National Lab Day

10-8-2019

NREL Biomass Program

Zia Abdullah

Follow this and additional works at: https://digitalcommons.mtech.edu/national-lab-day
NREL at a Glance

- **2,000** Employees, plus more than 400 early-career researchers and visiting scientists
- **World-class** facilities, renowned technology experts
- **Partnerships** with industry, academia, and government
- **Campus** operates as a living laboratory
- **National economic impact**
- **$872M annually**
Scope of Mission

<table>
<thead>
<tr>
<th>Sustainable Transportation</th>
<th>Energy Productivity</th>
<th>Renewable Electricity</th>
<th>Systems Integration</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Technologies</td>
<td>Residential Buildings</td>
<td>Solar</td>
<td>Grid Integration of Clean Energy</td>
<td>Private Industry</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Commercial Buildings</td>
<td>Wind</td>
<td>Distributed Energy Systems</td>
<td>Federal Agencies</td>
</tr>
<tr>
<td>Biofuels</td>
<td></td>
<td>Water: Marine Hydrokinetics</td>
<td>Batteries and Thermal Storage</td>
<td>State/Local Government</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geothermal</td>
<td>Energy Analysis</td>
<td>International</td>
</tr>
</tbody>
</table>
NREL’s Research Spans Biochemical and Thermochemical Conversion of biomass to Fuels, Chemicals and Products

Lignocellulosic Structure of Biomass

Biochemical Conversion

Thermochemical Conversion

Algae Growth & Conversion

Fuels
Chemicals
Products

Analysis and Sustainability
Can High Energy Jet Fuel be Produced from Biomass?

Figure used by permission from Prof. J Heyne, University of Dayton
Can High Octane Gasoline be Made from Biomass?

- **C1 OXY**'s
 - O
 - DME

- **C2 OXY**'s
 - OH
 - Ethanol

- **C4-C7 high-octane gasoline** (low aromatics)
- **C4 olefins** (butadiene, butenes)
- **C3-6 olefins**

Fuels

Renewable Feedstock

Gasification

Fermentation or Hydrolysis

Solid Acid Catalysis

Diesel and Jet Fuels

- **Biomass Derived**
- **Intermediates**
- **Chemicals or Fuel Precursors**
Can Anaerobic Digester Systems Produce Higher Value Products than Natural Gas?
Biomethanation to Upgrade Biogas to Pipeline Grade Methane

Anthropogenic sources of CO₂

End Uses: Heat, fuel, power production, chemical feedstock

Biogas Sources
- Wastewater
- Fermentation
- Landfill
- Energy Crops
- Manure

Biogas Supply
- CO₂ (25 – 50%)
- CH₄ (50 – 75%)

Renewable Energy

Electrolysis
- O₂
- e⁻
- H₂

Water

Nutrient Supply

NG Storage Network
- RNG

Biomethanation
- CO₂ + 4H₂ → CH₄ + H₂O

Industrial or medical applications
Conversion of Biogas to Muconic Acid

- Project aims to develop a biological process for producing muconic acid from biogas (a precursor to adipic acid and Nylon 6,6)
- Adipic acid is a top 50 bulk chemical (>2M mt/yr) traditionally derived from benzene and cyclohexane\(^1\). Market price is around $1,600/mt\(^2\)
- The project includes biogas screening on the methanotrophic organism, metabolic engineering, and novel reactor design to improve gas-liquid mass transfer

R&D focus of this project

Other BETO-funded R&D

WBS 2.3.2.201, Mike Guarnieri
Can Plastics be Upcycled to Higher Value Applications?

- Plastics recycling today is almost universally down-cycling.
- Chemical recycling of PET today is mostly bottle-to-bottle: economics are challenging.
- Bio-based solutions (enzymes, microbes, chemical catalysts) towards upcycling can offer a new strategy to advance beyond the State of Technology.
- Can ultimately enable new bio-based products from waste plastics.

Nylon Precursors

<table>
<thead>
<tr>
<th>Polymer</th>
<th>T_g (°C)</th>
<th>T_m (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKA-Nylon</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>Adipic-Nylon</td>
<td>60</td>
<td>260</td>
</tr>
</tbody>
</table>
Electrons to Molecules, Adding Value to CO$_2$ and Utilizing Low Cost, Excess Electrons
We have made a lot of progress in utilizing biomass to make fuels, energy and products. There are many opportunities in:

- Developing performance advantaged fuels and chemicals from bio resources
- Using energy from low cost electricity to upgrade CO2, waste gases and biomass
Discussion