72

6.2.4.2.2. Frequency Domain Analysis

The goal of the frequency domain analysis is to quantify the time domain results shown
in Figure 38 by creating a Bode plot. The general approach to creating a Bode plot is to compare
the amplitudes and phases of the commanded WFS and the measured WFS at various
frequencies and plot the results. Although the time domain plot in Figure 38 shows the general
trend of amplitude and phase as frequency is increased, a Bode plot will show exactly how much
the amplitude and phase change with increasing frequency.

Because of all the measurement noise (demonstrated in Figure 38), the raw data from the
discrete frequency tests could not be used directly to create an accurate Bode plot. To create the
best possible Bode plot in a least-squares sense, models representing the commanded and
measured WFS were fit to each data set.

Models were fit to the data using the Levenberg-Marquardt NLLS (nonlinear least-
squares) algorithm. Because the WFS was sinusoidal, the general model for each experiment is
given by (4):

WFS, = Asin(wt, + 6) + D 4)
where:

WFS,, = estimated WFS (ipm)

A = amplitude (ipm)

w = frequency (rads/s)

t, = time (s)

6 = phase (rad)

D = DC offset (ipm)

k = indexing variable















153

After the current pulse is over (frames 4 through 14), the droplet has sufficient downward
momentum to break free from the wire electrode and travel to the work piece.

The next step was to add wire feed to the process. Tuning the wire feeder to match the
melting rate and length of melted wire presented several problems. First, when the wire feeder
was commanded to start feeding wire from a dead stop, a 100ms delay was observed before the
wire began to feed. As seen in Figure 89, the entire deposition process lasted only about 180ms
from arc initiation to arc termination. Therefore, if wire was to be fed during the deposition
period, the command to initiate wire feed had to be issued before the arc was actually started.
The next problem was that the wire feeder continued to feed wire after the wire feed stop
command was issued (see wire feeder step response in Figure 37). Therefore, the command to
stop wire feed had to be issued at some point during the deposition process.

To tune in the proper wire feeding routine, data from the wire feeder step response test
was used in addition to high-speed camera footage. It was found that starting a 130ipm WFS
40ms before the arc was started, and sending the wire feed stop command about 90ms before the
arc was terminated was an effective wire feeding routine. A series of high-speed camera frames

illustrating the SiDD test with wire feed can be seen in Figure 91.



154

Figure 91: SiDD test with wire feed using steel wool fuse arc starting. The number in the top right-hand
corner of each frame is the time stamp in milliseconds (ms), and the number in the bottom right-hand corner
of each frame is frame number.

Note that in Figure 91, the frames do not represent evenly spaced time intervals. They
were chosen to represent the SiDD test from start to finish. Frames 1 through 7 take place over
6ms and show the arc starting using the steel wool technique. Frame 1 shows the setup directly
before the arc is enabled. In frame 2, thermal gradient lines can be seen as the arc is initiated.
Frames 8 through 14 take place over about 162ms and show the droplet begin to form on the
wire electrode. It can also be seen that the wire is being fed forward as indicated by the
decreased arc length. Frames 15 through 21 take place over about 9ms and show the droplet
detaching from the wire electrode. Frame 15 shows the droplet directly before the 345A current
pulse is applied. The current pulse lasts 4ms from frame 16 to frame 19. Frame 20 shows that

the droplet has sufficient downward momentum to continue moving in a downward direction












}

267

printf("no response from instrument\n");
return -1;

char Rval[(s-5)]; // buffer for return value

1/

The return values is a character string with the power in watts

and 5 extra characters

Example Response: ROP: 100.0

Note that there is 5 characters before 100.0 including a space

Response is not always 10 characters long (e.g. ROP: 100.0 vs. ROP: 99.9)
but 5 characters always exist before the power value

put bytes representing the power value into Rval

for(int i=0;i<(s-5);i++)

{
}

Rval[i]=localbuf[(i+5)]; // start at 5th byte

double val = atof(Rval); // convert string to floating-point number (type double)

return val; // return measured power in watts



268

22. Appendix G: Continuous Weld Bead Code
22.1. Arc Initiation and Termination
The following code is the C++ code used for the short circuiting arc starting procedure.

///1111711/71//71/7//7//// Arc Starting Procedure ///////////////////1//////////////////
welder.arc_shielding(true); // turn on shielding gas

usleep((unsigned long)(2*1e6)); // shielding gas pre flow time

double I = 475.0; // starting current for short circuiting arc start
welder.set_current(I); // set power source to starting current

welder.arc(true); // enable power source/welding arc

usleep(0.1*1e6); // allow time for open circuit voltage to build

wire.fwd(true); // start wire feed
while (welder.get_voltage()>30.0){} // do nothing while wire is feeding
usleep((unsigned long)(35 * 1e3)); // wait 35ms after short circuit

welder.set_current(Ib); // set current to a lower welding current value

LITTTTT7T 7077077777777 7077777777777 7777777777 77777777777777777777171777777177

The following code is the C++ code used for the wire sharpening/arc termination

procedure.

/1/11117117777/777/777/7//// Weld termination //////////////////////////1//1///1/11//1///
wire.fwd(false); // shut of wire feed (wire continues to feed, i.e., deceleration)

welder.set_current(475.9); // set current pulse height in A
usleep((unsigned long)(18 * 1e3)); // pulse time is 18ms

welder.arc(false); // disable welding arc

usleep((unsigned long)(2 * 1e6)); // shielding gas post flow time
welder.arc_shielding(false); // turn off shielding gas
[I17777777777777777777777777777777777777777777777777777777777777777777777771777777777

22.2. Pulsed GMAW
The following is a section of C++ code used to produce a weld in pulsed GMAW mode.

[1177777777777777777777777 Initailization ///////////711117111771111711177717117
char y[] = "Y"; // initialize y-axis variable

char z[] = "Z"; // initialize z-axis variable

mo.load_program(y, 15, -6); // load motion program to Galil controller

// when executed, program will move 6 inches (-y direction) at 15ipm

wire.rev(false); // make sure wire is not moving in reverse

wire.fwd(false); // make sure wire is not moving forward

wire.set_wfs(150); // set WFS to 150 ipm

L1777 77777777777777777777777777777777777777777777777777777777777771777777777



269

/177111771717777///1/////// Arc Starting Procedure ///////////////1//1/7//////1//11///////
welder.arc_shielding(true); // turn on shielding gas

usleep((unsigned long)(2*1e6)); // shielding gas pre flow time

double I = 475.0; // starting current for short circuiting arc start
welder.set_current(I); // set power source to starting current

welder.arc(true); // enable power source/welding arc

usleep(0.1*1e6); // allow time for open circuit voltage to build

wire.fwd(true); // start wire feed

dacq.dout(5, 1); // trigger camera

while (welder.get_voltage()>30.0){} // do nothing while wire is feeding
usleep((unsigned long)(35 * 1e3)); // wait 35ms after short circuit
welder.set_current(Ib); // set current to a lower welding current value
[I17777770777777777777777777777777777777777777777777777777777777777777777717777777777717
/11111111117/117/7/17//1////] Welding Procedure //////////////////1//1///11//1///

mo.execute_program(); // Start motion program

double Ib = 57.1; // background current (A)
double Ip = 290.0; // peak current (A)
double Tb = 3.41; // background time in ms
double Tp = 3.4; // peak time in ms

double Tstart = et.getElapsedTimeInMicroSec(); // acquire starting time
// Weld for 2 seconds:
while((et.getElapsedTimeInMicroSec()-Tstart)<(2*1e6)){

welder.set_current(Ib); // set to background current
usleep((unsigned long)(Tb*1e3)); // hold for background time
welder.set_current(Ip); // set to peak current
usleep((unsigned long)(Tp*1e3)); // hold for peak time

}

dacq.dout(5, ©); // reset camera trigger
mo.stop(); // stop motion

[I11TT707 7077777777777 77777777777 7777777777777777777717777717777777711777
[111177771177717771777777777 Weld termination /////////////1//1117/771/1117/711111111111]]

wire.fwd(false); // shut of wire feed (wire continues to feed, i.e., deceleration)
welder.set_current(475.0); // set current pulse height in A

usleep((unsigned long)(18 * 1e3)); // pulse time is 18ms

welder.arc(false); // disable welding arc

usleep((unsigned long)(2 * 1e6)); // shielding gas post flow time

welder.arc_shielding(false); // turn off shielding gas
[I71777071777777777777777777777777777777777777777777777777777777777777777771717777777



270

23. Appendix H: Single Droplet Deposition Code
23.1. Single Droplet Deposition with Steel Wool Arc Starts

The following code is a section of the C++ code used to produce single droplet deposition

using steel wool to start the arcs.

// create file name to which data will be written:
sprintf(weld_data,"/home/gladis/Documents/WeldData/data.csv");

thread (DAQ_thread).detach(); // create and start DAQ thread
wire.rev(false); // make sure wire is not moving in reverse
wire.fwd(false); // make sure wire is not moving forward
wire.set_wfs(130.0); // set WFS to 130@ipm
welder.arc_shielding(true); // start shielding gas

double I = 75.0; // set starting current to 75A
welder.set_current(I); // set power source to starting current

usleep((unsigned long)(1*1e6)); // shielding gas pre-flow time
dacq.dout(5, 1); // trigger high-speed camera

wire.fwd(true); // start wire feed forward

usleep((unsigned long)(40*1e3)); // wait for wire feed delay time
welder.arc(true); // enable main arc

usleep((unsigned long)(75*1e3)); // leave starting current on for 75ms
welder.set_current(50); // drop to background current
usleep((unsigned long)(15*1e3)); // wait 15ms for wire feeder timing
wire.fwd(false); // turn off wire feed

usleep((unsigned long)(85*1e3)); // 85ms of more background current
welder.set_current(345); // set to peak current to detach droplet
usleep((unsigned long)(4*1e3)); // peak time is 4ms
welder.arc(false); // turn off main arc

usleep((unsigned long)(1*1e6)); // shielding gas post-flow time
dacq.dout(5, @); // reset high-speed camera trigger
welder.arc_shielding(false); // turn off shielding gas

DAQ_FLAG = @; // stop DAQ



271

23.2. Single Droplet Deposition with PAW Pilot Arc Starts

The following code is a section of the C++ code used to produce single droplet deposition

using the PAW pilot arc to start the main arc.

// create file name to which data will be written:
sprintf(weld_data, "/home/gladis/Documents/WeldData/data.csv");
thread (DAQ_thread).detach(); // create and start DAQ thread
wire.rev(false); // make sure wire is not moving in reverse
wire.fwd(false); // make sure wire is not moving forward
wire.set_wfs(130.0); // set WFS to 13@ipm
welder.arc_shielding(true); // start shielding gas

double I = 75.0; // set starting current to 75A
welder.set_current(I); // set power source to starting current

usleep((unsigned long)(1*1e6)); // shielding gas pre-flow time
dacq.dout(5, 1); // trigger high-speed camera

dacq.dout(1, 1);// pilot arc on (takes ©.107s to light)
usleep((unsigned long)(30*1e3)); // wait 3@ms before wire feed
wire.fwd(true); // start wire feed forward

usleep((unsigned long)(40*1e3)); // wait for wire feed delay time
welder.arc(true); // enable main arc

while(welder.get_current() < 60.0){} // when current is more than 60A, arc has started
usleep((unsigned long)(75*1e3)); // leave starting current on for 75ms
welder.set_current(50); // drop to background current

usleep((unsigned long)(15*1e3)); // wait 15ms for wire feeder timing
wire.fwd(false); // turn off wire feed

usleep((unsigned long)(85*1e3)); // 85ms of more background current
welder.set_current(345); // set to peak current to detach droplet
usleep((unsigned long)(4*1e3)); // peak time is 4ms

dacq.dout(1, ©);// pilot arc off

welder.arc(false); // turn off main arc

usleep((unsigned long)(1*1e6)); // shielding gas post-flow time
dacq.dout(5, @); // reset high-speed camera trigger
welder.arc_shielding(false); // turn off shielding gas

DAQ_FLAG = ©; // stop DAQ



272

23.3. Single Droplet Deposition with Lift Arc Starts

The following code is a section of the C++ code used to produce single droplet deposition

using a lift start arc starting technique.

// create file name to which data will be written:
sprintf(weld_data, "/home/gladis/Documents/WeldData/data.csv");
thread(DAQ_thread).detach(); // create and start DAQ thread

char x[] = "X"; // initialize x-axis variable
char y[] "Y"; // initialize y-axis variable
char z[] "Z"; // initialize z-axis variable

welder.arc_shielding(true); // turn on shielding gas

double I = 75.0; // set starting current to 75A
welder.set_current(I); // set power source to starting current

usleep((unsigned long)(1 * 1e6)); // shielding gas pre-flow time
dacq.dout(5, 1); // trigger high-speed camera

welder.arc(true); // enable main arc
usleep((unsigned long)(5 * 1e3)); // pause 5ms to ensure current flow through wire

mo.move(z, 20.0, -0.85); // drop work piece ©.05in

while (welder.get_voltage() < 5.0){} // wait while wire is in contact with work piece
usleep((unsigned long)(7 * 1e3)); // wait 7ms and check again in case of noise
while (welder.get_voltage() < 5.9){} // check voltage again to ensure contact is broken

// start single droplet deposition current sequence

usleep((unsigned long)(70 * 1e3)); // starting current lasts for 70ms
welder.set_current(50); // drop to background current
usleep((unsigned long) (100 * 1e3)); // 100ms of background time
welder.set_current(345); // 345A current pulse

usleep((unsigned long)(4*1e3)); // 4ms peak time

welder.arc(false); // turn off main arc

usleep((unsigned long)(2 * 1e6)); // shielding gas post-flow time
dacq.dout(5, @); // reset high-speed camera trigger
welder.arc_shielding(false); // turn off shielding gas

DAQ_FLAG = @; // stop DAQ



23.4. Single Droplet Deposition with High Frequency Arc Starts

273

The following code is a section of the C++ code used to produce single droplet deposition

using a high frequency arc starter.

// create file name to which data will be written:
sprintf(weld_data, "/home/gladis/Documents/WeldData/junk.csv");
thread (DAQ_thread).detach(); // create and start DAQ thread

mo.connect(); // establish connection with Galil controller

mo.wire_prog(55, 0.05); // create and download wire feed routine to Galil controller

welder.arc_shielding(true); // turn on shielding gas

double I = 75.0; // starting current (A)
welder.set_current(I); // set welding current to starting current

usleep((unsigned long)(1*1e6)); // allow time to set current
dacq.dout(5, 1); // trigger camera

welder.arc(true); // enable welding power source

usleep((unsigned long)(5*1e3)); // allow time for arc to enable
welder.arc_start(true); // enable arc starter

usleep((unsigned long)(1*1e3));// allow time for arc starter to energize

int count = @; // counter for arc starting routine
double I_sum = 0.0; // current summation for arc starting routine
double i1,i2,i3,i11,i22,i33;// variable for troubleshooting arc starting routine
// Arc starting routine and arc start prediction algorithm:
// check for 3 consecutive 60+ amp measurements (3 x 60 = 180) to ensure
// that noise does not appear to be an arc start. The routine can only go
// for 100 iterations (150ms) before exiting to prevent the arc starter
// from pulsing for extended periods of time when the arc won't start
while((I_sum < 180)&&(count < 100))
{
count++; // increment counter
I _sum = 0.0; // set current summation to @
i1l1 = i1; // store previous current measurement
il = welder.get_current(); // get new current measurement
if (i1 > 100.0) i1 = 70.9; // if current is over 100A, it is noise
// noise spikes exceeding 180A trigger a false arc start indication
I_sum += il1; // add new current measurement to current summation
usleep((unsigned long)(@.5*1e3)); // wait half a millisecond
i22 = i2; // store previous current measurement
i2 = welder.get_current(); // get new current measurement
if (i2 > 100.0) i2 = 70.9; // if current is over 100A, it is noise
I_sum += 12; // add new current measurement to current summation
usleep((unsigned long)(@.5*1e3)); // wait half a millisecond
i33 = i3; // store previous current measurement
i3 = welder.get_current(); // get new current measurement
if (i3 > 100.0) i3 = 70.9; // if current is over 100A, it is noise
I sum += i3; // add new current measurement to current summation
usleep((unsigned long)(@.5*1e3)); // wait half a millisecond



274

printf("I_sum = %f\n",I_sum); // display current summation

}

welder.arc_start(false); // After arc starting routine, turn off arc starter

printf("count = %i\n",count); // display number of routine iterations

if(count < 100)// if count is less than 100, the arc has started

{
//////////// Single droplet deposition routine //////////
usleep((unsigned long)(35*1e3)); // pause for 35ms before wire feed
mo.wire_start(true); // start wire feed
usleep((unsigned long)(35*1e3)); // after 35ms, drop current to 50A
welder.set_current(50); // set current to 50A
usleep((unsigned long)(40*1e3)); // pause 40ms for CWT wire feeder
//wire.fwd(false); // CWT feeder: stop wire feed
usleep((unsigned long)(60*1e3)); // run low current for and additional 6@ms
welder.set_current(350); // set current to 350A to detach droplet
usleep((unsigned long)(4.5*1e3)); // 350A pulse time is 4.5ms
welder.set_current(40); // drop to low current as droplet transfers
usleep((unsigned long)(15*1e3)); // keep low current for 15ms

}

welder.arc(false); // turn off welding arc
mo.wire_start(false); // reset wire feed trigger

usleep((unsigned long)(2*1e6)); // 2 second shielding gas post-flow
dacq.dout(5, @); // Turn off camera trigger
welder.arc_shielding(false); // turn off shielding gas

// display arc start routine variables for troubleshooting
printf("ill1 = %f, i22 = %f, i33 = %f\n",1i11,i22,i33);

printf("il = %f, i2 = %f, i3 = %f\n",1i1,12,i3);
DAQ_FLAG = @; // turn off DAQ thread

23.5. Automatic Wire Positioning

The following C++ code was used to automatically position the wire at the desired arc
gap length and move the work piece/specimen before starting the arc. The follow code applies to

the insulated wire feeder.

char x[] = "X"; //
char y[] = "Y"; // create variable for motion system
char z[] = "z"; //

mo.connect(); // establish connection with Galil controller

[11177777777717777717777 Position Wire /////////1111111777111111711111117177

mo.move(y,10,-0.068); // move work piece for new drop



welder.set_current(1.0); // set welding current to 1A to allow full OC voltage
welder.arc(true); // enable welding power source
usleep((unsigned long)(@.1*1e3)); // allow time for OC voltage to build

mo.wirefwd(5.0); // jog wire forward

// if the voltage is more than 20V, the wire and wore piece are not in contact
while(welder.get_voltage()>20.0){} // do nothing while wire is feeding

// when the voltage drops below 20V, wire has made contact

welder.arc(false); // disable welding power source

mo.wirestop(); // stop wire feed

mo.wirefeed(5.0,-0.04); // retract wire 0.04in for optimal arc start

sleep(1l); // give time to retract wire
[I177777777777777777777777777777777777777777777777777777777777777777177777771717

23.6. Automated Single Droplet Deposition

The following C++ code is the section of code that produced automated single droplet

deposition using the arc starter/laser hybrid arc starting technique.

char x[] = "X"; //
char y[] = "Y"; // create variable for motion system
char z[] = "Z"; //

mo.connect(); // establish connection with Galil controller
welder.arc_shielding(true); // turn on shielding gas
usleep((unsigned long)(2*1e6)); // 2 second gas pre-flow time

for (int drop_num = @; drop_num < 5; drop_num++) // set number of drops

{

mo.wire_prog(55, 0.1); // download wire feed routine to Galil controller

DAQ_FLAG = 1; // Allow DAQ to start
// create file name to which data will be written:

sprintf(weld_data,"/home/gladis/Documents/WeldData/data%i.csv",drop_num+1l);

thread (DAQ_thread).detach(); // create and start DAQ thread

double I = 75.0; // starting current (A)
welder.set_current(I); // set welding current to starting current
usleep((unsigned long)(100*1e3));// power source needs time to set current

dacq.dout(5, 1); // trigger camera

welder.arc(true); // enable welding power source

usleep((unsigned long)(5*1e3)); // allow time for source to enable
welder.arc_start(true); // enable arc starter

usleep((unsigned long)(1*1e3));// allow time for arc starter to energize

275



276

int count = @; // counter for arc starting routine
double I_sum = 0.0; // current summation for arc starting routine
double i1,i2,i3,i11,i22,i33;// variable for troubleshooting arc starting routine
// Arc starting routine and arc start prediction algorithm:
// check for 3 consecutive 60+ amp measurements (3 x 60 = 189) to ensure
// that noise does not appear to be an arc start. The routine can only go
// for 100 iterations (150ms) before exiting to prevent the arc starter
// from pulsing for extended periods of time when the arc won't start
while((I_sum < 180)&&(count < 100))
{
count++; // increment counter
I_sum = 0.9; // set current summation to @
i1l1 = i1; // store previous current measurement
il = welder.get_current(); // get new current measurement
if (i1 > 100.0) il = 70.9; // if current is over 100A, it is noise
// noise spikes exceeding 180A trigger a false arc start indication
I_sum += il1; // add new current measurement to current summation
usleep((unsigned long)(@.5*1e3)); // wait half a millisecond
i22 = i2; // store previous current measurement
i2 = welder.get_current(); // get new current measurement
if (i2 > 100.9) i2 = 70.0; // if current is over 1@0A, it is noise
I_sum += 12; // add new current measurement to current summation
usleep((unsigned long)(@.5*1e3)); // wait half a millisecond
i33 = i3; // store previous current measurement
i3 = welder.get_current(); // get new current measurement
if (i3 > 100.0) i3 = 70.9; // if current is over 1@00A, it is noise
I sum += i3; // add new current measurement to current summation
usleep((unsigned long)(@.5*1e3)); // wait half a millisecond

printf("I_sum = %f\n",I_sum); // display current summation

}

welder.arc_start(false); // disable arc starter

printf("count = %i\n",count); // display number of arc start iterations
printf("drop: %i\n",drop_num+1); // display current drop number

// Improve arc start prediction algorithm by checking arc voltage.
// If the voltage is less than 3V, the wire has likely short

// circuited to the work piece. A short would appear the same as an
// arc start when looking at the current measurements.
if(welder.get_voltage() < 3)

{

}
//welder.set_current(75);

if(count < 100) // Algorithm has predicted an arc start
{

count = 100; // set count to 100, which is a no-start

usleep((unsigned long)(35*1e3)); // pause for 35ms before wire feed
mo.wire_start(true); // start wire feed routine

usleep((unsigned long)(35*1e3)); // after 35ms, reduce current to 50A
welder.set_current(50); // set current to 50A

usleep((unsigned long)(100*1e3)); // wait 100ms for drop to grow
welder.set_current(350); // detach drop with 350A pulse
usleep((unsigned long)(4.5*1e3)); // pulse time is 4.5ms
welder.set_current(40); // set current low during drop transfer



usleep((unsigned long)(15*1e3)); // keep low current for 15ms

welder.arc(false); // disable welding power source
mo.wire_start(false); // reset wire feed trigger

usleep((unsigned long)(50*1e3)); // take data for an additional 5@ms
DAQ_FLAG = @; // turn of DAQ thread

[177177777777777777/777/7// Position Wire ///////////1/7/1//117/7777717/77177/7/7/
if(count < 100)// only if algorithm has predicted arc start
{
mo.connect(); // establish connection with Galil controller
mo.move(y,10,-0.068); // move work piece for new drop

welder.set_current(1.0); // set current to 1A to allow full OC voltage
welder.arc(true); // enable welding power source
usleep((unsigned long)(@.1*1e3)); // allow time for OC voltage to build

mo.wirefwd(5.0); // jog wire forward

// if voltage is more than 20V, wire and wore piece are not in contact
while(welder.get_voltage()>20.0){} // do nothing while wire is feeding
// when the voltage drops below 20V, wire has made contact
welder.arc(false); // disable welding power source

mo.wirestop(); // stop wire feed

mo.wirefeed(5.0,-0.05); // retract wire 0.05in for optimal arc start
sleep(l); // allow time to retract wire

}
[111177777777777777777777777777777777777777777777777777777777777777777777777777

// if count is 100 or more, the algorithm predicted a no-start.

// End program by setting the drop number high

if(count >= 100)

{

}

drop_num = 100;

usleep((unsigned long)(2*1e6)); // 2 second gas post-flow time
dacq.dout(5, @); // Turn off camera trigger
welder.arc_shielding(false);// turn on shielding gas

}
// leave

return 0;

277



SIGNATURE PAGE

This is to certify that the thesis prepared by Dale Brush entitled “Control of Gas Metal Arc Welding Using
Process Sensing and Laser Arc Stabilization for Additive Manufacturing” has been examined and

approved for acceptance by the Department of Electrical Engineering, Montana Tech of the University of
Montana, on this 29th day of November, 2018.

i A,

Bruce Madigan, PhD, P’rofessor/
Department of General Engineering
Chair, Examination Committee

S s

Dan Trudnowski, PhD, Professor and Dean
Department of the School of Mines & Engineering
Member, Examination Committee

(ogpis & (72

Denis Clark, MS, Welding Engineer
Member, Examination Committee

o]

465h Wold, PhD, Assistant Professor
Department of Electrical Engineering
Member, Examination Committee

At A L)

Scott Coguill, MS Labo tory Director
Department of Mech lcal and Civil Engineering
Member, Examination Committee




