In addition to cleaning 

mechanisms, antifouling methods can be utilized including the addition of biocides into influent 

water to reduce bacteria concentration. Not all bacteria are susceptible to the same biocides, 

however, and chemical additions can be costly or lead to membrane destruction [15]. Therefore it 

is desired to identify an innovative biofilm prevention method that reduces chemical use. 

 Recently, researchers have focused on biofilm prevention instead of cleaning. While 

high-intensity ultraviolet (UV) light may damage the polyamide layer on the RO membrane, it 

may not be as susceptible to low-intensity UV. In the proposed process, UV irradiation of the 

membrane surface would occur at a low intensity for an extended time. Traditional UV 

irradiation, which is used in water treatment, wastewater treatment, and meat sterilization [17], 

operates at a high intensity for a short time. Because UV sterilization is commonly used, the 

efficacy of lethal dosages of ultraviolet irradiation for inactivation of planktonic bacteria has 

been widely studied.  By applying low-intensity UV, less energy, and therefore less cost, is 

associated with this method. Additionally, with emerging technology such as up-conversion 

phosphors [18], membranes could have a coating that produces biocidal UV upon irradiation 

with direct sunlight.   

 Currently, there are significant knowledge gaps surrounding the application of low-

intensity UV as a biofilm prevention technique, including the mechanisms by which UV 

influences bacterial motility. This thesis addresses these knowledge gaps by 1) verifying a 

quantitative model that predicts the intensity of a lethal dose of UV, 2) evaluating the hypothesis 

that low-intensity UV suppresses biofilm formation, and 3) determining if UV suppresses of 
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bacterial motility. A custom-built apparatus was made to qualitatively analyze the effect of low-

intensity UV on Escherichia coli biofilm formation and motility. 
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2. Background 

2.1. Membrane and Reverse Osmosis Systems 

Membrane filtration became a relevant technology in the United States as recently as the 

1990s [18]. The Safe Drinking Water Act in the United States mandated that all surface water be 

treated using a filtration treatment system to remove coliform bacteria and control other 

parameters [20]. The first American membrane water treatment plant was built in California in 

1993 [18], and new plants continue to be built.  

Membrane filtration removes suspended materials —including particles and microbes— 

by size selection, a process where water and particles less than a certain diameter pass through 

pores into the permeate stream while larger particles are trapped in the retentate or concentrate 

stream.  Membrane technologies are classified into four types based on the size of particles they 

remove microfiltration, ultrafiltration, nanofiltration, and reverse osmosis (Figure 1). 

 

Figure 1: Overview of membrane and reverse osmosis filtration including the types of materials that are 
retained and pass through the membrane [21]. Figure courtesy of Dr. Katherine Zodrow. 
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Microfiltration has the largest pore sizes and removes larger particles such as suspended 

solids and most living organisms, including protozoa and bacteria. Ultrafiltration operates with 

the second largest pore sizes and removes small colloids and viruses, and nanofiltration removes 

most divalent salts. Non-porous reverse osmosis membranes are the most restrictive membrane 

type, and they remove monovalent salts, such as sodium chloride. As membrane pore size 

decreases, particles that are removed by membranes with larger pores are also removed. For 

example, nanofiltration removes large molecules, suspended solids, and small colloids.  While 

membranes with smaller pores remove the largest variety of contaminants, these membranes also 

require higher pressures and yield a lower recovery. Recovery is the percent of the feed water 

that is recovered as treated permeate [14].   When treating fresh surface water, microfiltration 

and ultrafiltration are used most often, as they can remove surface water contaminants of 

concern, such as suspended solids, bacteria, and protozoa. Nanofiltration and reverse osmosis, 

however, are most useful for softening well water and desalinating saltwater.  

In porous membrane filtration, removal of particles occurs by one of three mechanisms 

(Figure 2). Particles can be strained when they are removed by the pores at the membrane 

surface, adsorbed when they stick to the pore wall, or removed by cake filtration. In cake 

filtration, large particles form a layer over the membrane that traps smaller particles that would 

otherwise pass through the membrane. 
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Figure 2: Removal mechanisms in membrane filtration [14] 

 

2.2. Biofouling and Biofilms  

In membrane technologies, fouling is categorized by a 15-30% pressure drop across the 

membrane or a 10% decrease in flux at constant temperature and pressure [21] [22]. Fouling 

leads to decreased productivity, increased energy consumption, and ultimately membrane 

degradation and replacement [15].  

Biofouling is fouling due to bacterial growth on the membrane.  Most commonly, 

biofouling occurs due to biofilms [12] and is known to contribute to at least 45% of membrane 

fouling [15].  Biofouling occurs almost under any conditions, e.g., high dissolved organic 

carbon, [15] and very low calcium concentrations [22].   

Biofilms are scientifically described as communities of bacteria, surrounded by sticky 

extracellular polymeric substances, or EPS [24] [25]. EPS is a complex substance composed of 

polysaccharides, proteins, humic substances, and nucleic acids [26]. EPS protects bacteria from 

bactericides, aids in surface attachment, and forms hollow channels. These channels convey 
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water, nutrients, and waste throughout the system [24].  Figure 3 shows a Bacillus subtilis 

biofilm formed on an agar plate where hollow channels formed from the EPS are clearly visible.  

 

 

Figure 3: Biofilms formed by B. subtilis showing EPS channels used to convey nutrients, water, and waste. 
 

2.3. Mechanism of Biofilm Formation 

A key step in biofilm formation is initial bacterial/biofilm attachment. Initial biofilm 

attachment occurs by any of three methods, (Figure 4). The first method occurs when a 

conditioning film forms on the surface, altering the physical-chemical interactions between the 

bacteria and the surface [21]. These interactions include surface charge, hydrophobicity, and 

other bacterium-specific characteristics [26]. For example, a lithophilic conditioning film 

containing both hydrophobic and hydrophilic sites can increase bacterial attachment to 

hydrophilic surfaces [15]. These films may also augment attachment by increasing surface 

roughness. The increased surface roughness is caused by micro-scale cavities or other low-

turbulence zones where bacteria can more easily attach without being affected water flow or 

other washing mechanisms [28] [22].  Avila et al. estimated that a surface threshold roughness of 

0.2 µm can augment initial biofilm attachment while an increase in surface roughness beyond 
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that is correlated with an exponential increase in bacterial accumulation at the surface [28].  It is 

important to note, however, that some surface patterns can decrease biofilm attachment, such as 

sharkskin which utilizes a protruding micro-patterned surface to reduce bacterial attachment 

[28]. Conditioning films also allow for attachment of polymers, colloids, and planktonic bacteria, 

which eventually mature into a biofilm [30].  

 

Figure 4: Biofilm attachment, maturation, and dispersion. Top row, from left to right: the attachment of a 
protobiofilm [30], the attachment of planktonic bacteria [25], and the attachment of polymers, colloids, and 

planktonic bacteria to a conditioning film [21]. 
 

The second method of attachment occurs when a biofilm precursor, or protobiofilm, 

attaches to a surface. Because the protobiofilm already contains EPS precursors, called 

transparent exopolymer particles (TEP), it allows for streamlined attachment and more rapid 
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biofilm maturation [30]. In addition, TEP acts in the same way as a conditioning film, allowing 

for easier attachment of additional bacteria [30].  The last attachment regime occurs when a 

single bacteria bacterium attaches to a surface and begins to grow, following the same 

maturation process [25].   

Once attached, bacteria continue to grow and produce EPS [25]. This growth and EPS 

production continue until the biofilm thickens and matures [25]. Once matured, the biofilm 

enters a phase known as dispersion where it releases protobiofilms and planktonic bacteria back 

into the aqueous environment [25]. 

In membrane systems, fluid dynamics play a major role in initial interactions between 

both motile and non-motile bacteria and surfaces [30]. This is in part because elements designed 

to promote turbulent flow at the membrane surface create laminar flow conditions in other 

locations. In areas of laminar flow, bacteria and particles accumulate, allowing for more surface 

contact time [15]. Additionally, EPS at the membrane surface reduces turbulence, exacerbating 

bacterial attachment [15] Finally, RO membranes reject nutrients, increasing nutrient 

concentration at the membrane surface, and encouraging motile bacteria to utilize chemotaxis to 

move towards the nutrients at the surface [30] [32].  Because motility is so important for 

bacterial attachment, this thesis will evaluate the effect UV has on motility. 

2.4. UV for Disinfection and Biofilm Prevention 

Ultraviolet irradiation potentially offers an innovative way to prevent biofouling. UV 

light has wavelengths between 200 and 400 nm, and it can be further broken down into UVA, 

UVB, and UVC [33]. UVA has the longest wavelengths (315-400 nm) and is primarily 

responsible for dermal cancers in humans [33], while UVB (290-320 nm) contributes to 

epidermal cancers [33]. Naturally occurring UVC (100-280 nm) is absorbed within the 
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atmosphere [33], but artificial UVC is often used for disinfection purposes [18]. At 254 nm, 

biocidal UVC is the most effective for disinfection [18] [34]. Under UVB disinfection, the 

primary mode of action is DNA damage [34]. This damage occurs when UV causes dimerization 

of pyrimidines. Dimerization is an additive process where two identical compounds combine to 

create a new compound [32]. Pyrimidines are single ring bases in deoxyribose nucleic acid 

(DNA), cytosine and thymine [32].  Secondary modes of action include hormone inactivation, 

protein destruction, cellular membrane damage, and oxidative damage [34]. Once damaged, 

DNA cannot be transcribed, and daughter cells cannot be formed [36] or are unable to replicate 

[34].   In addition to damaging DNA, UV can also break down polysaccharides and cause 

oxidative injury [37]. 

 While traditional UV disinfection is beneficial for reducing the number of colony 

forming units (CFU) in the feed water of membrane processes, it is not currently utilized for 

biofilm prevention at the membrane surface [15] nor does it have much effect on the EPS of 

established biofilm [38].  This minimal effect is most likely due to the nature of EPS, which 

adheres strongly to surfaces via Van der Waals forces, electrostatic forces, and chemical bonding 

with other polymers [15]. These processes are not easily interrupted by UV. Any damage occurs 

due to protein oxidation [26].   

Disinfection kinetics were initially characterized by Dr. Harriet Chick and Herbert 

Watson, whose combined kinetic model, called the Chick-Watson model, is the simplest and 

most widely used disinfection kinetic model for UV disinfection [14].  By assuming a system 

under UV irradiation is modeled as a pseudo-first order reaction, a reaction that is linearly 

dependent on UV dose (Equation 1) in a completely mixed batch reactor (CMBR), Equation 2 

was derived.  
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Dose = 𝐼𝐼𝐼𝐼 Equation 1: Applied 

Biocide Dose Equation:  

−kc𝐼𝐼𝐼𝐼 = ln (
𝑁𝑁
𝑁𝑁𝑜𝑜

) 
Equation 2: Chick-

Watson Disinfection Model 

Here,  I is UV intensity in mWcm-2, t is irradiation time in seconds, 𝑁𝑁𝑜𝑜 is the initial bacterial 

concentration (CFUmL-1),  N is final concentration (CFUmL-1), and 𝑘𝑘𝑐𝑐 is a reaction rate constant 

called the coefficient of specific lethality (cm2mJ-1) [14].  Literature reports that E. coli have a 𝑘𝑘𝑐𝑐 

of 8.3cm2mJ-1 for high-intensity UV disinfection [14]. 

 Disinfection is commonly characterized using a log removal value (LRV).  The LRV 

allows for the quantification of logarithmic changes in CFU, a count of active bacteria in a 

culture (Equation 3). 

LRV = −log ( 𝑁𝑁
𝑁𝑁𝑜𝑜

) Equation 3: Log 

Removal Equation  

Where all variables have previously been defined.   

In theory, the same LRV is achieved at the same applied dose even if the intensity and 

time are not the same. Therefore, low-intensity UV could be applied for a long time to achieve 

the same applied dose as a high-intensity for a short period of time.  

In some cases, low doses of a disinfectant have no effect on bacterial viability. This led to 

the development of the Rennecker-Mariñas disinfection model (Equation 4) [14]. The 

Rennecker-Mariñas model assumes that once this minimum dose (b) is achieved, disinfection 

follows first-order kinetics according to the Chick-Watson model, described below. 

 For It < b 0 = ln ( 𝑁𝑁
𝑁𝑁𝑜𝑜

) Equation 4: 

Rennecker-Mariñas 

Disinfection Model 
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 It > b −kc(𝐼𝐼𝐼𝐼 − b) = ln ( 𝑁𝑁
𝑁𝑁𝑜𝑜

)  

 

Where all variables have previously been defined.  

 While traditional UV disinfection can reduce suspended (or planktonic) bacteria in the 

feed water of membrane processes, it is not currently utilized for biofilm prevention at the 

membrane surface [15]. While little is known about the effect of UV on biofilm formation, it is 

known that UV has minimal effect on the EPS of established biofilm [38].  This is most likely 

due to the nature of EPS, which adheres strongly to surfaces via Van der Waals forces, 

electrostatic forces, and chemical bonding with other polymers [15]. These processes are not 

easily interrupted by UV, although some damage could occur due to oxidative degradation [26].   

The EPS of established biofilms provides several protective measures against UV. For 

instance, physical protection occurs when EPS absorbs UV that would otherwise splice bacterial 

DNA [37]. The bacteria within the film have also developed protection methods including the 

emission of free radicals that intercept UV, usage of motility to avoid UV (phototaxis), and the 

use of quorum sensing [37].  While the extent of UV-induced protein and polysaccharide 

degradation depends on the type of bacteria [37] [26], it is postulated that with time, biofilms can 

repair themselves after irradiation has ended [37] [26]. Even with a UV dose of 86.4 kJcm-2, 

biofilms are still able to recover [26].  Because it is difficult to remove established biofilms using 

UV, it is better to prevent biofilms from growing in the first place. If UV could be supplied at a 

sufficient dose to cause non-lethal oxidative injury to bacteria, then UV could potentially reduce 

both the initial attachment and further development of biofilms.  
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3. Research Hypothesis  

 This research was designed to validate two hypotheses:  

3.1. There is a Critical, Non-Lethal Dose for Prevention of Biofilm 
Attachment. 

Previously, most studies focused on bacterial inactivation with high-intensity UV. For 

example, Tingpej et al. [13] found that 20 minutes of irradiation under a biosafety cabinet UV 

light (intensity not reported) killed both planktonic and biofilm-associated E. coli [13] Redman et 

al. [39], who studied the effect of UV on slime-forming bacteria, found that a minimum dose of 

45 mJcm-2 reduced the concentration of bacteria in raw water to less than 1500 CFU per 1 mL 

(no starting concentration given). Cates et al. [18] found that B. subtilis spores experienced a 

90% reduction in viability after a UVC applied dose of 12 mJcm-2.  Zenoff et al. [40] discovered 

that for four different bacterial strains, a 50% or higher reduction was experienced after an 

applied UVB dose of 393 mJcm-2.  

This study hypothesized that a critical, or minimum dose of UV needed to prevent 

biofilm attachment to a surface without killing bacteria exists.  If this hypothesis is found to be 

valid, then low-intensity UVC could be applied at an infinite time throughout a system to prevent 

biofouling. Within membrane systems, this application would decrease waste, both freshwater 

and chemical, and increase the production of freshwater.  

3.2. Non-Lethal UV Irradiation Prevents Biofilm Formation by 
Suppressing Motility  

The effect of UV on motility is most often studied in correlation with the effect of 

increasing UVB in the atmosphere due to the depletion of the ozone layer [41].  In algae, 

flagellated species are more susceptible to the effects of UVB than non-motile species [41].  
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Flagellated algae species were also found to experience flagella loss at an applied dose of 0.6 

kJm-2 [41].  In addition, UVB damages flagella proteins [42]. 

Motility, including the categories of swimming, swarming, and twitching, is directly 

linked to biofilm formation under stagnant conditions [43]. By allowing bacteria to swim through 

a fluid, motility facilitates bacterial colonization, or initial reversible attachment [43]. Primarily, 

swimming motility in relation to biofilm formation occurs due to chemotaxis where bacteria are 

attracted to an increased concentration of nutrients [43]. In RO systems, nutrients are 

concentrated at the membrane surface because they are rejected by the membrane. Swarming and 

twitching motility, both of which are characterized as movement across a surface, aid in 

permanent attachment [43]. Because non-motile bacteria are limited in their interaction with the 

surface, they have more difficulty colonizing it [43].  Additionally, motility plays a role in 

biofilm architecture [43]. For example, Aeromonas species display major defects in biofilm 

architecture in mutations that are unable to perform swarming motility [43]. Non-flagellated 

mutants are also found to produce patchy biofilms [43]. However, bacterial adhesion to a surface 

is complicated under flow conditions, and less of a correlation between motility and adhesion 

exists because other factors play a role in bacterial colonization [43]. For example, under flow 

conditions, biofilm growth of A. tumefaciens is not possible unless chemotaxis is utilized [44].  

Motility is commonly divided into three categories—swimming, swarming, and twitching.  

Swimming motility occurs in aqueous environments where rotating flagella propels the 

bacteria forward [45] and is most likely to aid in initial surface interaction [45].  It was 

hypothesized that similar to previous research [17] [46], a reduction in swimming ability with 

increased irradiation doses would be found due in part to flagella motor damage. 
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Similar to swimming, swarming motility occurs due to flagella movement, however, 

while swimming occurs in a fluid, swarming occurs at a wetted surface [47]. Furthermore, it is a 

coordinated movement amongst a group of mobile bacteria and is believed to play a role in 

biofilm attachment [48].  Due to swimming and swarming motility utilizing the same mechanism 

of transport, the flagella, it is hypothesized that swimming and swarming effects under 

irradiation will be the same.  

Unlike the two previous forms of motility, twitching is not performed by flagella. Instead, 

twitching is facilitated by small hair-like structures known as type IV pili [45]. Once a bacterium 

has made contact with a surface, pili extend and retract, [49] causing movement. Research 

suggests that type IV pili might aid in attachment to a surface [45]. Likewise, most motility 

studies have been conducted using high-intensity UV and focused solely on swimming motility 

[17] [46]. 
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4. Materials and Methods 

4.1. Experimental Apparatus 

Prior to experimentation, an apparatus was built following the standard protocol for 

bench top UV irradiation [50]. The apparatus included a 0.305 (1 ft) collimator made of 10.14 

cm (4 in) PVC painted black internally. The collimator absorbs any UV that that is not pointed 

orthogonally to the sample surface [50].  The sample area of the apparatus was created by nailing 

together three 0.305 m2 pieces of particle board and supporting them in the front with a 3.8 cm × 

9 cm × 30 cm wood piece. The top of the apparatus was created by drilling a 10.14 cm hole in a 

0.305 m2 piece of particle board. Both the sample holding area, as well as the top of the 

apparatus, were attached with metal brackets. After the apparatus was created, an initial reading 

was taken with a radiometer, and it was determined that this apparatus produced an intensity of 

0.150 mWcm-2. 

 Preliminary tests utilizing B. subtilis in 1:1000 TSB determined that complete death 

occurred after just 30 seconds (a dose of 4.500 mJcm-2) in this apparatus (Figure 5). 
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Figure 5: Preliminary testing using B. subtilis in 1:1000 TSB. Complete death occurred at 4.5 mJcm-2 which 

corresponds to 30 seconds of irradiation  
 

 Because an irradiation time of 8 hours was desired, alterations were needed to enable 

low-intensity irradiation.  A target intensity was determined by rearranging Equation 1 

(Dose=Intensity × time) for intensity, estimating an 8-hour experiment, and setting dose equal to 

4.500 mJcm-2. From this, it was determined that a target intensity of 0.156 µWcm-2 was required 

to facilitate low-intensity irradiation.  Thus, the distance between the light and the top of the 

collimated beam was increased to four feet using a chemistry lab stand (Figure 6). The chemistry 

stand allowed for variation of height between the UVC source and the collimator, thus allowing 

for variation of intensity as a function of height. Ultimately, the added height resulted in an 

intensity of 2.36 µWcm-2, which was still greater than the target intensity.  

 To further reduce intensity, several filter materials were tested including borosilicate 

glass, polypropylene plastic, and acrylic plastic. Eventually, a Safeway brand standard paper 

coffee filter (less than 1mm in thickness) was chosen to reduce intensity to 0.13 µWcm-2.   
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Figure 6: Final iteration of the experimental apparatus.  

4.2. Bacterial Cultivation and Culture Preparation 

The model bacteria E. coli, a facultative anaerobe [51], was studied. E. coli K-12 was 

kindly provided by Dr. Ezra Cates. Three media types were also used. The first was Tryptic Soy 

Broth (TSB) (Sigma-Aldrich) [51], a standard medium for bacterial growth. The second medium 

was M9 minimal medium (12.8 g Na2HPO4·7H2O, 3 g KH2PO4, 0.5 g NaCl, 1 g NH4Cl, 10 mL 

20% D-glucose solution, 1 mL 1.0 M MgSO4 solution, and 0.05 mL 1.0 M CaCl in 1 L 

deionized, DI, water) [25] which is also commonly used in microbiology as a medium that 

contains the minimum concentrations of nutrients necessary to facilitate bacterial growth. M9 

medium is most similar to surface water. Finally, HT medium was utilized. HT medium was 
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specially formulated by Clemson University student Hamed Torkzadeh in order to promote 

biofilm growth without inhibiting UVC penetration [52].   

Bacterial colonies were maintained on tryptic soy agar (TSA) (Sigma-Aldrich) plates. An 

overnight bacterial culture was created by inoculating 10 mL of TSB medium with a single 

colony and incubating at 37 °C for 12-24 hours. 250 µL of the overnight culture was then 

pipetted into 5 mL of fresh TSB and cultivated at 37 °C for an additional 3 hours, yielding a 

culture in log phase growth [53]. Log phase growth time was verified by a growth curve (Figure 

7). Next, an experimental culture was created in one of three media: HT, TSB, and M9. 

 
 

Figure 7: E. coli-K12 growth curve in TSB. Absorbance was measured at a wavelength of 600 nm.   
 

Both M9 and HT Media experimental cultures were created by a process where a log 

phase culture was centrifuged for 10 minutes at 3600 rpm in an angle centrifuge (Hamilton Bell 

1550), decanted, and re-filled with 5 mL fresh medium.  This process was repeated three times.  

After dilution, the sample was sonicated in a bath sonicator (Branson 3510) for 15 seconds to 

ensure a homogenous sample and the experimental culture was adjusted to an optical density of 

0.075 (corresponding to 4.73 × 108   CFUmL-1 for HT medium, 1.77 × 109 CFUmL-1 for TSB 
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medium, and 1.33 × 108   CFUmL-1 for M9 medium) as measured on a UV-Vis spectrophotometer 

(HACH DR 6000). 

4.3. Ultraviolet Irradiation 

Irradiation was conducted in a custom-built apparatus with a 15 W Florence tube bulb 

IN-0HV41 (Technical Precision) as the UV source. Intensity was measured by placing a 

radiometer (PMA2200, Solar Light) in the center of the sample area, allowing the radiometer to 

stabilize for 15 minutes, and then recording the value. Irradiation of biofilms occurred between 

20-23 °C, the room temperature of the lab during the experimentation. Motility assays were 

irradiated at 25 °C, a temperature that was achieved by heating the lab with a space heater 

(Mainstays HO-02708). 

4.4. Planktonic Death UV model  

Disinfection kinetics modeling was accomplished by studying planktonic death in 

correlation to applied dose for E. coli. To do this, 175 µL of experimental sample (4.73 ± 2.73 × 

108   CFUmL-1 for HT medium, 1.33 ± 0.326 × 108   CFUmL-1 for M9 medium, and 1.77 ± 0.427 

× 109 CFUmL-1 for TSB medium) was placed in eight replicates in wells of a 96-well plate. In 

addition to experimental samples, negative controls were also plated in quadruplicate in the form 

of non-inoculated medium.  The plate was then irradiated at 20-23 °C for 24 hours. A second, 

identical plate was set next to the apparatus, serving as a dark control. Plate counts were 

performed post-irradiation to determine final bacterial counts while starting bacterial counts were 

estimated using optical density [17]. Plate counts were performed by pipetting 50 µL of the 

irradiated sample onto an agar plate, spreading with a spread bar 10 times, rotating the plate 45°, 

spreading and rotating two more times, and then incubating 12-24 hours at 37 °C. Colonies were 

then counted to determine the number of colony forming units in the sample.  Both final and 
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initial counts were then used to determine LRV by utilizing Equation 3 (LRV = −log ( 𝑁𝑁
𝑁𝑁𝑜𝑜

)).  

Height above the collimator was used to set experimental intensity while irradiation time was 24 

hours for all experiments. Eight different doses were studied: 12.96 mJcm-2, 26.82 mJcm-2, 86.40 

mJcm-2, 121.0 mJcm-2, 204.0 mJcm-2, 240.4 mJcm-2, and 360.0 mJcm-2.  Using data from the 

planktonic death experiments, both the Chick-Watson and Rennecker-Mariñas disinfection 

models were evaluated for the best fit.  

4.5. Biofilm Formation and Bacterial Growth 

In order to quantify bacterial growth, absorbance was measured post-irradiation on a 96-

well plate reader (Multiskan™ FC Microplate Photometer) at 620 nm. After spread plating, the 

remaining liquid was removed from each well, the wells were gently rinsed with phosphate-

buffered saline (PSB) ( 8g Nacl, 0.2 g KCl, 1.44 g Na2HPO4, dissolved in 1 L DI water, pH 

adjusted to 7.4), and attached biofilms fixed with 95% ethanol (Alfa Aesar).  After fixing, the 

ethanol was evaporated at room temperature overnight before staining with 0.1% safranin 

(Fischer Scientific) [53].  Once stained, the sample was rinsed four times with PBS and the 

stained biofilm was suspended with 1% sodium dodecyl sulfate (SDS) (Fisher Scientific). A 

blank was also created by staining empty wells in quadruplicate and the resulting average was 

subtracted from other results to account for a blank. Absorbance was then measured on a 96-well 

plate reader (Multiskan™ FC Microplate Photometer) at 450 nm.  

4.6. Motility Assays 

Swimming and swarming motility of E. coli were tested upon irradiation by UV. 

Twitching motility assays were also attempted but were ultimately unsuccessful.  
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4.6.1. Swimming Motility  

Swimming motility plates (1% tryptone, 0.5% NaCl, and 0.3% agar in DI water) were 

inoculated with a sterile 100 µL pipette tip in two locations using the stab inoculation method 

[45]. The stab inoculation method is as follows: a sterile pipette tip was dipped twice into 

overnight culture (optical density of 0.30) and then used to stab the agar plate. The plate was 

then irradiated for 24 hours at the same intensities studied in the biofilm tests. Post-irradiation, 

images of the plates were taken using a Canon Rebel T3 and the area of disturbance was 

analyzed using ImageJ [54]. The area of disturbance is described as the white, cloudy area as 

shown in Figure 8. To evaluate results in Image J, the image was uploaded to the program and 

the scale was set with a known distance in the image. After setting the scale, the image was 

turned into a black and white image and cropped to include only the areas of disturbance. Then, 

the particle size was analyzed and recorded in cm2.  Particle size was normalized to a dark 

control.  
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Figure 8: Example of an image taken for a dark control swim plate result where the white circles are the area of 
disturbance. 

 

4.6.2. Swarming Motility  

Similarly, swarming motility analysis was performed by inoculating a soft agar plate 

(0.5% agar, 8 g/L nutrient broth, and 8 g/L dextrose in DI water) [48] using the stab inoculation 

technique. The plate was then irradiated for 48 hours at the same intensities studied in the 

biofilm tests. Post Irradiation, a picture of the plate was taken using a Canon Rebel T3. ImageJ 

[54] was also used to evaluate the swarm area, as determined by the cloudy areas shown in 

Figure 9.   
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Figure 9: Example of an image taken for a dark control swarm plate result where the white circles are the 
area of disturbance. 

 

4.6.3. Twitching Motility 

Twitching motility assays were attempted by inoculating a 3 mm LB agar plate (1% agar) 

with a sterile pipette similarly to the stab technique, however, the tip was stabbed through the 

agar, between the plate and the agar, and then removed [45]. After the assays came back with no 

disturbance area, a further literature review confirmed that in a laboratory setting, E. coli may not 

express the genes that are responsible for creating type IV pili [55] and therefore do not utilize 

twitching motility.  
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4.7. Statistical Analysis 

Analysis of variances (ANOVA) [56] was used to determine if there is significant 

evidence to suggest that motility is statistically affected by UV irradiation and if biofilm growth 

is statistically reduced. By utilizing coding with R [56], all data was input into a code. For each 

medium, a dark control data set was created which included all dark results. For irradiated 

results, however, a set was created for each individual applied dose. R codes for bacteria growth, 

biofilm formation, swimming motility, and swarming motility are contained in appendix A, B, C, 

and D respectively.  After the code was written, it was carried out, with the results being pasted 

into a section of the code.  P-values were considered to denote statistical significance if the 

reported value was greater than the assumed α of 0.05.   
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5. Results and Discussion  

5.1. Apparatus Verification 

Irradiation intensity was varied by changing the height of the light above the collimator 

and incorporating a paper coffee filter (Safeway). For instance, when setting a height of 117 cm 

between the lamp and the collimator, the intensity was 2.36 µWcm-2. By maintaining the same 

height of 1.17 m, and placing a coffee filter at the top of the collimator, irradiation intensity was 

reduced to 0.13 µWcm-2.  Figure 10 shows that as the distance between the bulb and the 

collimator increases from 0.35 to 1.17 m, the intensity without a filter decreases from 6.72 

µWcm-2 to 2.36 µWcm-2. Likewise, the addition of a filter reduced the intensity at 46 inches 

above the collimator from 2.36 µWcm-2 to 0.13 µWcm-2, the target intensity.   

 
 

Figure 10: Variation of intensity as a function of both height and filter usage. Height was varied using a 
chemical stand and a clamp. Filters were Safeway brand white paper coffee filters. Standard deviation 

does not exist for these test as replicates were not conducted.  
 

 The correlation between height above the collimator and measured intensity were then 

compared to the inverse-square law [57]. This law states that as the distance away from a point 

source of light increases, the intensity is proportional to the inverse of the distance squared ( 
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I α 1
𝐷𝐷2

) [57]. To evaluate this, the measured intensity was plotted as a function of the inverse 

square of height (Figure 11). It was determined that both with and without a filter, the change as 

a function height fits the inverse-square law. It is important to note however that the R2 value of 

the line decreases with a filter in place. This decrease in fit is most likely due to inhomogeneous 

light refraction through a medium.  When a light ray enters a new medium, such as a filter, the 

angle of the ray is altered [57], and because the filter is heterogeneous, it introduces more 

variation in the light that reaches the sample. 

 

 
Figure 11: Evaluation of the inverse squares law in correlation to the experimental apparatus. Intensity 

decreases with the inverse square of the height. 
 

 

Once the final apparatus and filter material were determined, testing was conducted to 

ensure uniform intensity across the sample area. Figure 12 shows that for a 10.16 cm by 12.17 

cm sample area, the intensity is fairly constant when irradiated at 0.33 m above the collimator 

with a filter in place. Within the sample area, an average intensity of 0.994 ± 0.052 µWcm-2 was 

measured. The lowest measured intensity (0.92 µWcm-2) occurred in the upper-right hand corner 
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while the highest intensity (1.07 µWcm-2) occurred in the top, center. The corresponding areas 

on the 96-well plate contained non-inoculated media controls.   

 

0.96 1.07 0.92 

1.03 0.94 0.97 

1.04 1.04 0.98 

 

 
Figure 12: Intensity displays little variation across the irradiation area. Each box represents a 3.39 cm 

high and 4.06 cm wide sample area. Irradiation was measured at the center of each box. 
 

 

Additionally, consistent intensity over a 24-hour irradiation time was verified at two 

different intensities (Figure 13). The first test was conducted with a filter when the light was 33 

cm above the collimator and the bulb was pointed parallel to the chemistry stand. The second test 

occurred at the same height and with a filter, but with the light bulb positioned perpendicular to 

the chemistry stand. In the first test, the intensity was originally measured at 0.94 µWcm-2, and 

within fifteen minutes, the intensity increased to 1.12 µWcm-2. In the second test, the initial 

intensity reading was 0.68 µWcm-2, however, by 17 hours the intensity had decreased to 0.61 

µWcm-2.  Based on similar results with the radiometer in a different apparatus by a different 

graduate student, it was concluded that the radiometer takes about 15 minutes to stabilize. After 

the initial readings, all intensity results for the 24-hour test were within 0.02 µWcm-2, verifying 

that within the period experiments were conducted, the apparatus produced a consistent intensity.  

 



30 

 
Figure 13: Consistent intensity over 24 hours. Both tests occurred at 33 cm above the collimator and 
with a coffee filter in place.  The first test was conducted with the light source pointed directly down 

while the second test was conducted with the light source pointed to the right side.    
   

5.2. Planktonic Death 

5.2.1. Log Removal 

Planktonic death was evaluated using Equation 3, LRV = −log ( 𝑁𝑁
𝑁𝑁𝑜𝑜

).   Plate counts were 

used to determine N while N0 was estimated using starting OD600. Best practices available during 

experimentation did not allow for quantification of LRV at zero applied dose, so no intercept was 

set for trend lines produced.  

For E. coli in HT medium (Figure 14), log removal decreased linearly between 1.752 at 0 

mJcm-2 applied dose and 10.14 ± 0.34 at an applied dose of 203.9 mJcm-2. In these experiments, 

a log removal of 11 represents near complete death, where the majority of the ending plate 

counts had zero colonies.   

 
 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25

M
ea

su
re

d 
In

te
ns

ity
 (µ

W
cm

-2
)

Time (hours)

Test #1

Test #2



31 

 

Figure 14: Log removal of E. coli as a function of UVC dose in HT medium. The dotted line shows a linear 
least squares regression. Starting E. coli concentration was 4.73 ± 2.73 × 108 CFUmL-1, and bacteria were 

irradiated at the appropriate intensity for 24 hr.  
 

Planktonic death of E. coli in TSB is reported in Figure 15 where LRV again decreases 

linearly as a function of applied dose. The highest LRV value was calculated at 6.93 ± 1.54 at an 

applied dose of 121.0 mJcm-2.  At the lowest applied dose studied, 12.96 mJcm-2, LRV was -0.23 

± 0.38, meaning that over the course of the experiment, more bacteria replicated than was 

inactivated by UVC.  In fact, the intercept of the trend line suggests that if no dose is applied, the 

colony forming units experience a log increase of 1.02.  This increase at very low intensities in 

TSB makes sense for two reasons. First, TSB absorbs some UV at 254 nm, discussed below. 

Second, TSB has a very high nutrient density relative to the other medium studied. Because of 

this, E. coli were exposed to ample nutrients to facilitate replication and results indicate that 

replication was greater than the effect coming from low-intensity UV.  
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Figure 15: Log removal of E. coli as a function of UVC dose in TSB medium. The dotted line shows a linear 
least squares regression. Starting E. coli concentration was 1.77 ± 0.427 × 109 CFUmL-1, and bacteria were 

irradiated at the appropriate intensity for 24 hr.  
 
 

Planktonic death of E. coli in M9 medium is reported in Figure 16 where the log removal 

value increases linearly from the y-intercept of 2.58 to 9.09 ± 0.50 at an applied dose of 203.9 

mJcm-2. In these experiments, an LRV of 11 represents near complete death, where the majority 

of the ending plate counts had zero colonies.  

Log removal appears to jump to 4.63 at an applied dose of 26.82 mJcm-2.  While the 

exact cause of the discontinuity is unknown, the increase may have been due to humidity, which 

was problematic throughout experimentation. At this specific point there appeared to be more of 

an influence in liquid bacteria level at the end of the experiment than in other experiments. 
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Figure 16: Log removal of E. coli as a function of UVC dose in M9 medium. The dotted line shows a linear 
least squares regression. Starting E. coli concentration was 1.33 ± 0.326 × 108 CFUmL-1, and bacteria were 

irradiated at the appropriate intensity for 24 hr. 
 

 LRV results for E. coli in all media is displayed in Figure 17. It was to be expected that 

log removal in all media would follow a linear trend as Severin et al determined that E. coli 

experienced a linear increase in log removal as a function of irradiation time when utilizing a 

mercury vapor lamp at 254 nm [58]. 

 For all media, it was determined that while log removal fits a linear trend, the fit (R2) of 

the linear regression suggests that the data has a high variance. In M9 medium specifically, there 

is a much higher variance, which, as discussed previously may be due to a higher temperature 

during one of the tests. The variance of all media was also likely due to evaporation due to low 

humidity as well as not quantifying the exact starting concentration.  
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Figure 17: Log removal of E. coli as a function of UVC dose in all three media. Dotted lines show linear 
least squares regressions. This figure is a combination of Figures 14-16. 

 
 

In addition to a large variance, the y-intercept for M9 medium is also twice that of HT 

medium. While variance may have played a role in the significant changes between the y-

intercept for all media, it is more likely that this is a function of medium type on the absorbance 

of UV at 254 nm and the amount of nutrients available (and therefore the growth rate) in each 

media.  Figure 18 shows a wavelength scan for all three media tested. TSB medium experienced 

the highest absorbance of any medium, most likely contributing to a lower removal of bacteria. 

HT medium experiences the second highest UV absorbance, however, has the highest removal. 

M9 medium has approximately zero absorbance in comparison to DI water and had medium 
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removal compared to other media. The removal in M9 may have been more a function of low 

nutrient availability, leading to the bacteria not being able to replicate at the same rate seen in the 

other two media. This concept will be further discussed in the bacterial replication results 

section.  

 
 

 

Figure 18: Wavelength scan for the three media evaluated during experimentation. Absorbance was 
measured at 50 nm intervals between 200 and 650 nm with DI water as a blank. The red line represents a 

wavelength of 254 nm, or biocidal UV.  
 

5.2.1. Chick-Watson Model 

Death kinetics were analyzed by fitting the final plate counts to the Chick-Watson 

disinfection model from Equation 4 ( −kc𝐼𝐼𝐼𝐼 = ln ( 𝑁𝑁
𝑁𝑁𝑜𝑜

)). This model is known to accurately 

quantify bacterial death during high-intensity UVC biocidal treatment [14].    

For E. coli grown in HT medium (Figure 19), the death kinetics were found to follow the 

Chick-Watson model where the natural log of the surviving fraction was found to linearly 

decrease from -7.81 ± 1.99 at an applied dose of 12.96 mJcm-2 to -23.33 ± 0.78 at an applied 
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dose of 203.9 mJcm-2. The coefficient of specific lethality was determined to be 0.1444 for E. 

coli in HT medium.   

 

 
 
Figure 19: Removal of E. coli as a function of UVC dose in HT medium fit to the Chick-Watson model. The 

dotted line shows a linear least squares regression. Starting E. coli concentration was 4.73 ± 2.73 × 108 
CFUmL-1, and bacteria were irradiated at the appropriate intensity for 24 hr. 

 

Death kinetics for E. coli grown in TSB were also evaluated using the Chick-Watson 

model (Figure 20), but it was determined that the kinetics did not follow this model. Again, these 

results are most likely due to the fact that TSB absorbs UVC, therefore the applied dose is not 

actually the dose that reached the bacteria.  The natural log of the surviving fraction was found to 

linearly decrease from -0.53 ± 0.88 at an applied dose of 12.96 mJcm-2 to -15.54 ± 3.01 at an 

applied dose of 203.9 mJcm-2. The coefficient of specific lethality was determined to be 0.059 

for E. coli in TSB medium.  
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Figure 20: Log removal of E. coli as a function of UVC dose in TSB medium. The dotted line shows a linear 
least squares regression. Starting E. coli concentration was 1.77 ± 0.427 × 109 CFUmL-1, and bacteria were 

irradiated at the appropriate intensity for 24 hr. 
 

Figure 21 shows the Chick-Watson death kinetics model of death kinetics for E. coli in 

M9 medium where natural log removal was found to linearly decrease as a function of applied 

dose.  Natural log removal was found to be -3.10 ± 0.36 at an applied dose of 12.96 mJcm-2 to -

20.94 ± 1.15 at an applied dose of 203.9 mJcm-2. The coefficient of specific lethality was 

determined to be 0.1079 for E. coli in M9 medium.   
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Figure 21: Log removal of E. coli as a function of UVC dose in M9 medium. The dotted line shows a linear 
least squares regression. Starting E. coli concentration was 1.33 ± 0.326 × 108 CFUmL-1, and bacteria were 

irradiated at the appropriate intensity for 24 hr. 
 

While textbooks cite the coefficient of specific lethality of E. coli undergoing high-

intensity UV irradiation to be 8.3 cm2 mJ-1 [14], this thesis found it to be much lower. In fact, the 

coefficient of specific lethality was found to be 0.1444, 0.0586, and 0.1079 cm2mJ-1 in HT, TSB, 

and M9 media respectively. Gilba et al. [59]found that the coefficient of specific lethality for E. 

coli in greywater is 0.88 cm2mJ-1. While greywater typically is most similar to TSB, having an 

absorbance at 254 nm of 0.28 [59], the medium studied by Severin et al. was more similar to HT 

and M9 media, with an absorbance at 254 nm of 0.032 [58].  Thus, the media plays a major role 

in the effectiveness of UV as a disinfectant. 

As mentioned above in the section about log removal, while all media follow a linear 

trend, the fit of the lines (R2) is poor. This again is most likely due to the variance of the growth 

conditions including temperature and humidity.  Figure 22 shows a combined graph of all three 
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media types studied. According to the Chick-Watson model, as the coefficient of specific 

lethality increases, so does the susceptibility of bacteria to UVC [59]. Because of this fact, the 

results of this thesis support that as absorbance of the medium decreases, the susceptibility of the 

bacteria being treated increases. From a processing standpoint, this determination means that as 

the water being treated increases in quality, a low-intensity UVC treatment will be more 

effective at killing bacteria.   

 

 
 

Figure 22: Log removal of E. coli as a function of UVC dose in all media. The dotted line shows a linear 
least squares regression. This figure is a combination of Figures 19-21. 

 

While the hypothesis for this thesis stated that under low-intensity UVC would follow the 

Rennecker-Mariñas kinetics model, it was determined based on the fit of the Chick-Watson 

testing that this hypothesis was not determined to be accurate.  

5.3. Bacterial Replication Results 

Traditional UV irradiation, which occurs over short time periods (generally < 30 minutes) 

and therefore does not account for bacterial growth, or replication.  The E. coli used for this 
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thesis, however, had a doubling time of 68 minutes. Therefore, for 24-hour experiments, bacteria 

was expected to double more than 21 times, and it was important to determine how bacterial 

growth changes with increasing UVC irradiation.  Figure 26 shows the normalized growth results 

for E. coli in HT medium, and a value of one denotes equal irradiated and dark bacterial growth.  

Due to UV’s ability to inhibit replication, it is important to evaluate this figure to determine if an 

applied dose exists that does not significantly affect bacterial growth. For E. coli in HT medium, 

bacterial growth increased to 0.568 ± 0.018 at a dose of 12.96 mWcm-2 (p = 0.000).  Otherwise, 

sub-lethal UVC irradiation did not statistically affect bacterial growth until complete death 

occurred at 203.90 mWcm-2 (p = 0.020).  After complete death occurred, normalized bacterial 

growth was 0.798 ± 0.055. Thus, apart from the anomaly at 12.96 mWcm-2, no significant 

decreases in bacterial growth occurred in HT media until the highest irradiation dose, which is 

somewhat at odds with the inactivation observed in HT (Figure 23). The difference between 

these two results is likely due to the complicated interaction between bacterial replication and 

inactivation, and OD620 measurements (reported in Figure 26) do not account for the viability of 

the bacterial cells. 



41 

 
 Figure 23: Normalized Bacterial Growth as a function of dose for irradiated E. coli grown in HT medium. A 

starting E. coli concentration of 4.73 ± 2.37 × 108 CFUmL-1 was used, and bacterial growth was calculated 
from an OD620 measurement. A normalized value of 1.0 represents zero growth difference between irradiated 

and dark, and bacteria were irradiated for 24 hr.  
 
 

 E. coli grown in TSB (Figure 27) experienced little change in bacterial growth as a 

function of applied dose. The lowest calculated normalized bacterial growth result was 0.928 ± 

0.009 at 240.4 mJcm-2 while the highest calculated value, 1.024 ± 0.029, occurred at 86.4 mJcm-

2. Two applied doses experienced a significantly significant change, 12.96 and 203.9 mJcm-2 (p < 

0.001).  Overall, TSB growth shows less of a downward trend than HT growth, as TSB absorbs 

some of the UVC (Figure 18), experiences slower disinfection kinetics (Figure 20), and contains 

more nutrients for growth. 
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 Figure 24: Normalized Bacterial Growth as a function of dose for irradiated E. coli grown in TSB medium. A 

starting E. coli concentration of 1.77 ± 0.427 × 109 CFUmL-1 was used, and bacterial growth was calculated 
from an OD620 measurement. Irradiated values were normalized to the dark controls for the same experiment, 

and bacteria were irradiated for 24 hr. 
 

Similar to TSB, M9 saw only small changes in bacterial growth with increasing UVC 

dose. Results for normalized bacterial growth are shown in Figure 28. The lowest calculated 

normalized bacterial growth result was 0.654 ± 0.066 at 203.9 mJcm-2 while the highest 

calculated value, 0.776 ± 0.048, occurred at 240.4 mJcm-2. In all cases, there were no statistically 

significant differences between growth in the irradiated and control samples (p > 0.447). 
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 Figure 25: Normalized Bacterial Growth as a function of dose for irradiated E. coli grown in M9 medium. A 
starting E. coli concentration of 1.33 ± 0.326 × 108 CFUmL-1 was used, and bacterial growth was calculated 

from an OD620 measurement. A normalized value of 1.0 represents zero growth difference between irradiated 
and dark, and bacteria were irradiated for 24 hr. 

 
 

 In general, bacteria grown in all media (Figure 29) experienced minimal changes in 

bacterial growth at low-intensity UVC irradiation.   It is curious that these results differ so 

greatly from the results obtained using plate counts (Figure 22). The difference between these 

results likely lies in the methods used. First, OD620 measurements will account for all cells—

dead or alive—in the sample, whereas plate counts will account only for those bacteria that are 

able to replicate on incubated plates. It appears that UVC makes it more difficult for bacteria to 

replicate on plates after irradiation; however, it seems that bacteria can still replicate in media 

under these exposure conditions. 
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 Figure 26: Normalized Bacterial Growth as a function of dose for irradiated E. coli grown in all media. A 

starting E. coli concentrations of 4.73 ± 0.237 × 108, 1.77 ± 0.427 × 109, and 1.33 ± 0.326 × 108 CFUmL-1 were 
used for HT, TSB, and M9 media respectively. Bacterial growth was calculated from an OD620 measurement. 
A normalized value of 1.0 represents zero growth difference between irradiated and dark, and bacteria were 

irradiated for 24 hr. 
 
 
 

 In addition to evaluating the average of the normalized biofilm growth, overall trends 

were studied by normalizing each irradiated biofilm growth result to an overall dark control 

average of 0.549 ± 0.062 in HT medium, 1.536 ± 0.293 in TSB medium, and 0.594  ± 0.103 in 

M9 medium  (Figure 30). When fit to linear least sums regressions, all three slopes are less than 

0.0021, suggesting what has been verified statistically above, that there is minimal change in 

bacterial growth as a function of applied low-intensity UVC dose.   
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 Figure 27: Normalized Bacterial Growth as a function of dose for irradiated E. coli grown in all 

media. Dotted lines represent linear regression.  A starting E. coli concentrations of 4.73 ± 0.237 × 108, 
 1.77 ± 0.427 × 109, and 1.33 ± 0.326 × 108 CFUmL-1 were used for HT, TSB, and M9 media 

respectively. Bacterial growth was calculated from an OD620 measurement. A normalized value 
 of 1.0 represents zero growth difference between irradiated and dark, and bacteria were irradiated  

for 24 hr. 
 

In general, bacteria grown in all media (Figure 29, 30) experienced minimal changes in 

bacterial growth at low-intensity UVC irradiation.   It is curious that these results differ so 

greatly from the results obtained using plate counts (Figure 22). The difference between these 

results likely lies in the methods used. First, OD620 measurements will account for all cells—

dead or alive—in the sample, whereas plate counts will account only for those bacteria that are 

able to replicate on incubated plates. It appears that UVC makes it more difficult for bacteria to 

replicate on incubated agar plates after irradiation; however, it seems that bacteria can still 

replicate in media under these exposure conditions. That is, if the bacteria were mostly 

inactivated (as results in Figure 22 indicate), they would not be able to grow (as results in Figure 

29 indicates). These contradicting results make it somewhat difficult to make conclusions 

concerning the overall health of irradiated planktonic bacteria. 
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5.4. Biofilm Formation 

Biofilm growth was quantified by utilizing a colorimetric assay with safranin stain.  

Measured results were then normalized to the dark control for the same experiment.  Figure 31 

shows the normalized biofilm growth in HT medium as a function of applied dose. A value of 

one denotes no change in growth compared to the dark control. Standard deviation is a function 

of both irradiated and dark samples’ standard deviation by using the propagation of error.  For 

HT medium, normalized biofilm growth appeared to be reduced to 0.585 ± 0.477 after an applied 

dose of 12.96 mJcm-2. Little further change in biofilm growth was observed until a lethal dose of 

240.5 mJcm-2 was applied, and normalized biofilm growth was 0.324 ± 0.124. It was only at this 

lethal dose where there was evidence to suggest a difference between irradiated samples and dark 

controls (p < 0.001).   

 
 

Figure 28: Normalized biofilm growth as a function of dose for irradiated E. coli grown in HT medium. A 
starting E. coli concentration of 4.73 ± 2.37 × 108 CFUmL-1 was used, and biofilm growth was quantified 

using a safranin stain read at 450 nm. A normalized value of 1.0 represents zero growth difference between 
irradiated and dark, and bacteria were irradiated for 24 hr. 
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For E. coli grown in TSB (Figure 32), normalized biofilm growth ranged between 0.208 

± 0.066 at an applied dose of 120.96 mJcm-2 and 1.00 ± 3.07 at an applied dose of 12.96 mJcm-2.  

There is not sufficient evidence to suggest that biofilm growth is significantly affected at applied 

UV doses ranging from 12.96 mJcm-2 to 240.5 mJcm-2 (p > 0.989). 

 
 

Figure 29: Normalized biofilm growth as a function of dose for irradiated E. coli grown in TSB medium. A 
starting E. coli concentration of 1.77 ± 0.427 × 109 CFUmL-1 was used, and biofilm growth was quantified 

using a safranin stain read at 450 nm. A normalized value of 1.0 represents zero growth difference between 
irradiated and dark, and bacteria were irradiated for 24 hr. 

 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150 200 250 300

N
or

m
al

iz
ed

 B
io

fil
m

 G
ro

w
th

Dose (mJcm-2)

TSB Media



48 

For bacteria grown in M9 medium, normalized bacterial growth shows slight decreases 

from 0.879 ± 0.325 at 12.96 mJcm-2 to 0.378 ± 0.261 at 240.4 mJcm-2. However, these 

differences are not significant (p > 0.366). Figure 34 shows a combination of all trends. 

 
 

Figure 30: Normalized Biofilm Growth as a function of dose for irradiated E. coli grown in M9 medium. A 
starting E. coli concentration of 1.33 ± 0.326 × 109 CFUmL-1 was used, and biofilm growth was quantified 

using a safranin stain read at 450 nm. A normalized value of 1.0 represents zero growth difference between 
irradiated and dark, and bacteria were irradiated for 24 hr. 
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Figure 31: Normalized biofilm growth as a function of dose for irradiated E. coli grown in all media. 
Starting E. coli concentrations of 4.73 ± 0.237 × 108, 1.77 ± 0.427 × 109, and 1.33 ± 0.326 × 108 CFUmL-1 

were used for HT, TSB, and M9 media respectively. Biofilm growth was quantified using a safranin stain 
read at 450 nm. A normalized value of 1.0 represents zero growth difference between irradiated and dark 

controls, and bacteria were irradiated for 24 hr. This Figure is a combination of Figures 31 to 33. 
 

In addition to evaluating the average of the normalized biofilm growth, overall trends 

were studied by normalizing each irradiated biofilm growth result to an overall dark control 

average of 0.257 ± 0.114.  These results are shown in Figure 35 where biofilm growth as a 

function of applied dose is inconclusive. The sporadic nature of these trends is evidenced by a 

linear fit (R2) of less than 0.6 in all cases.  In addition to the poor fit, linear trends also suggest 

that increasing dose has minimal effect on the overall biofilm growth.   
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Figure 32: Normalized Biofilm Growth as a function of dose for irradiated E. coli grown in all media. 
Dotted lines represent linear regressions. Starting E. coli concentrations of 4.73 ± 0.237 × 108, 1.77 ± 0.427 
× 109, and 1.33 ± 0.326 × 108 CFUmL-1 were used for HT, TSB, and M9 media respectively. Biofilm growth 

was quantified using a safranin stain read at 450 nm. A normalized value of 1.0 represents zero growth 
difference between irradiated and dark, and bacteria were irradiated for 24 hr. 

 

Overall, there is little evidence that biofilm formation is affected at the low UVC doses 

studied here. Only the highest dose studied in HT media resulted in a statistically significant 

decrease in biofilm formation, 54.5%. This irradiation intensity also resulted in a significant 

reduction in bacterial growth (Figure 26) and a log removal of 6.93 ± 1.54. Thus, it is only when 

planktonic bacteria are significantly compromised that an effect on biofilm formation is 

observed. 

 

5.5. Motility Analysis 

5.5.1. Swimming Motility  

The impact of low-intensity UVC on swimming motility is shown in Figure 36. For 

normalized results, a value of one represents no change from a dark control conducted during the 
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same test. In the case of swimming motility, a marked decrease (p = 0.0038) in swimming 

occurred at 11.23 mJcm-2, where normalized swimming was 0.281 ± 0.141. Almost no 

swimming occurred at a dose of 203.9 mJcm-2, where normalized swimming was 0.026 ± 0.005. 

Based on these results, it was determined that there is statistical evidence to suggest that 

swimming motility is decreased even at low intensities of biocidal UV. In all cases, a (p < 

0.004).  Because swimming is the method of transportation bacteria most often utilizes in 

stagnant conditions to reach a surface, it is postulated that the decrease in motility could aid in 

the prevention of initial contact between bacteria and the surface.  

 

 
Figure 33: Normalized swim plate growth area results for E. coli. (1% tryptone, 0.5% NaCl, and 0.3% agar). 

Irradiation occurred over 24 hr. Error bars represent the combined standard error of the dark and irradiated 
values. 

 

5.5.2. Swarming Motility 

Swarming motility results were quantified by measuring swarm area using in ImageJ. 

Results were then normalized to a dark control and plotted as a function of applied dose (Figure 

37). A value of one represents no change from a dark control. E. coli was found to display 
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featureless swarming [60]. This pattern of swarming in E. coli has been well documented [61] 

[62] and occurs when the outer edge of a swarm colony create a monolayer that is immobile [62].  

 Swarming motility decreased significantly at an applied dose of 53.64 mJcm-2 to, 0.180 ± 

0.085 and 0.088 ± 0.061 at an applied dose of 407.8 mJcm-2 (p < 0.034 < 0.046).  

Increasing intensity after this point appears to have no additional effect on motility (p > 

0.999) when comparing between irradiated samples. Based on these results, it was determined 

that swarming motility decreases even at low intensities of biocidal UV. Because swarming is 

the method of transportation bacteria most often utilizes move across a surface, it is postulated 

that the decrease in motility could aid in partial prevention of biofilm attachment on a surface.  

 

 
Figure 34: Normalized swarm plate growth area results for E. coli (0.5% agar, 8 g/L nutrient broth, and 8 

g/L dextrose). Irradiation occurred over 48 hr.  
 

 

 

Thus, both swimming and swarming are significantly affected in these tests at even low 

UVC doses. One must, however, be careful in interpreting these results, as the viability tests 

(Figure 22) indicate that significant inactivation may occur under these conditions. (However, 
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bacterial growth tests, Figure 29, indicate otherwise). As the health of the bacteria is in question, 

it is difficult to determine whether or not bacterial viability or concentration significantly 

affected the motility results observed. However, although motility tests do seem to indicate that 

bacteria could have difficulty forming biofilms under these UVC doses, few statistically 

significant differences in biofilm formation were actually observed (Figure 34). 
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6. Future Work and Recommendations 

 Although most of these results seem to indicate that biofilm formation is not suppressed 

at sub-lethal UVC doses, this study has made some interesting findings that warrant further 

study. The primary purpose of utilizing motility assays in this thesis was to determine an overall 

change in motility as a function of applied dose. By using confocal laser scanning microscopy, 

however, a more thorough analysis of the effect of low-intensity UVC irradiation on the 

mechanisms of motility could be performed.  Motility should be more thoroughly quantified by 

two metrics. First, flagella stains should be utilized to evaluated oxidative damage both under 

irradiated and dark control conditions [43].  Second, swimming and swarming speeds should be 

evaluated by the utilization of microscopy and particle tracking [17]. By evaluating swimming 

and swarming speed, the direct effect of UV can also be evaluated in different media types.  This 

would allow for evaluation of the hypothesis that UV directly, and negatively affects both 

swimming and swarming motility by causing oxidative damage to the flagella.    

Moving forward, an additional recommendation is to better control experimental 

temperature. A thermostat-equipped space heater in a small lab should be sufficient to maintain a 

constant temperature during experiment time with the current apparatus or the apparatus could be 

modified to fit inside an incubator. By stabilizing experimental temperature, the variance in dark 

controls experienced during this thesis should be reduced.  A second recommendation is to 

determine both initial and final colony counts using a spread plate.   

In addition to the above recommendations, if this project is to be applied to the industry 

further analysis should be conducted. This thesis specifically evaluated the model organism E. 

coli in stagnant conditions. The first analysis that should be conducted would be to evaluate other 

model organisms, including Pseudomonas aeruginosa [45], B. subtilis, Norovirus [63], and 
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Adenovirus [63] under stagnant conditions. Additionally, for all media and model organisms, 

UVC irradiation should be evaluated on a flow system [43].   

If the research discussed in this thesis is found to be valid, and there does exist a low-

intensity dose that, when applied for extended time periods, can reduce biofouling due to 

planktonic bacteria, then testing should be conducted on different membranes to determine if 

low-intensity UV caused the same water filtration membrane degradation that high-intensity UV 

causes.  If it is determined that low-intensity UVC does not cause membrane degradation, then 

pilot-scale testing should be conducted with the end goal being a low-intensity UVC application 

system for use within membranes.  By applying low-intensity UVC to a membrane, and 

hopefully reducing biofilms, this technology would reduce chemical waste, increase 

productivity, and prolong membrane life.  By augmenting the operations of membrane systems, 

it would allow for expansion of the use of membrane filtration for treatment of otherwise 

contaminated water systems. For example, RO technology could be better implemented in small, 

coastal communities that would otherwise not be capable of facilitating the maintenance costs.  
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7. Conclusions 

Due to the rising human population, and the depletion of clean water sources, there is a 

drinking water crisis on planet earth. This crisis requires novel technologies to remove 

contaminants of concern and produce potable water. Perhaps the most promising technology for 

ending the drinking water crisis comes in the form of seawater desalination via the application of 

membrane technology.  The most selective membrane type, reverse osmosis, operates by 

applying pressure to force water across a semi-permeable membrane and separate seawater into 

brine and potable water.  Membrane technology, however, has a major operational downfall in 

the form of biofouling. Biofouling occurs when bacteria congregate on a surface and form EPS, a 

sticky polymer which is difficult to remove. Biofouling decreases productivity and increases 

operating cost. Additionally, traditional cleaning techniques for biofouling create chemical waste 

and take the membranes off-line, decreasing overall production.  

 If RO desalination is to be a viable technology for ending the drinking water crisis, then 

biofouling needs to be significantly reduced within membrane systems. Research currently 

focuses on preventing biofilms, including disinfecting the feed water.  Due to bacteria’s ability to 

self-replicate, however, if even a single bacterium survives initial biocide treatment, then 

biofouling can occur. Because of this, if disinfection is going to be applicable for biofouling 

prevention, then the biocide needs to be applied continuously throughout the treatment process. 

The primary objective of this thesis was to determine if low-intensity UVC, when applied 

continuously over a 24-hour irradiation period, can reduce biofouling on a surface.  To 

accomplish this, a custom-built apparatus was used to irradiate stagnant planktonic bacteria for 

24 hours. Bacterial replication was estimated using OD620 measurements while biofilm growth 

was quantified using a colorimetric assay.  Additionally, the disinfection kinetics of low-intensity 
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irradiation of E. coli was fit to the Chick-Watson and Rennecker-Mariñas models to determine 

which model was followed. Initial bacterial counts were quantified by utilizing an OD600 

measurement while ending bacterial counts were quantified by utilizing spread plates.  Effect of 

UVC at 254 nm on swimming and swarming motility were quantified by utilizing agar motility 

assays.  

Ultimately, the hypothesis that there exists a sub-lethal dose which decreases biofilm 

growth was rejected. This rejection is because a statistically significant change in biofilm 

formation was only measured after the application of a lethal dose.    

As part of the above hypothesis, the death kinetics model for planktonic E. coli 

experiencing low-intensity UVC irradiation in three media was evaluated. For all three media 

(HT, TSB, and M9), it was determined that the system of E. coli undergoing UVC irradiation fits 

the Chick-Watson death kinetics model.   

Additionally, bacterial replication was evaluated by measuring the change in OD620 in 

irradiated and dark plates.  These results were used to evaluate the effect of low-intensity 

irradiation on bacterial growth. Traditional UV irradiation occurs over short time periods, usually 

on par with or less than the doubling time of bacteria.  Therefore, bacterial replication is not 

traditionally evaluated as a function of applied dose. For this thesis, it was determined that for E. 

coli in HT medium, bacterial growth is only significantly affected at lethal doses while E. coli 

growth in M9 medium is not significantly affected at any applied dose. E. coli growth in TSB 

medium was sporadically significantly affected by UVC irradiation, but this fact is more likely 

due to climate variation throughout experimentation.  These experiments determined that there 

exists an applied dose which has no effect on bacterial growth.  
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Interestingly, these results somewhat contradict the plate count results, indicating that 

further experiments would need to be carried out to determine the overall health of bacteria 

under low doses of UVC irradiation. 

To further evaluate the primary hypothesis of this thesis, biofilm formation was evaluated 

at doses including those which had no significant effect on bacterial growth. It was determined, 

that for both TSB and M9 media, there is no evidence to suggest that biofilm formation is 

decreased by the application of low-intensity UVC irradiation. For E. coli in HT medium, there 

is only statistical evidence to suggest that biofilm growth is affected by UVC irradiation when a 

lethal dose, according to plate counts, is applied.  

Unlike the primary hypothesis, the secondary hypothesis was verified. It was determined 

that even under sub-lethal irradiation, swimming and swarming motility are both significantly 

reduced. As discussed in the future work section, further tests are needed to determine if this 

relationship is correlated to bacterial death, or if it is directly caused by oxidative injury of 

flagella due to UVC irradiation.   

While the primary hypothesis of this thesis was refuted, this study filled valuable 

knowledge gaps in the field of UVC application for biofilm prevention. It verified the effect of 

UVC on motility at low applied intensities, set standard operating procedures for 

experimentation with low doses of UVC, and identified and eliminated many concerns, such as 

climate control and contamination. Building upon the work in this thesis, future studies can focus 

on characterizing bacteria health during low-intensity UVC irradiation, using microscopic 

techniques to evaluate the effect of UVC on flagella and motility, and evaluating low-intensity 

UVC on other bacteria strains and at higher applied doses. Although sub-lethal UVC dose does 

not prevent biofilm prevention, the basic theories evaluated during this thesis could still provide 
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for a novel approach to biofilm prevention. For instance, a lethal dose of UVC could still 

potentially be applied within a closed system to prevent biofilm formation.  
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9.  Appendix A – Biofilm Growth ANOVA Code 

 
## Analysis of Biofilm Data 
## ANOVA and post hoc Tukey Test 
 
## Biofilm Assay OD Values 
 
# Dark Control HT  
y1 = c(0.3094, 0.3704, 0.4056, 0.4216, 0.2709, 0.3297, 0.3709, 0.4815, 0.4738, 0.4252, 0.3826, 
0.5111, 0.1540, 0.1138, 0.1188, 0.1751, 0.1612, 0.1054, 0.1773, 0.18510, 0.1554, 0.2472, 
0.2617, 0.2085, 0.2814, 0.2953, 0.4135, 0.2995, 0.266875, 0.277875, 0.225175, 0.330675, 
0.290375, 0.196575, 0.233475, 0.201575, 0.170025, 0.097225, 0.145425, 0.198025, 0.199825, 
0.185225, 0.066725, 0.107925) 
 
# Irradiated HT September 5, 2018 
y2 = c(0.2294, 0.2234, 0.2046, 0.1897) 
 
# Dark Control TSB  
y3 = c(0.1518, 0.1637, 0.1693, 0.1978, 0.1021, 0.0927, 0.0678, 0.1844, 0.1235, 0.1378, 0.0751, 
0.1333, 0.1712, 0.0574, 0.0867, 0.0513, 0.0534, 0.0747, 0.0807, 0.0447, 0.0555, 0.0302, 0.0377, 
0.0430, 0.0271, 0.0312, 0.0371, 0.0279, 0.093675, 0.065175, 0.103275, 0.058675, 0.093475, 
0.077775, 0.090775, 0.126375, 0.082025, 0.049725, 0.058125, 0.048125, 0.065925, 0.053725, 
0.052325) 
 
# Irradiated TSB September 5, 2018 
y4 = c(0.1692, 0.1177, 0.1547, 0.1071) 
 
# Irradiated HT September 7, 2018 
y5 = c(0.1556, 0.2116, 0.2806, 0.3542, 0.4031, 0.4603, 0.2436, 0.1854)  
 
# Irradiated TSB September 7, 2018 
y6 = c(0.0999, 0.1465, 0.1430, 0.0917, 0.1173, 0.1186, 0.1567, 0.1404) 
 
# Dark Control M9  
y7 = c(0.3520, 0.3407, 0.3273, 0.3966, 0.4075, 0.4049, 0.5415, 0.4035, 0.2761, 0.3075, 0.2935, 
0.3272, 0.3706, 0.3387, 0.4014, 0.3457, 0.4192, 0.2474, 0.1882, 0.6958, 0.6712, 0.4745, 0.5450, 
0.4749, 0.328075, 0.274775, 0.412575, 0.499075, 0.268875, 0.329075, 0.029975, 0.120075, 
0.087625, 0.135725, 0.261825, 0.113225, 0.058025, 0.130725, 0.134125, 0.361625) 
 
# Irradiated M9 September 7, 2018 
y8 = c(0.3597, 0.2410, 0.3837, 0.4114, 0.4210, 0.4283, 0.3425, 0.3179) 
 
# Irradiated HT September 10, 2018 
y9 = c(0.1919, 0.2317, 0.2265, 0.2874, 0.2395, 0.1380, 0.2256, 0.1633) 
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# Irradiated TBS September 10, 2018 
y10 = c(0.0384, 0.0411, 0.0647, 0.0681, 0.0780, 0.0376, 0.0559, 0.1304) 
 
# Irradiated M9 September 10, 2018 
y11 = c(0.2778, 0.2443, 0.2834, 0.2766, 0.3431, 0.2844, 0.3012, 0.1861) 
 
# Irradiated HT September 12, 2018 
y12 = c(0.1796, 0.2019, 0.2336, 0.1579, 0.2135, 0.1925, 0.2698, 0.3509) 
 
# Irradiated TSB September 12, 2018 
y13 = c(0.0758, 0.0363, 0.0797, 0.0707, 0.0554, 0.0494, 0.0462, 0.0373) 
 
# Irradiated M9 September 12, 2018 
y14 = c(0.2847, 0.2640, 0.3169, 0.3196, 0.2879, 0.3872, 0.1969, 0.3024) 
 
# Irradiated HT September 18, 2018 
y15 = c(0.147975, 0.104075, 0.100775, 0.104275, 0.146075, 0.099175, 0.128375, 0.089175) 
 
# Irradiated TSB September 18, 2018 
y16 = c(0.059775, 0.085375, 0.064375, 0.093675, 0.095875, 0.116975, 0.082775, 0.081975) 
 
# Irradiated M9 September 18, 2018 
y17 = c(0.228375, 0.194575, 0.203975, 0.282275, 0.219375, 0.248675, 0.265775, 0.217175) 
 
# Irradiated HT September 25, 2018 
y15 = c(0.058925, 0.044125, 0.053125, 0.046925, 0.041125, 0.039025, 0.034625, 0.061325) 
 
# Irradiated TSB September 25, 2018 
y16 = c(0.038225, 0.015125, 0.031325, 0.043625, 0.020325, 0.030425, 0.040625, 0.044825) 
 
# Irradiated M9 September 25, 2018 
y17 = c(0.141325, 0.052925, 0.059225, 0.050125, 0.045625, 0.023425, 0.073925, 0.038625) 
 
# PDA 
 
# Combine all observations for all samples into one vector 
y = c(y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17) 
 
# Assign a group to each observation 
group = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 
8, 8, 8, 8, 8, 8, 8,  9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 
12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 
15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17) 
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# ANOVA for Biofilm Assay Results 
data = data.frame(y = y, group = factor(group)) 
fit <- aov(y ~ group, data) 
anova(fit) 
 
 
# Tukey Honestly Significant Differences 
TukeyHSD(fit)   
 
# Results for Biofilm Assay Results 
 
# Fit: aov(formula = y ~ group, data = data) 
 
# $group 
             diff           lwr           upr     p adj 
2-1   -0.04501818 -0.2123987360  0.1223623723 0.9999455 
3-1   -0.17241469 -0.2411436542 -0.1036857327 0.0000000 
4-1   -0.11961818 -0.2869987360  0.0477623723 0.5036162 
5-1    0.03000682 -0.0931819341  0.1531955705 0.9999858 
6-1   -0.13003068 -0.2532194341 -0.0068419295 0.0269606 
7-1    0.07061432  0.0005940087  0.1406346276 0.0456389 
8-1    0.10639432 -0.0167944341  0.2295830705 0.1834173 
9-1   -0.04380568 -0.1669944341  0.0793830705 0.9981848 
10-1  -0.19251818 -0.3157069341 -0.0693294295 0.0000163 
11-1   0.01781932 -0.1053694341  0.1410080705 1.0000000 
12-1  -0.03183068 -0.1550194341  0.0913580705 0.9999682 
13-1  -0.20044318 -0.3236319341 -0.0772544295 0.0000053 
14-1   0.03815682 -0.0850319341  0.1613455705 0.9996594 
15-1  -0.20939318 -0.3325819341 -0.0862044295 0.0000014 
16-1  -0.22373068 -0.3469194341 -0.1005419295 0.0000002 
17-1  -0.19614318 -0.3193319341 -0.0729544295 0.0000098 
3-2   -0.12739651 -0.2949391777  0.0401461545 0.3883270 
4-2   -0.07460000 -0.3012343417  0.1520343417 0.9992766 
5-2    0.07502500 -0.1212460973  0.2712960973 0.9958807 
6-2   -0.08501250 -0.2812835973  0.1112585973 0.9847393 
7-2    0.11563250 -0.0524440262  0.2837090262 0.5737000 
8-2    0.15141250 -0.0448585973  0.3476835973 0.3621733 
9-2    0.00121250 -0.1950585973  0.1974835973 1.0000000 
10-2  -0.14750000 -0.3437710973  0.0487710973 0.4098732 
11-2   0.06283750 -0.1334335973  0.2591085973 0.9994854 
12-2   0.01318750 -0.1830835973  0.2094585973 1.0000000 
13-2  -0.15542500 -0.3516960973  0.0408460973 0.3162102 
14-2   0.08317500 -0.1130960973  0.2794460973 0.9877330 
15-2  -0.16437500 -0.3606460973  0.0318960973 0.2264184 
16-2  -0.17871250 -0.3749835973  0.0175585973 0.1217574 
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17-2  -0.15112500 -0.3473960973  0.0451460973 0.3655875 
4-3    0.05279651 -0.1147461545  0.2203391777 0.9995774 
5-3    0.20242151  0.0790125826  0.3258304406 0.0000042 
6-3    0.04238401 -0.0810249174  0.1657929406 0.9987939 
7-3    0.24302901  0.1726220603  0.3134359629 0.0000000 
8-3    0.27880901  0.1554000826  0.4022179406 0.0000000 
9-3    0.12860901  0.0052000826  0.2520179406 0.0314285 
10-3  -0.02010349 -0.1435124174  0.1033054406 1.0000000 
11-3   0.19023401  0.0668250826  0.3136429406 0.0000235 
12-3   0.14058401  0.0171750826  0.2639929406 0.0097738 
13-3  -0.02802849 -0.1514374174  0.0953804406 0.9999947 
14-3   0.21057151  0.0871625826  0.3339804406 0.0000013 
15-3  -0.03697849 -0.1603874174  0.0864304406 0.9997763 
16-3  -0.05131599 -0.1747249174  0.0720929406 0.9898877 
17-3  -0.02372849 -0.1471374174  0.0996804406 0.9999995 
5-4    0.14962500 -0.0466460973  0.3458960973 0.3836430 
6-4   -0.01041250 -0.2066835973  0.1858585973 1.0000000 
7-4    0.19023250  0.0221559738  0.3583090262 0.0107267 
8-4    0.22601250  0.0297414027  0.4222835973 0.0083451 
9-4    0.07581250 -0.1204585973  0.2720835973 0.9953795 
10-4  -0.07290000 -0.2691710973  0.1233710973 0.9970108 
11-4   0.13743750 -0.0588335973  0.3337085973 0.5413915 
12-4   0.08778750 -0.1084835973  0.2840585973 0.9791454 
13-4  -0.08082500 -0.2770960973  0.1154460973 0.9908526 
14-4   0.15777500 -0.0384960973  0.3540460973 0.2908593 
15-4  -0.08977500 -0.2860460973  0.1064960973 0.9742374 
16-4  -0.10411250 -0.3003835973  0.0921585973 0.9093466 
17-4  -0.07652500 -0.2727960973  0.1197460973 0.9948830 
6-5   -0.16003750 -0.3202921799  0.0002171799 0.0507289 
7-5    0.04060750 -0.0835252412  0.1647402412 0.9993293 
8-5    0.07638750 -0.0838671799  0.2366421799 0.9625047 
9-5   -0.07381250 -0.2340671799  0.0864421799 0.9725191 
10-5  -0.22252500 -0.3827796799 -0.0622703201 0.0002835 
11-5  -0.01218750 -0.1724421799  0.1480671799 1.0000000 
12-5  -0.06183750 -0.2220921799  0.0984171799 0.9954308 
13-5  -0.23045000 -0.3907046799 -0.0701953201 0.0001298 
14-5   0.00815000 -0.1521046799  0.1684046799 1.0000000 
15-5  -0.23940000 -0.3996546799 -0.0791453201 0.0000522 
16-5  -0.25373750 -0.4139921799 -0.0934828201 0.0000115 
17-5  -0.22615000 -0.3864046799 -0.0658953201 0.0001989 
7-6    0.20064500  0.0765122588  0.3247777412 0.0000064 
8-6    0.23642500  0.0761703201  0.3966796799 0.0000709 
9-6    0.08622500 -0.0740296799  0.2464796799 0.8990953 
10-6  -0.06248750 -0.2227421799  0.0977671799 0.9948784 
11-6   0.14785000 -0.0124046799  0.3081046799 0.1088675 
12-6   0.09820000 -0.0620546799  0.2584546799 0.7613334 
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13-6  -0.07041250 -0.2306671799  0.0898421799 0.9824393 
14-6   0.16818750  0.0079328201  0.3284421799 0.0288986 
15-6  -0.07936250 -0.2396171799  0.0808921799 0.9478049 
16-6  -0.09370000 -0.2539546799  0.0665546799 0.8205892 
17-6  -0.06611250 -0.2263671799  0.0941421799 0.9906799 
8-7    0.03578000 -0.0883527412  0.1599127412 0.9998643 
9-7   -0.11442000 -0.2385527412  0.0097127412 0.1097276 
10-7  -0.26313250 -0.3872652412 -0.1389997588 0.0000000 
11-7  -0.05279500 -0.1769277412  0.0713377412 0.9872776 
12-7  -0.10244500 -0.2265777412  0.0216877412 0.2486211 
13-7  -0.27105750 -0.3951902412 -0.1469247588 0.0000000 
14-7  -0.03245750 -0.1565902412  0.0916752412 0.9999627 
15-7  -0.28000750 -0.4041402412 -0.1558747588 0.0000000 
16-7  -0.29434500 -0.4184777412 -0.1702122588 0.0000000 
17-7  -0.26675750 -0.3908902412 -0.1426247588 0.0000000 
9-8   -0.15020000 -0.3104546799  0.0100546799 0.0946834 
10-8  -0.29891250 -0.4591671799 -0.1386578201 0.0000001 
11-8  -0.08857500 -0.2488296799  0.0716796799 0.8772816 
12-8  -0.13822500 -0.2984796799  0.0220296799 0.1851523 
13-8  -0.30683750 -0.4670921799 -0.1465828201 0.0000000 
14-8  -0.06823750 -0.2284921799  0.0920171799 0.9871276 
15-8  -0.31578750 -0.4760421799 -0.1555328201 0.0000000 
16-8  -0.33012500 -0.4903796799 -0.1698703201 0.0000000 
17-8  -0.30253750 -0.4627921799 -0.1422828201 0.0000000 
10-9  -0.14871250 -0.3089671799  0.0115421799 0.1034757 
11-9   0.06162500 -0.0986296799  0.2218796799 0.9956003 
12-9   0.01197500 -0.1482796799  0.1722296799 1.0000000 
13-9  -0.15663750 -0.3168921799  0.0036171799 0.0633854 
14-9   0.08196250 -0.0782921799  0.2422171799 0.9319001 
15-9  -0.16558750 -0.3258421799 -0.0053328201 0.0347300 
16-9  -0.17992500 -0.3401796799 -0.0196703201 0.0120205 
17-9  -0.15233750 -0.3125921799  0.0079171799 0.0831230 
11-10  0.21033750  0.0500828201  0.3705921799 0.0008983 
12-10  0.16068750  0.0004328201  0.3209421799 0.0485741 
13-10 -0.00792500 -0.1681796799  0.1523296799 1.0000000 
14-10  0.23067500  0.0704203201  0.3909296799 0.0001269 
15-10 -0.01687500 -0.1771296799  0.1433796799 1.0000000 
16-10 -0.03121250 -0.1914671799  0.1290421799 0.9999994 
17-10 -0.00362500 -0.1638796799  0.1566296799 1.0000000 
12-11 -0.04965000 -0.2099046799  0.1106046799 0.9996583 
13-11 -0.21826250 -0.3785171799 -0.0580078201 0.0004272 
14-11  0.02033750 -0.1399171799  0.1805921799 1.0000000 
15-11 -0.22721250 -0.3874671799 -0.0669578201 0.0001791 
16-11 -0.24155000 -0.4018046799 -0.0812953201 0.0000418 
17-11 -0.21396250 -0.3742171799 -0.0537078201 0.0006414 
13-12 -0.16861250 -0.3288671799 -0.0083578201 0.0280328 
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14-12  0.06998750 -0.0902671799  0.2302421799 0.9834481 
15-12 -0.17756250 -0.3378171799 -0.0173078201 0.0144284 
16-12 -0.19190000 -0.3521546799 -0.0316453201 0.0045597 
17-12 -0.16431250 -0.3245671799 -0.0040578201 0.0379508 
14-13  0.23860000  0.0783453201  0.3988546799 0.0000567 
15-13 -0.00895000 -0.1692046799  0.1513046799 1.0000000 
16-13 -0.02328750 -0.1835421799  0.1369671799 1.0000000 
17-13  0.00430000 -0.1559546799  0.1645546799 1.0000000 
15-14 -0.24755000 -0.4078046799 -0.0872953201 0.0000222 
16-14 -0.26188750 -0.4221421799 -0.1016328201 0.0000047 
17-14 -0.23430000 -0.3945546799 -0.0740453201 0.0000880 
16-15 -0.01433750 -0.1745921799  0.1459171799 1.0000000 
17-15  0.01325000 -0.1470046799  0.1735046799 1.0000000 
17-16  0.02758750 -0.1326671799  0.1878421799 0.9999999 
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10. Appendix B- Bacterial Growth ANOVA Code 

## Analysis of Bacterial Growth HT 

## ANOVA and post hoc Tukey Test 

 

## Biofilm Assay OD Values 

 

# Dark Control HT  

y1 = c(0.6863, 0.6246, 0.6287, 0.6342, 0.5361, 0.5936, 0.586, 0.5741, 0.5705, 0.5635, 

0.5616, 0.5576, 0.5361, 0.5936, 0.586, 0.5741, 0.5705, 0.5635, 0.5616, 0.5576, 0.4513, 0.4143, 

0.4354, 0.4504, 0.4442, 0.4381, 0.4346, 0.4531, 0.553, 0.5514, 0.5487, 0.5484, 0.519, 0.5107, 

0.5174, 0.5194, 0.6138, 0.6043, 0.5992, 0.5889, 0.6113, 0.5853, 0.5522, 0.5607, 0.549202273, 

0.061974678) 

 

# Irradiated HT 24 

y2 = c(0.7109, 0.6796, 0.6653, 0.6518) 

 

# Irradiated Ht 3.6 

y3 = c(0.7866, 0.7595, 0.7325, 0.7036, 0.6977, 0.6983, 0.6687, 0.6943)  

 

# Irradiated HT 7.45 

y4 = c(0.5700, 0.5739, 0.5673, 0.5698, 0.5600, 0.5494, 0.5525, 0.5562) 

 

# Irradiated HT 33.6 
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y5 = c(0.4789, 0.504, 0.4626, 0.4561, 0.4554, 0.4452, 0.4531, 0.4507)  

 

 

# Irradiated HT 56.64 

y6 = c(0.4645, 0.4331, 0.441, 0.4232, 0.4249, 0.4102, 0.4111, 0.398) 

 

 

# Irradiated HT 66.72 

y7 = c(0.421, 0.4003, 0.4088, 0.4247, 0.4236, 0.4086, 0.4153, 0.4176) 

 

# Dark Control TSB 

y8 = c(0.5615, 0.7293, 0.7609, 0.7011, 1.6185, 1.7116, 1.7376, 1.7653, 1.7703, 1.7904, 

1.7649, 1.778, 1.6185, 1.7116, 1.7376, 1.7653, 1.7703, 1.7904, 1.7649, 1.778, 1.4484, 1.4755, 

1.4631, 1.4567, 1.4754, 1.4667, 1.4989, 1.5075, 1.544, 1.5436, 1.5191, 1.6436, 1.6133, 1.633, 

1.6058, 1.6292, 1.5512, 1.5531, 1.5534, 1.551, 1.5536, 1.552, 1.5518, 1.5706, 1.536056818) 

 

# Irradiated TSB 24 

y9 = c(1.761, 1.7885, 1.7801, 1.7799, 1.7716, 1.7775, 1.7698, 1.7533) 

 

# Irradiated TBS 86.4 

y10 = c(1.6657, 1.6736, 1.6698, 1.7077) 

 

# Irradiated TSB 7.45 
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y11 = c(1.761, 1.7885, 1.7801, 1.7799, 1.7716, 1.7775, 1.7698, 1.7533) 

 

# Irradiated TSB 33.6 

y12 = c(1.6514, 1.6284, 1.6247, 1.6266, 1.6206, 1.6258, 1.6287, 1.626) 

 

# Irradiated TSB 56.64 

y13 = c(1.6438, 1.5317, 1.53, 1.5203, 1.5031, 1.5063, 1.5107, 1.484) 

 

# Irradiated TSB 66.78 

y14 = c(1.478, 1.4518, 1.4504, 1.4372, 1.4379, 1.4267, 1.437, 1.4212) 

 

 

# Irradiated M9 Dark Control 

y15 = c(0.5149, 0.6392, 0.6561, 0.6113, 0.6867, 0.6672, 0.6111, 0.635, 0.5149, 0.6392, 

0.6561, 0.6113, 0.6867, 0.6672, 0.6111, 0.635, 0.3278, 0.3614, 0.4573, 0.4609, 0.4184, 0.4573, 

0.4485, 0.5081, 0.4966, 0.5607, 0.6428, 0.6227, 0.6369, 0.6211, 0.6395, 0.7112, 0.714, 0.7083, 

0.7058, 0.6654, 0.7039, 0.6738, 0.594352632) 

 

# Irradiated M9 24 

y16 = c(0.4015, 0.4757, 0.4927, 0.4721, 0.4987, 0.515, 0.4909, 0.4848) 

 

# Irradiated M9 7.45 

y17 = c(0.4015, 0.4757, 0.4927, 0.4721, 0.4987, 0.515, 0.4909, 0.4848) 
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# Irradiated M9 33.6 

y18 = c(0.453, 0.4944, 0.5153, 0.4958, 0.5218, 0.498, 0.4623, 0.4693) 

 

# Irradiated M9 56.64  

y19 = c(0.3778, 0.4033, 0.4044, 0.3829, 0.3992, 0.3986, 0.3729, 0.3855) 

 

# Irradiated M9 66.78 

y20 = c(0.5513, 0.5529, 0.5431, 0.5544, 0.5466, 0.5399, 0.5004, 0.494) 

 

# PDA 

# Combine all observations for all samples into one vector 

y = c(y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18) 

 

# Assign a group to each observation 

group = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 

5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 

 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 

12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 

15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 
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15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 

18, 18, 18) 

 

# ANOVA for Biofilm Assay Results 

data = data.frame(y = y, group = factor(group)) 

fit <- aov(y ~ group, data) 

anova(fit) 

 

 

# Tukey Honestly Significant Differences 

TukeyHSD(fit)   

 

 

Fit: aov(formula = y ~ group, data = data) 

 

$`group` 

               diff          lwr           upr     p adj 

2-1   -0.0450181818 -0.209147113  0.1191107494 0.9999850 

3-1   -0.1724146934 -0.239808489 -0.1050208978 0.0000000 

4-1   -0.1196181818 -0.283747113  0.0445107494 0.4986815 

5-1    0.0300068182 -0.090788804  0.1508024408 0.9999969 

6-1   -0.1300306818 -0.250826304 -0.0092350592 0.0202940 

7-1    0.0706143182  0.001954260  0.1392743761 0.0361433 
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8-1    0.1063943182 -0.014401304  0.2271899408 0.1660809 

9-1   -0.0438056818 -0.164601304  0.0769899408 0.9991104 

10-1  -0.1925181818 -0.313313804 -0.0717225592 0.0000062 

11-1   0.0178193182 -0.102976304  0.1386149408 1.0000000 

12-1  -0.0318306818 -0.152626304  0.0889649408 0.9999920 

13-1  -0.2004431818 -0.321238804 -0.0796475592 0.0000018 

14-1   0.0381568182 -0.082638804  0.1589524408 0.9998727 

15-1  -0.1418056818 -0.262601304 -0.0210100592 0.0056470 

16-1  -0.1716931818 -0.292488804 -0.0508975592 0.0001272 

17-1  -0.0242681818 -0.145063804  0.0965274408 0.9999999 

18-1  -0.2093931818 -0.330188804 -0.0885975592 0.0000004 

19-1  -0.2237306818 -0.344526304 -0.1029350592 0.0000000 

20-1  -0.1961431818 -0.316938804 -0.0753475592 0.0000035 

3-2   -0.1273965116 -0.291684406  0.0368913822 0.3765179 

4-2   -0.0746000000 -0.296831623  0.1476316234 0.9996941 

5-2    0.0750250000 -0.117433231  0.2674832314 0.9977059 

6-2   -0.0850125000 -0.277470731  0.1074457314 0.9896713 

7-2    0.1156325000 -0.049178883  0.2804438829 0.5734225 

8-2    0.1514125000 -0.041045731  0.3438707314 0.3490595 

9-2    0.0012125000 -0.191245731  0.1936707314 1.0000000 

10-2  -0.1475000000 -0.339958231  0.0449582314 0.3992248 

11-2   0.0628375000 -0.129620731  0.2552957314 0.9997942 

12-2   0.0131875000 -0.179270731  0.2056457314 1.0000000 
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13-2  -0.1554250000 -0.347883231  0.0370332314 0.3011341 

14-2   0.0831750000 -0.109283231  0.2756332314 0.9919556 

15-2  -0.0967875000 -0.289245731  0.0956707314 0.9598474 

16-2  -0.1266750000 -0.319133231  0.0657832314 0.6904388 

17-2   0.0207500000 -0.171708231  0.2132082314 1.0000000 

18-2  -0.1643750000 -0.356833231  0.0280832314 0.2091228 

19-2  -0.1787125000 -0.371170731  0.0137457314 0.1060142 

20-2  -0.1511250000 -0.343583231  0.0413332314 0.3526370 

4-3    0.0527965116 -0.111491382  0.2170844055 0.9998363 

5-3    0.2024215116  0.081409990  0.3234330337 0.0000014 

6-3    0.0423840116 -0.078627510  0.1633955337 0.9994462 

7-3    0.2430290116  0.173989823  0.3120682003 0.0000000 

8-3    0.2788090116  0.157797490  0.3998205337 0.0000000 

9-3    0.1286090116  0.007597490  0.2496205337 0.0240092 

10-3  -0.0201034884 -0.141115010  0.1009080337 1.0000000 

11-3   0.1902340116  0.069222490  0.3112455337 0.0000092 

12-3   0.1405840116  0.019572490  0.2615955337 0.0066756 

13-3  -0.0280284884 -0.149040010  0.0929830337 0.9999990 

14-3   0.2105715116  0.089559990  0.3315830337 0.0000004 

15-3   0.0306090116 -0.090402510  0.1516205337 0.9999959 

16-3   0.0007215116 -0.120290010  0.1217330337 1.0000000 

17-3   0.1481465116  0.027134990  0.2691580337 0.0027723 

18-3  -0.0369784884 -0.157990010  0.0840330337 0.9999220 
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19-3  -0.0513159884 -0.172327510  0.0696955337 0.9935535 

20-3  -0.0237284884 -0.144740010  0.0972830337 0.9999999 

5-4    0.1496250000 -0.042833231  0.3420832314 0.3715914 

6-4   -0.0104125000 -0.202870731  0.1820457314 1.0000000 

7-4    0.1902325000  0.025421117  0.3550438829 0.0073917 

8-4    0.2260125000  0.033554269  0.4184707314 0.0056147 

9-4    0.0758125000 -0.116645731  0.2682707314 0.9973811 

10-4  -0.0729000000 -0.265358231  0.1195582314 0.9984158 

11-4   0.1374375000 -0.055020731  0.3298957314 0.5389502 

12-4   0.0877875000 -0.104670731  0.2802457314 0.9852446 

13-4  -0.0808250000 -0.273283231  0.1116332314 0.9942543 

14-4   0.1577750000 -0.034683231  0.3502332314 0.2749141 

15-4  -0.0221875000 -0.214645731  0.1702707314 1.0000000 

16-4  -0.0520750000 -0.244533231  0.1403832314 0.9999879 

17-4   0.0953500000 -0.097108231  0.2878082314 0.9652704 

18-4  -0.0897750000 -0.282233231  0.1026832314 0.9812265 

19-4  -0.1041125000 -0.296570731  0.0883457314 0.9221826 

20-4  -0.0765250000 -0.268983231  0.1159332314 0.9970542 

6-5   -0.1600375000 -0.317178988 -0.0028960121 0.0405870 

7-5    0.0406075000 -0.081113773  0.1623287731 0.9997198 

8-5    0.0763875000 -0.080753988  0.2335289879 0.9712433 

9-5   -0.0738125000 -0.230953988  0.0833289879 0.9797951 

10-5  -0.2225250000 -0.379666488 -0.0653835121 0.0001389 



84 

11-5  -0.0121875000 -0.169328988  0.1449539879 1.0000000 

12-5  -0.0618375000 -0.218978988  0.0953039879 0.9974147 

13-5  -0.2304500000 -0.387591488 -0.0733085121 0.0000592 

14-5   0.0081500000 -0.148991488  0.1652914879 1.0000000 

15-5  -0.1718125000 -0.328953988 -0.0146710121 0.0164179 

16-5  -0.2017000000 -0.358841488 -0.0445585121 0.0011497 

17-5  -0.0542750000 -0.211416488  0.1028664879 0.9995436 

18-5  -0.2394000000 -0.396541488 -0.0822585121 0.0000219 

19-5  -0.2537375000 -0.410878988 -0.0965960121 0.0000042 

20-5  -0.2261500000 -0.383291488 -0.0690085121 0.0000943 

7-6    0.2006450000  0.078923727  0.3223662731 0.0000022 

8-6    0.2364250000  0.079283512  0.3935664879 0.0000306 

9-6    0.0862250000 -0.070916488  0.2433664879 0.9122687 

10-6  -0.0624875000 -0.219628988  0.0946539879 0.9970512 

11-6   0.1478500000 -0.009291488  0.3049914879 0.0937749 

12-6   0.0982000000 -0.058941488  0.2553414879 0.7723077 

13-6  -0.0704125000 -0.227553988  0.0867289879 0.9878737 

14-6   0.1681875000  0.011046012  0.3253289879 0.0218987 

15-6  -0.0117750000 -0.168916488  0.1453664879 1.0000000 

16-6  -0.0416625000 -0.198803988  0.1154789879 0.9999912 

17-6   0.1057625000 -0.051378988  0.2629039879 0.6512756 

18-6  -0.0793625000 -0.236503988  0.0777789879 0.9581858 

19-6  -0.0937000000 -0.250841488  0.0634414879 0.8336512 
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20-6  -0.0661125000 -0.223253988  0.0910289879 0.9941296 

8-7    0.0357800000 -0.085941273  0.1575012731 0.9999565 

9-7   -0.1144200000 -0.236141273  0.0073012731 0.0945875 

10-7  -0.2631325000 -0.384853773 -0.1414112269 0.0000000 

11-7  -0.0527950000 -0.174516273  0.0689262731 0.9916126 

12-7  -0.1024450000 -0.224166273  0.0192762731 0.2316354 

13-7  -0.2710575000 -0.392778773 -0.1493362269 0.0000000 

14-7  -0.0324575000 -0.154178773  0.0892637731 0.9999904 

15-7  -0.2124200000 -0.334141273 -0.0906987269 0.0000003 

16-7  -0.2423075000 -0.364028773 -0.1205862269 0.0000000 

17-7  -0.0948825000 -0.216603773  0.0268387731 0.3665234 

18-7  -0.2800075000 -0.401728773 -0.1582862269 0.0000000 

19-7  -0.2943450000 -0.416066273 -0.1726237269 0.0000000 

20-7  -0.2667575000 -0.388478773 -0.1450362269 0.0000000 

9-8   -0.1502000000 -0.307341488  0.0069414879 0.0804661 

10-8  -0.2989125000 -0.456053988 -0.1417710121 0.0000000 

11-8  -0.0885750000 -0.245716488  0.0685664879 0.8908484 

12-8  -0.1382250000 -0.295366488  0.0189164879 0.1678015 

13-8  -0.3068375000 -0.463978988 -0.1496960121 0.0000000 

14-8  -0.0682375000 -0.225378988  0.0889039879 0.9914993 

15-8  -0.2482000000 -0.405341488 -0.0910585121 0.0000080 

16-8  -0.2780875000 -0.435228988 -0.1209460121 0.0000002 

17-8  -0.1306625000 -0.287803988  0.0264789879 0.2511317 
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18-8  -0.3157875000 -0.472928988 -0.1586460121 0.0000000 

19-8  -0.3301250000 -0.487266488 -0.1729835121 0.0000000 

20-8  -0.3025375000 -0.459678988 -0.1453960121 0.0000000 

10-9  -0.1487125000 -0.305853988  0.0084289879 0.0886951 

11-9   0.0616250000 -0.095516488  0.2187664879 0.9975249 

12-9   0.0119750000 -0.145166488  0.1691164879 1.0000000 

13-9  -0.1566375000 -0.313778988  0.0005039879 0.0518175 

14-9   0.0819625000 -0.075178988  0.2391039879 0.9435626 

15-9  -0.0980000000 -0.255141488  0.0591414879 0.7752326 

16-9  -0.1278875000 -0.285028988  0.0292539879 0.2875169 

17-9   0.0195375000 -0.137603988  0.1766789879 1.0000000 

18-9  -0.1655875000 -0.322728988 -0.0084460121 0.0267881 

19-9  -0.1799250000 -0.337066488 -0.0227835121 0.0083737 

20-9  -0.1523375000 -0.309478988  0.0048039879 0.0697583 

11-10  0.2103375000  0.053196012  0.3674789879 0.0004900 

12-10  0.1606875000  0.003546012  0.3178289879 0.0387003 

13-10 -0.0079250000 -0.165066488  0.1492164879 1.0000000 

14-10  0.2306750000  0.073533512  0.3878164879 0.0000578 

15-10  0.0507125000 -0.106428988  0.2078539879 0.9998260 

16-10  0.0208250000 -0.136316488  0.1779664879 1.0000000 

17-10  0.1682500000  0.011108512  0.3253914879 0.0217917 

18-10 -0.0168750000 -0.174016488  0.1402664879 1.0000000 

19-10 -0.0312125000 -0.188353988  0.1259289879 0.9999999 
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20-10 -0.0036250000 -0.160766488  0.1535164879 1.0000000 

12-11 -0.0496500000 -0.206791488  0.1074914879 0.9998722 

13-11 -0.2182625000 -0.375403988 -0.0611210121 0.0002175 

14-11  0.0203375000 -0.136803988  0.1774789879 1.0000000 

15-11 -0.1596250000 -0.316766488 -0.0024835121 0.0418256 

16-11 -0.1895125000 -0.346653988 -0.0323710121 0.0036017 

17-11 -0.0420875000 -0.199228988  0.1150539879 0.9999897 

18-11 -0.2272125000 -0.384353988 -0.0700710121 0.0000841 

19-11 -0.2415500000 -0.398691488 -0.0844085121 0.0000172 

20-11 -0.2139625000 -0.371103988 -0.0568210121 0.0003391 

13-12 -0.1686125000 -0.325753988 -0.0114710121 0.0211804 

14-12  0.0699875000 -0.087153988  0.2271289879 0.9886663 

15-12 -0.1099750000 -0.267116488  0.0471664879 0.5782637 

16-12 -0.1398625000 -0.297003988  0.0172789879 0.1527902 

17-12  0.0075625000 -0.149578988  0.1647039879 1.0000000 

18-12 -0.1775625000 -0.334703988 -0.0204210121 0.0102281 

19-12 -0.1919000000 -0.349041488 -0.0347585121 0.0028969 

20-12 -0.1643125000 -0.321453988 -0.0071710121 0.0295239 

14-13  0.2386000000  0.081458512  0.3957414879 0.0000240 

15-13  0.0586375000 -0.098503988  0.2157789879 0.9986983 

16-13  0.0287500000 -0.128391488  0.1858914879 1.0000000 

17-13  0.1761750000  0.019033512  0.3333164879 0.0114859 

18-13 -0.0089500000 -0.166091488  0.1481914879 1.0000000 



88 

19-13 -0.0232875000 -0.180428988  0.1338539879 1.0000000 

20-13  0.0043000000 -0.152841488  0.1614414879 1.0000000 

15-14 -0.1799625000 -0.337103988 -0.0228210121 0.0083470 

16-14 -0.2098500000 -0.366991488 -0.0527085121 0.0005146 

17-14 -0.0624250000 -0.219566488  0.0947164879 0.9970880 

18-14 -0.2475500000 -0.404691488 -0.0904085121 0.0000086 

19-14 -0.2618875000 -0.419028988 -0.1047460121 0.0000016 

20-14 -0.2343000000 -0.391441488 -0.0771585121 0.0000387 

16-15 -0.0298875000 -0.187028988  0.1272539879 1.0000000 

17-15  0.1175375000 -0.039603988  0.2746789879 0.4471070 

18-15 -0.0675875000 -0.224728988  0.0895539879 0.9923905 

19-15 -0.0819250000 -0.239066488  0.0752164879 0.9437965 

20-15 -0.0543375000 -0.211478988  0.1028039879 0.9995362 

17-16  0.1474250000 -0.009716488  0.3045664879 0.0963639 

18-16 -0.0377000000 -0.194841488  0.1194414879 0.9999983 

19-16 -0.0520375000 -0.209178988  0.1051039879 0.9997479 

20-16 -0.0244500000 -0.181591488  0.1326914879 1.0000000 

18-17 -0.1851250000 -0.342266488 -0.0279835121 0.0053320 

19-17 -0.1994625000 -0.356603988 -0.0423210121 0.0014258 

20-17 -0.1718750000 -0.329016488 -0.0147335121 0.0163354 

19-18 -0.0143375000 -0.171478988  0.1428039879 1.0000000 

20-18  0.0132500000 -0.143891488  0.1703914879 1.0000000 

20-19  0.0275875000 -0.129553988  0.1847289879 1.0000000 
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11. Appendix C- Swim Plate ANOVA Code 

## Analysis swimming motility  

## ANOVA and post hoc Tukey Test 

 

## Swimming Motility Tests 

 

# Dark Control Swim  

y1 = c(0.547, 0.55, 0.691, 0.547, 0.55, 0.984, 0.691, 0.465, 0.641, 0.547, 0.55, 0.672, 

0.847, 0.672, 0.672, 0.847, 1.395, 1.504) 

 

# Irradiated 11.232 

y2 = c(0.177, 0.213, 0.113) 

 

# Irradiated 203.904 

y3 = c(0.014, 0.013, 0.018, 0.012) 

 

# Irradiated 26.82 

y4 = c(0.192, 0.058, 0.115, 0.043) 

 

# Irradiated 86 

y5 = c(0.015, 0.029, 0.043) 
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# PDA 

 

# Combine all observations for all samples into one vector 

y = c(y1, y2,y3,y4,y5) 

 

# Assign a group to each observation 

group = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 

5) 

 

# ANOVA for Contact Angle Measurements 

data = data.frame(y = y, group = factor(group)) 

fit <- aov(y ~ group, data) 

anova(fit) 

 

# Tukey Honestly Significant Differences 

TukeyHSD(fit)   

 

# Results for Contact Angle 

 

# Fit: aov(formula = y ~ group, data = data) 

 

$`group` 

           diff        lwr        upr     p adj 
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2-1 -0.57522222 -0.9956120 -0.1548324 0.0037619 

3-1 -0.72863889 -1.1012746 -0.3560031 0.0000420 

4-1 -0.64088889 -1.0135246 -0.2682531 0.0002579 

5-1 -0.71388889 -1.1342787 -0.2934991 0.0003049 
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12. Appendix D- Swarm Plate ANOVA Code 

## Analysis of Solar MD Data 

## ANOVA and post hoc Tukey Test 

 

## swarm plate 

 

# Control 

y1 = c(0.35, 0.828, 0.263, 0.55, 0.547, 0.55, 0.984, 0.691, 0.117, 0.132, 0.195, 0.298, 

0.276, 0.199, 0.121, 0.117, 0.173, 0.205, 0.353) 

 

# 22.464 

y2 = c(0.044, 0.026) 

 

# 407.808 

y3 = c(0.013, 0.01, 0.023, 0.019) 

 

# 53.64 

y4 = c(0.029, 0.043, 0.03, 0.026) 

 

# 172.8 

y5 = c(0.013, 0.011, 0.024, 0.019) 
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# PDA 

 

# Combine all observations for all samples into one vector 

y = c(y1, y2,y3,y4,y5) 

 

# Assign a group to each observation 

group = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 

5) 

 

# ANOVA for Contact Angle Measurements 

data = data.frame(y = y, group = factor(group)) 

fit <- aov(y ~ group, data) 

anova(fit) 

 

# Tukey Honestly Significant Differences 

TukeyHSD(fit)   

 

# Results for Contact Angle 

 

# Fit: aov(formula = y ~ group, data = data) 

 

# $group 

# diff        lwr        upr     p adj 
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2-1 -0.3307368 -0.7762735  0.114799865 0.2231092 

3-1 -0.3494868 -0.6791897 -0.019783945 0.0336592 

4-1 -0.3337368 -0.6634397 -0.004033945 0.0461793 

5-1 -0.3489868 -0.6786897 -0.019283945 0.0340035 

3-2 -0.0187500 -0.5377846  0.500284557 0.9999704 

4-2 -0.0030000 -0.5220346  0.516034557 1.0000000 

5-2 -0.0182500 -0.5372846  0.500784557 0.9999734 

4-3  0.0157500 -0.4080399  0.439539941 0.9999668 

5-3  0.0005000 -0.4232899  0.424289941 1.0000000 

5-4 -0.0152500 -0.4390399  0.408539941 0.9999708 
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13. Appendix E- Average and Standard Deviation Used for 
Normalization 

13.1. E.1- Bacterial Growth  

Table I: Averages and standard deviations for bacterial growth normalization. 

Medium 
Type 

Applied Dose 
(mJcm-2) Average Standard 

Deviation 

HT 

12.96 0.568 0.018 
26.82 0.568 0.018 
86.40 0.643 0.029 

120.96 0.574 0.013 
203.90 0.534 0.018 
240.41 0.589 0.023 

TSB 

12.96 1.742 0.056 
26.82 1.742 0.056 
86.40 1.640 0.037 

120.96 1.628 0.022 
203.90 1.591 0.048 
240.41 1.555 0.007 

M9  

12.96 0.628 0.053 
26.82 0.628 0.053 

120.96 0.489 0.031 
203.90 0.597 0.057 
240.41 0.690 0.027 

 

 

 

 

 

 

 

 

 



96 

 

13.2. E.2- Biofilm Growth 

Table II: Averages and standard deviations for biofilm growth normalization. 

Medium 
Type 

Applied Dose 
(mJcm-2) Average Standard 

Deviation 

HT 

12.96 0.287 0.082 
26.82 0.309 0.048 
86.40 0.317 0.050 

120.96 0.036 0.075 
203.90 0.253 0.044 
240.41 0.146 0.047 

TSB 

12.96 0.000 0.038 
26.82 0.092 0.055 
86.40 0.111 0.020 

120.96 0.465 0.010 
203.90 0.089 0.020 
240.41 0.059 0.011 

M9  

12.96 0.278 0.067 
26.82 0.301 0.022 
86.40 0.186 0.041 

120.96 0.524 0.181 
203.90 0.283 0.141 
240.41 0.160 0.094 

 

13.3. E.3-Swimming Motility 

Table III: Averages and standard deviations for swimming motility normalization. 

Applied Dose 
(mJcm-2) Average Standard 

Deviation 

12.96 0.596 0.082 
26.82 0.730 0.101 
86.40 1.105 0.407 

203.90 0.551 0.072 
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13.4. E.4-Swarming Motility 

Table IV: Averages and standard deviations for swarming motility normalization. 

Applied Dose 
(mJcm-2) 

Average Standard 
Deviation 

25.92 0.596 0.251 
53.64 0.730 0.065 

172.80 1.105 0.078 
407.81 0.551 0.082 

 

 

 

 




	Montana Tech Library
	Digital Commons @ Montana Tech
	Fall 2018

	EVALUATION OF CONTINUOUS, LOW-INTENSITY ULTRAVIOLET IRRADIATION FOR BIOFILM PREVENTION
	Stephanie Conrad
	Recommended Citation


	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	List of Equations
	1. Overview
	2. Background
	2.1. Membrane and Reverse Osmosis Systems
	2.2. Biofouling and Biofilms
	2.3. Mechanism of Biofilm Formation
	2.4. UV for Disinfection and Biofilm Prevention

	3. Research Hypothesis
	3.1. There is a Critical, Non-Lethal Dose for Prevention of Biofilm Attachment.
	3.2. Non-Lethal UV Irradiation Prevents Biofilm Formation by Suppressing Motility

	4. Materials and Methods
	4.1. Experimental Apparatus
	4.2. Bacterial Cultivation and Culture Preparation
	4.3. Ultraviolet Irradiation
	4.4. Planktonic Death UV model
	4.5. Biofilm Formation and Bacterial Growth
	4.6. Motility Assays
	4.6.1. Swimming Motility
	4.6.2. Swarming Motility
	4.6.3. Twitching Motility

	4.7. Statistical Analysis

	5. Results and Discussion
	5.1. Apparatus Verification
	5.2. Planktonic Death
	5.2.1. Log Removal
	5.2.1. Chick-Watson Model

	5.3. Bacterial Replication Results
	5.4. Biofilm Formation
	5.5. Motility Analysis
	5.5.1. Swimming Motility
	5.5.2. Swarming Motility


	6. Future Work and Recommendations
	7. Conclusions
	9.  Appendix A – Biofilm Growth ANOVA Code
	10. Appendix B- Bacterial Growth ANOVA Code
	11. Appendix C- Swim Plate ANOVA Code
	12. Appendix D- Swarm Plate ANOVA Code
	13. Appendix E- Average and Standard Deviation Used for Normalization
	13.1. E.1- Bacterial Growth
	13.2. E.2- Biofilm Growth
	13.3. E.3-Swimming Motility
	13.4. E.4-Swarming Motility


	Bibliography

