Montana Tech Library

Digital Commons @ Montana Tech

Silver Bow Creek/Butte Area Superfund Site

Montana Superfund

Winter 12-17-2021

Request for Change (RFC) to the Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Phase III Quality Assurance Project Plan (QAPP) (RFC-BRW-2021-03)

Josh Bryson

Follow this and additional works at: https://digitalcommons.mtech.edu/superfund_silverbowbutte Part of the Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, and the Environmental Monitoring Commons

Atlantic Richfield Company

Josh Bryson Liability Manager 317 Anaconda Road Butte MT 59701 Direct (406) 782-9964 Fax (406) 782-9980

December 17, 2021

P.O. Box 200901

Nikia Greene	Erin Agee
Remedial Project Manager	Senior Assistant Regional Counsel
US EPA – Montana Office	US EPA Region 8 Office of Regional Counsel
Baucus Federal Building	CERCLA Enforcement Section
10 West 15th Street, Suite 3200	1595 Wynkoop Street
Helena, Montana 59626	Denver, CO 80202
	Mail Code: 8ORC-C
Daryl Reed	Jonathan Morgan, Esq.
DEQ Project Officer	DEQ, Legal Counsel

Helen	na, Montan	a 59620	-0901				Heler	na, M	lonta	ana 5	9620	-0901					
RE:	Request f	or Chang	ge (RFC)	to the	Final	Butte	e Red	uctio	n We	orks	(BRW)) Smel	ter A	rea	Mine	Wast	e

P.O. Box 200901

Remediation and Contaminated Groundwater Hydraulic Control Site Phase III Quality Assurance Project Plan (QAPP) (RFC-BRW-2021-03)

Agency Representatives:

I am writing you on behalf of Atlantic Richfield Company to submit the *request for change (RFC) to the Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Phase III Quality Assurance Project Plan (QAPP)* (RFC-BRW-2021-03) for your review and approval. In short, the RFC provides the procedures and protocols necessary for Atlantic Richfield Company to install additional piezometers at two locations upgradient of the NorthWestern Energy property to satisfy Data Quality Objectives outlined in the Phase III QAPP. Fieldwork is anticipated to begin in February 2022. A proposed schedule is included in the RFC.

The report may be downloaded at the following link:

https://pioneertechnicalservices.sharepoint.com/:b:/s/submitted/EfT7EvSArgxDjzy9Tr5iB1kBKFvTw 5rfIjdC-6zluCfwtQ

Atlantic Richfield Company

Josh Bryson

Liability Manager

317 Anaconda Road Butte MT 59701 Direct (406) 782-9964 Fax (406) 782-9980

If you have any questions or comments, please call me at (406) 723-1834.

Sincerely,

Josh Bryson, PE, PMP Liability Manager Remediation Management Services Company An affiliate of **Atlantic Richfield Company**

Cc: Patricia Gallery / Atlantic Richfield - email Chris Greco / Atlantic Richfield – email Mike Mc Anulty / Atlantic Richfield - email Loren Burmeister / Atlantic Richfield – email Dave Griffis / Atlantic Richfield - email Jean Martin / Atlantic Richfield - email Irene Montero / Atlantic Richfield - email David A. Gratson / Environmental Standards / email Mave Gasaway / DGS - email John Davis / PRR - email Joe Vranka / EPA - email David Shanight / CDM - email Curt Coover / CDM - email James Freeman / DOJ - email John Sither / DOJ - email Jenny Chambers / DEQ - email Dave Bowers / DEQ - email Carolina Balliew / DEQ - email Matthew Dorrington / DEQ - email Jim Ford / NRDP - email Ray Vinkey / NRDP - email Harley Harris / NRDP - email Katherine Hausrath / NRDP - email Meranda Flugge / NRDP - email Ted Duaime / MBMG - email Gary Icopini / MBMG - email Becky Summerville / MR - email Kristen Stevens / UP - email

Robert Bylsma / UP - email John Gilmour / Kelley Drye - email Leo Berry / BNSF - email Robert Lowry / BNSF - email Brooke Kuhl / BNSF – email Mark Engdahl / BNSF - email Jeremie Maehr / Kennedy Jenks - email Annika Silverman / Kennedy Jenks - email Matthew Mavrinac / RARUS - email Harrison Roughton / RARUS - email Brad Gordon / RARUS - email Mark Neary / BSB - email Eric Hassler / BSB - email Julia Crain / BSB - email Chad Anderson / BSB - email Brandon Warner / BSB – email Abigail Peltomaa / BSB - email Eileen Joyce / BSB – email Sean Peterson/BSB – email Gordon Hart / BSB – email Jeremy Grotbo / BSB – email Karen Maloughney / BSB – email Josh Vincent / WET - email Craig Deeney / TREC - email Scott Bradshaw / TREC - email Brad Archibald / Pioneer - email Pat Sampson / Pioneer - email Mike Borduin / Pioneer - email Joe McElroy / Pioneer – email Andy Dare / Pioneer – email Karen Helfrich / Pioneer - email Leesla Jonart / Pioneer - email Connie Logan/ Pioneer – email Ian Magruder/ CTEC- email CTEC of Butte / email Scott Juskiewicz / Montana Tech – email

File: MiningSharePoint@bp.com - email BPSOU SharePoint - upload

ATLANTIC RICHFIELD COMPANY

RFC - REQUEST FOR CHANGE

DATE December 17, 2021	RFC NO. RFC-BRW-2021-03	CONTRACTOR Pioneer Technical Services, Inc.	RFP NO.						
CONTRACT DESCRIPTION Butte Reduction Works Sm	ON: elter Area Site	ATTENTION OF: Josh Bryson Liability Manager & Global Risk Champion							
SUBJECT: Installation of Additional Piezometers Upgradient of NorthWestern Energy Property O ELECTRICAL O MECHANICAL O CIVIL O STRUCTURAL/ARCHITECTURAL O INSTRUMENTATION I ENVIRONMENTAL									
OPERABLE UNIT: Butte Priority Soils Operable UnitREFERENCE DWG., P.O., TAG, SPECIFICATION NO. (FOR DEVIATIONS OR DEFICIENCIES) ETC.: Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Phase III Quality Assurance Project Plan (QAPP).									

PROBLEM DESCRIPTION:

This request for change (RFC) to the *Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Phase III Quality Assurance Project Plan (QAPP)* (Atlantic Richfield, 2021) (Phase III QAPP) provides the procedures and protocols necessary for Atlantic Richfield Company to install additional piezometers at two locations to satisfy Data Quality Objectives outlined in the Phase III QAPP. Specifically, the Groundwater Characterization objective includes determining the baseline conditions hydraulically upgradient of the BRW Site and the neighboring sites of Montana Pole and Treating Plant (MPTP) and NorthWestern Energy (NWE) along with estimating how the BRW hydraulic control and/or remedial action construction dewatering may affect the hydraulic gradient and concentrations of pentachlorophenol (PCP)-impacted groundwater located to the west of the Site. The additional piezometer identification is as follows:

- BRW22-PZ55S and BRW22-PZ55D paired
- BRW22-PZ56S and BRW22-PZ56D paired

Adding these piezometers will help with the following:

- 1. Collect additional information on aquifer geometry, lithology, bedrock depth, aquifer hydraulic conductivity, groundwater quality, soil characteristics, and groundwater flow direction to inform the BRW Site numerical groundwater model and to guide the BRW hydraulic control and construction dewatering design. Additional information will be collected during drilling and installation of the piezometers and during the upcoming Butte Treatment Lagoons (BTL) Stress Test.
- 2. Paired piezometers will be installed at BRW22-PZ55 and BRW22-PZ56 to obtain information pertaining to vertical heterogeneities between anticipated upper and lower lithologic units to maintain consistency between the BRW Site numerical groundwater model and previous groundwater modeling at the MPTP. It is anticipated that the additional paired piezometers will facilitate direct correlation to existing information as well as to distinguish variability in groundwater chemistry and hydraulic connectivity between upper and lower units.
- 3. Piezometers will potentially help define an "early detection network" to monitor potential changes in chemistry and flow direction of groundwater upgradient of the BRW Site and MPTP Site during and after remedial action construction. The piezometers may also be monitored as part of the "early detection network" for the BTL Stress Test.

Piezometers are anticipated to be installed on Butte-Silver Bow property with a sonic drilling rig, or equivalent, per the same criteria outlined in the Phase III QAPP, and in the approximate locations identified on Figure 1. All installations will be risk-assessed for safety and access per the internal BRW Site Site-Specific Health and Safety Plan (SSHASP). The borehole for the deep piezometers will extend to bedrock and the lithology from the deep borehole will be documented on the combined lithology / completion log. Piezometer screens will be installed in the shallow (approximately 9 feet -19 feet below ground surface) and deep (approximately 22 feet – 35 feet below ground surface) conductive units, or as determined by the Field Team Leader and Contractor Project Manager in consultation with the Contractor Quality Assurance Officer. Exact locations of piezometers will be adjusted in the field, as necessary, to allow for safe installation and monitoring as well as property access. Installation will occur according to the project schedule on Figure 2.

Groundwater quality characterization data will be obtained after installation of the piezometers for at least one low-flow sampling event and according to the schedule in Figure 2. Groundwater samples will be taken for analytical groups 1, 2a, 2b, 3, 4, 5, 6, and 7 as listed in Table 1. Soil samples will be collected for each dominant lithologic layer that yields enough sample for characterization encountered above and below the water table for limited soil characterization within analytical groups 8 and 9 as listed in Table 1. All samples will be collected following the Standard Operating Procedures, methods, and protocols specified in the Phase III QAPP. Borehole locations will be backfilled with bentonite hole plug as per the Phase III QAPP.

All additional quality control details for this project are included in the Phase III QAPP, including documentation; quality assurance/quality control samples; instrument/equipment testing, inspection, maintenance, and calibration; data management procedures; assessment and oversight; and data validation and usability. Additionally, the Phase III QAPP includes the health and safety concerns and project organization and responsibilities. All work completed by Pioneer Technical Services, Inc. and its subcontractor during execution of the work under this RFC will be performed in accordance with all procedures outlined in the internal BRW SSHASP. The BRW SSHASP may be updated to include unique hazards that materialize during field activities for the drilling and/or installation of additional piezometers and boreholes.

References:

Atlantic Richfield Company, 2021. Silver Bow Creek/Butte Area NPL Site Butte Priority Soils Operable Unit Draft Final Butte Reduction Works (BRW) Smelter Area Mine Waste Remediation and Contaminated Groundwater Hydraulic Control Site Phase III Quality Assurance Project Plan (QAPP). Prepared by Pioneer Technical Services, Inc. April 30, 2021.

Figures:

Figure 1. Proposed Piezometer Locations Figure 2. Project Schedule

Tables:

Table 1. Sample Collection, Preservation, and Holding Times

	 ODesign Deficiency O Engineering Change Request O Agency Directive O Construction Deficiency O Schedule 	 ○ Material Substitution ○ Vendor Material Deficiency ⊠ Scope ☑ Additional Data Collection ○ Clarification/Information ○ Other 	
RESPONSE/DIRECTIVE			
1. Approve the instal	lation of additional piezometers.		
Project Manager	n Helfrick	Date <u>12/17/2021</u>	
Atlantic Richfield Co. Rep	presentative <u>all por</u>	Date <u>12/17/2021</u>	<u>.</u>
EPA Representative		Date	
DEQ Representative		Date	<u></u>
CC: See Cover Letter			

Path: Z:\Shared\Active Projects\ARCO\BPSOU\GWRO\GIS\BTL_StressTest\StrsTst_BTL_010_21.mxd

Proposed Piezometers

WTR Water Main

APPROXIMATE.

GAS Underground Gas Main (Approximate)

low groundwater elevation data gathered in Feb 2021)

Silver Bow Parcel Boundaries (Approximate)

INTN'L FEET PIONEER/CADEARTH 2014

200

Feet

UNITS

SOURCE:

100

~~

Л

PROPOSED PIEZOMETER LOCATIONS

DATE: 12/16/2021

()	Task Mode •	- Task Name -	Duration	- 51	itart 🗸	Finish ·	агу.	1/9	February	2/6	March	3/6	April	4/3
1	5	Additional Piezometer Field Investigation	40 days	м	1on 2/7/22	Fri 4/1/22			_					
2	×	Risk Assessment - Safety and Access	5 days	M	1on 2/7/22	Fri 2/11/22								
3	×	Drilling and Soil Sample Collection	7 days	M	1on 2/14/22	Tue 2/22/22			4	-				
4	×	Lab Analysis - Soil	21 days	W	Ved 2/23/22	Wed 3/23/22	2			Ť	2			
5	×	Well Development	4 days	w	Ved 2/23/22	Mon 2/28/2	2			Ť				
6	×	Groundwater Sampling	3 days	Tu	ue 3/1/22	Thu 3/3/22					in,			
7	\$	Lab Analysis - Groundwater	21 days	Fr	ri 3/4/22	Fri 4/1/22					Ť.			
6 7	\$	Groundwater Sampling Lab Analysis - Groundwater	3 days 21 days	Tu Fr	ue 3/1/22 ri 3/4/22	Thu 3/3/22 Fri 4/1/22						-		

Figure 2. Project Schedule

Analytical Group	Analytical Lab/Company ¹	Analyte	Analytical Method	Lab Reporting Limit (CRQL for Data Validation Purposes)	Lab Method Detection Limit ²	Holding Time	Container Size	Preserv
Groundwate	r and Surface Water Field Parameter	'S	1			I	1	
(1)	Pioneer	Water level	NA	NA	NA	NA	NA	N
(2 a)	Pioneer	Specific conductance (SC)	-					
		Dissolved Oxygen (DO)	-					
		pH	NA	NA	NA	NA	NA	N
		Oxidation Reduction Potential (ORP)	-					
		Turbidity						
(2b)	Pioneer	Modern Water RaPID Assay Pentachlorophenol (PCP)	NA	NA	NA	7 Days	NA	N
Groundwate	r and Surface Water Laboratory San	nples						
(3)	Pace Analytical	Total recoverable and dissolved arsenic (As)	EPA 200.8 (Rev 5.4)	0.5 µg/L	0.0829 μg/L	180 Days	2, 250-mL high-density polyethylene (HDPE)	Acidified with HNO_3 , (1) bott
		Total recoverable and dissolved cadmium (Cd)		0.08 μg/L	0.0159 µg/L]	bottles	filter (dissolved).
		Total recoverable and dissolved copper (Cu)	_	1 μg/L	0.5 μg/L	_		
		Total recoverable and dissolved iron (Fe)	-	50 μg/L	12.1 µg/L	-		
		Total recoverable and dissolved lead (Pb)	-	$\frac{0.1 \mu g/L}{0.5 \mu \sigma/L}$	0.0284 μg/L	-		
		Total recoverable and dissolved silver (Ag) $Total recoverable and dissolved zinc (Zn)$	-	0.5 μg/L 5 μg/I	0.105 μg/L 1.97 μg/I	-		
		Total recoverable and dissolved mercury (Hg)	FPA 1631E	0.5 ng/L	0.5 ng/L	28 Days	2 Mercury Low Level Sample Kits	Raw Dissolved sample kit fiel
		Total recoverable and dissorved increary (115)		0.5 116/12	0.5 116/12	20 Duys	2 Weieury Low Lever Sumple Kits	Ruw, Dissorved sumple kit ner
		Total recoverable Phosphate (PO4)	EPA 365.1	1 mg/L	0.464 mg/L	28 Days	1, 250-mL HDPE bottle	Acidified with H2SO4.
		Nitrate (NO2) and Nitrite (NO3)	EPA 353.2	100 µg/L	17.7 μg/L	28 Days	1, 250-mL HDPE bottle	Acidified with H2SO4.
(4)	Pace Analytical	Dissolved Calcium (Ca)	EPA 200.7 (Rev 4.4)	500 μg/L	23.1 µg/L	180 Days	250-mL HDPE bottle	Acidified with HNO ₃ , field filt
		Dissolved Potassium (K)		2,500 µg/L	86.7 μg/L			(dissolved).
		Dissolved Sodium (Na)	_	1000 µg/L	65.7 μg/L	_		
		Dissolved Boron (B)	-	150 μg/L	7.22 μg/L	-		
		Dissolved Cobalt (Co)	-	10 μg/L	0.828 μg/L	-		
		Dissolved Magnesium (Mg)	EPA 200 8 (Poy 5 4)	500 μg/L	7.83 μg/L	-		
		Dissolved Arumnum (AI) Dissolved Barium (Ba)	EFA 200.8 (Rev 5.4)	$\frac{20 \mu\text{g/L}}{0.3 \mu\text{g/L}}$	0.0548 µg/L	-		
		Lithium (Li)	-	0.5 µg/L	0.135 ug/L	-		
		Dissolved Manganese (Mn)		0.5 μg/L	0.199 μg/L	1		
		Dissolved Molybdenum (Mo)		0.5 μg/L	0.0942 µg/L]		
		Dissolved Nickel (Ni)		0.5 μg/L	0.171 μg/L			
		Dissolved Silica (SiO ₂)		214 µg/L	75.9 μg/L			
		Dissolved Strontium (Sr)	_	0.5 μg/L	0.199 μg/L	4		
		Dissolved Palladium (Pd)		0.5 μg/L	0.105 μg/L	-		
		Total Hardness	Calculation	1.1 mg/L	0.0037 mg/L	14 D		D
		Bicarbonate (HCO ₃)	SM 2320B	5 mg/L	1.82 mg/L	14 Days	250-mL HDPE bottle	Raw
		Carbonate (CO_3)	_	5 mg/L	1.82 mg/L	-		
		Alkalinity, Total (as CaCO ₃)		5 mg/L	1.82 mg/L		_	
		Chloride (Cl)	EPA 300.0	1.2 mg/L	0.387mg/L	28 Days		
		Sulfate (SO4)	-	1.2 mg/L	0.345 mg/L	-		
		Total Dissolved Solids (TDS)	SM2540C	10 mg/L	5 mg/L	7 days	1-L HDPE bottle	Raw
(5)	Pace Analytical	Polychlorinated biphenyls (PCB)	EPA 8082A	0.1 µg/L	0.0398 µg/L	1 Year	2. 250 mL amber glass	Raw
		Pentachlorophenol (PCP)	EPA 8270E SIM	0.6 µg/L	0.193 μg/L	7 Days	2, 250 mL amber glass	Raw
		2,3,4,6 Tetrachlorophenol	EPA 8270E	5 μg/L	5 μg/L	7 Days	2-1L amber glass	Raw
		2,3,5,6-Tetrachlorophenol		5 μg/L	5 μg/L]		
		2,4,6-Trichlorophenol	_	1 μg/L	1.21 µg/L	4		
		2,4-Dichlorophenol	_	1 μg/L	0.963 µg/L	-		
		2-Chlorophenol		$\frac{1 \ \mu g/L}{\pi}$	0.648 μg/L	1 37		
		2,3,7,8-TCDE	EPA 1613B	10 pg/L	2.48 pg/L	1 Year	2-1L amber glass	Raw
		2,5,7,6-1CDF	-	10 pg/L	2 pg/L	-		
		1,2,3,7,8-PeCDD	-	50 pg/L	3.01 pg/L	-		
		1,2,3,7,8-PeCDF	-	50 pg/L	3.37 pg/L	-		
		2,3,4,7,8-PeCDF	-	50 pg/L	3.05 pg/L	-		
		1,2,3,4,7,6-11XCDD	-	50 pg/L 50 pg/I	4 29 ng/L	-		
		1.2.3.7.8.9-HxCDD	-	50 pg/L	5.41 pg/L	-		
		1,2,3,4,7,8-HxCDF	-	50 pg/L	4.83 pg/L	1		
		1,2,3,6,7,8-HxCDF		50 pg/L	4.19 pg/L]		
		1,2,3,7,8,9-HxCDF		50 pg/L	4.96 pg/L			
		2,3,4,6,7,8-HxCDF	_	50 pg/L	4.18 pg/L	_		
		1,2,3,4,6,7,8-HpCDD	-	50 pg/L	4.54 pg/L	-		
1		1,2,3,4,0,7,8-HpCDF	4	50 pg/L	4.88 pg/L	-		
1		1,2,3,4,7,8,7-прСЛГ ОСДД	4	50 pg/L 100 pg/I	3.22 pg/L 13.6 pg/I	-		
		OCDF	1	100 pg/L 100 pg/L	12.4 ng/L	-		
(6)	Pace Analytical	Volatile Petroleum Hydrocarbons (VPH)	MT VPH		ro	14 Davs	3, 40-mL clear glass VOA vials	Unfiltered. acidified with HCl
. /		Extractable Petroleum Hydrocarbons (EPH) Fractionation	MT EPH	Analyta Specific M.	onto DEO 7 Docuiro J	14 Days	2, 1-L amber glass	Unfiltered, acidified with HCl
1				Analyte Specific - Me	Delate Delate 1 C			
1		Polycyclic Aromatic Hydrocarbons (PAHs)	EPA 8270E SIM	Keporting Limit or DEC	Z KISK-Based Screening	7 Days	2, 250-mL amber glass	Raw
1		1, 2 dichloroethane (1,2 DCA)	EPA 8260D	Level II no Required Rep	porting Limit is specified	14 Days	3, 40-mL clear glass VOA vials	Unfiltered, acidified with HCl
		1, 2 dibromoethane (EDB)	EPA 8011		in DEQ-7.		3, 40-mL clear glass VOA vials	Unpreserved

Table 1. Sample Collection. Preservation. and Holding Times

assurance/quality control and data validation procedures.

Data Summary Report.

³In addition to the preservation listed, all samples will be cooled to <6 °C. Not all analyses require this but because multiple containers will be collected at most sites, all samples will be cooled. ⁴DEQ, 2017. Circular DEQ-7 Montana Numeric Water Quality Standards. Montana Department of Environmental Quality. May 2017. ⁵DEQ, 2018. Montana Risk-Based Corrective Action Guidance for Petroleum Releases, Montana Department of Environmental Quality, May 2018. ⁶3 days, if Shelby tubes are sealed with plastic caps and duct tape. The hold time can be extended by sealing the plastic caps with wax.

Units:

BRW RFC-BRW-2021-03

pg/L - picograms per liter µg/L - microgram per liter mg/L - milligram per liter ng/L - nanogram per liter pCi/L - picocurie per liter S.U. - Standard Unit

umhos/cm or μ S/cm - microsiemen per centimeter mg/kg - milligram per kilogram

¹Atlantic Richfield may choose to use a different laboratory based on project needs. Regardless of the laboratory chosen, Atlantic Richfield will ensure the necessary reporting limits, required methodology, or the quality

² Pace Analytical will report results to the method detection limit. The analytical lab's reporting limits and detection limits are subject to change as these values are updated periodically to reflect analytical sensitivity and capability. Atlantic Richfield will ensure that any updates to the reporting limits or detection limits are subject to change as these values are updated periodically to reflect analytical sensitivity and capability.

Preservation ³	Justification
NA	Determine depth-to-water to monitor seasonal groundwater and surface water conditions.
	Determine general stabilization parameters during sampling activities.
NT A	
NA	
N7.4	
NA	Identify any pre-existing concentrations of PCP upgradient of the Site.
	Define the effect of mount instances divises in the line of the li
μ (1) bottle field filtered with 0.45 μ m	Define the effect of groundwater conditions on unimpacted and impacted groundwater.
1).	
	4
a sample kit field filtered with 0.45 μ m filter.	
H2SO4	4 I
H2SO4.	1 I
HNO ₃ , field filtered with 0.45 μ m filter	Provide additional confirmation on similarity of groundwater at these locations and within BRW.
	4 I
	Identify if PCB, PCP, Dioxins and/or any similar compounds exists near the BRW area at
	concentrations above regulatory limits. Determine if any of the similar compounds are present in
	sufficient quantities to interfere with field and/or laboratory detection.
	1 I
lified with HCl_	Identify if hydrocarbons exist near the BRW area at concentrations above regulatory action limits.
lified with HCl	and determine breakdown of petroleum components.
	I
	- I
lifted with HCI	4

Table 1. Sample Collection, Preservation, and Holding Times

Analytical Group	Analytical Lab/Company ¹	Analyte	Analytical Method	Lab Reporting Limit (CRQL for Data Validation Purposes)	Lab Method Detection Limit ²	Holding Time	Container Size	Preservation ³	Justification				
LNAPL Labo	ratory Samples												
(7)	Pace Analytical	Volatile Petroleum Hydrocarbons (VPH)	MTVPH						Identify the chemical components and concentrations of any LNAPL sample collected from near				
		Extractable Petroleum Hydrocarbons (EPH) Fractionation	МТЕРН	Analyte Specific - DEQ Risk-Based Screening		Analyte Specific - DEQ Risk-Based S		Analyte Specific - DEQ Risk-Based Screening		Depends on na the groun	ature and purity of LNAPL sample. If the inter dwater, Pace Analytical will be contacted prior	face probe indicates there is an LNAPL layer on the surface of r to sampling to determine appropriate sample containers,	f the BRW area.
		Polycyclic Aromatic Hydrocarbons (PAHs)	EPA 8270E SIM		applicable.		preservation	and hold times.					
Soil Laborato	ry Samples												
(8)	Pace Analytical	Volatile Petroleum Hydrocarbons (VPH)	MTVPH			14 Days	4-oz. amber glass container	None	Identify if hydrocarbons exist near the BRW area at concentrations above regulatory action limits.				
		1, 2 dichloroethane (1,2 DCA)	EPA 8260D						Identify if lead scavengers exist in the BRW area at concentrations above regulatory action limits.				
		Extractable Petroleum Hydrocarbons (EPH) Fractionation	МТЕРН	Analyte Specific - Meets DEQ Risk-Based Screening Level ⁵ where applicable.		Analyte Specific - Meets DEQ Risk-Based Screening Level ⁵ where applicable.		14 Days	4-oz. amber glass container	None	Identify if hydrocarbons exist near the BRW area at concentrations above regulatory action limits, and determine breakdown of petroleum components. Laboratory to perform silica gel cleanup to		
		Polycyclic Aromatic Hydrocarbons (PAHs)	EPA 8270E SIM						remove potential interferences to diesel range organics (DRO).				
		1, 2 dibromoethane (EDB)	EPA 8260						Identify if lead scavengers exist near the BRW area at concentrations above regulatory action limits.				
		Total Organic Carbon (TOC)	Walkley-Black	150mg/kg	100mg/kg	28 Days	2, 4-oz amber glass container	Unpreserved	Identify the level of TOC near the BRW area to help inform dioxin mobility.				
(9)	Pioneer's Material Testing Laboratory	Moisture Content	ASTM D2216	NA	NA	10 Days	500 grams	None	Identify soil parameters for use in constiturents of concern migration calculations.				
		pH	AASHTO T289			15 minutes	300 grams						
		Soil Bulk Density	ASTM D4254			None	5 gallons						
		Total Porosity	API RP40			None	5 gallons						

¹Atlantic Richfield may choose to use a different laboratory based on project needs. Regardless of the laboratory chosen, Atlantic Richfield will ensure the necessary reporting limits, required methodology, and the specified quality assurance/quality control and data validation requirements are followed as detailed in the Phase III QAPP. Agencies will be informed of any changes in the reporting limits, methodology, or the quality assurance/quality control and data validation procedures.

² Pace Analytical will report results to the method detection limit. The analytical lab's reporting limits are subject to change as these values are updated periodically to reflect analytical sensitivity and capability. Atlantic Richfield will ensure that any updates to the reporting limits or detection limits do not affect the ability for the Data Quality Objectives to be met and the updates will be specified in the Phase III Data Summary Report.

³In addition to the preservation listed, all samples will be cooled to <6 °C. Not all analyses require this but because multiple containers will be collected at most sites, all samples will be cooled.
⁴DEQ, 2017. Circular DEQ-7 Montana Numeric Water Quality Standards. Montana Department of Environmental Quality. May 2017.
⁵DEQ, 2018. Montana Risk-Based Corrective Action Guidance for Petroleum Releases, Montana Department of Environmental Quality, May 2018.
⁶3 days, if Shelby tubes are sealed with plastic caps and duct tape. The hold time can be extended by sealing the plastic caps with wax.

Units: pg/L - picograms per liter

μg/L - microgram per liter mg/L - milligram per liter ng/L - nanogram per liter pCi/L - picocurie per liter S.U. - Standard Unit

umhos/cm or μ S/cm - microsiemen per centimeter

mg/kg - milligram per kilogram