10-8-2019

Space Science and Engineering Laboratory

David Klumpar
Montana State University-Bozeman

Follow this and additional works at: https://digitalcommons.mtech.edu/national-lab-day

Recommended Citation

This Presentation is brought to you for free and open access by the Lectures at Digital Commons @ Montana Tech. It has been accepted for inclusion in National Lab Day by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact sjuskielwicz@mtech.edu.
Space Science and Engineering Laboratory

Contact: klumpar@montana.edu
The Space Science and Engineering Laboratory at Montana State University is an interdisciplinary center for space research, space technologies and collegiate-level experiential hands-on training in spaceflight systems.

University Education/Workforce Training:

"Today’s students – Tomorrow’s Engineers and Scientists"

Hands-on training – develop professional skills “by doing” to jump-start the college to workplace transition.

Space Science and Operational Space

Space Environment; Space Weather; Sun-Earth Connections
- Ionizing Radiation (Plasmas to MeVs)
- Radiation Belt dynamics (particles, X-rays)
- Ionospheric interactions
- Solar Physics - the active magnetic sun
- Lightning (X-, Gamma- Rays)

Space Situational Awareness
- Naturally occurring phenomena
- Man-made unknown objects

Technologies/Capabilities

Design, Develop, Integrate, Test, Fly, and operate highly capable small space systems.

- Miniaturization technologies for space applications
- 1 kg - 40 kg spacecraft systems (CubeSats and AFRL University “NanoSats”)
- Plasma detectors
- Sensors for ionizing radiation (electrons and ions, X and Gamma Rays)
- Space environment effects on COTS subsystems
- Extreme Ultraviolet Solar Radiation (EUV Optics)
- Imaging spectrometers (optical to EUV)
- Advanced Manufacturing technologies for spaceflight
- Rad hard reconfigurable electronics (with MSU and industry partners)
- Low power heterodyne LADAR ranging and imaging systems for SSA (w/ partners)
- Spaceflight qualification
- Space Operations; satellite tracking station and streamlined mission operations
<table>
<thead>
<tr>
<th>Program Name / Launch Date</th>
<th>Size Description</th>
<th>Sponsor</th>
<th>Mission Duration</th>
<th>MSU Role</th>
<th>TRL (Begin/End)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODES May 16, 2016</td>
<td>2 X 1.5U</td>
<td>NASA Ames</td>
<td>16 months</td>
<td>Payloads</td>
<td>7/9</td>
</tr>
<tr>
<td>PRINTSAT Nov. 4, 2015</td>
<td>1U CubeSat</td>
<td>Private Consortium, MSU</td>
<td>Launch Vehicle Failure</td>
<td>Integration, Test, Launch Provision</td>
<td>1/7</td>
</tr>
<tr>
<td>EDSN Nov. 4, 2015</td>
<td>8 x 1.5U Cubesats</td>
<td>NASA Ames</td>
<td>Launch Vehicle Failure</td>
<td>Science Payload Development 14 Units</td>
<td>3/7</td>
</tr>
<tr>
<td>FIREBIRD-1, -2 Dec. 6, 2013</td>
<td>2x 1.5U CubeSats</td>
<td>National Science Foundation</td>
<td>6-months</td>
<td>Mission Design, Spacecraft AI&T, Flight Qual.</td>
<td>3/8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program Name / Launch Date</th>
<th>Size Description</th>
<th>Sponsor</th>
<th>Mission Duration</th>
<th>MSU Role</th>
<th>TRL (Begin/End)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explorer-1 Prime Mar. 4, 2011</td>
<td>1U CubeSat</td>
<td>NASA/MSGC</td>
<td>Launch Vehicle Failure</td>
<td>Full Mission Responsibility</td>
<td>2/7</td>
</tr>
<tr>
<td>MEROPE Jul. 26, 2006</td>
<td>1U CubeSat</td>
<td>NASA/MSGC</td>
<td>Launch Vehicle Failure</td>
<td>Full Mission Responsibility</td>
<td>1/7</td>
</tr>
</tbody>
</table>

In Development and Manifested for Launch

<table>
<thead>
<tr>
<th>Program Name / Launch Date</th>
<th>Size Description</th>
<th>Sponsor</th>
<th>Mission Duration</th>
<th>MSU Role</th>
<th>TRL (Begin/End)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT SPINS</td>
<td>3U CubeSat</td>
<td>National Science Foundation</td>
<td>12-months (design life)</td>
<td>Mission Design, Spacecraft AI&T, Flight Qualification</td>
<td>4/6</td>
</tr>
</tbody>
</table>
Canisterized SmallSats (aka CubeSat)

Approximate SWaP

<table>
<thead>
<tr>
<th>Bus Size (cm)</th>
<th>Total Mass</th>
<th>Power (W)</th>
<th>Capability*</th>
<th>Payload Volume</th>
<th>Payload Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x 10 x 10 (1U)</td>
<td>1.33 kg</td>
<td>3</td>
<td>T</td>
<td>0.2U</td>
<td>0.3</td>
</tr>
<tr>
<td>10 x 10 x 30 (3U)</td>
<td>4.5 kg</td>
<td>20</td>
<td>A,T,P</td>
<td>1 U</td>
<td>2</td>
</tr>
<tr>
<td>10 x 20 x 30 (6U)</td>
<td>12 kg</td>
<td>40</td>
<td>A,T,P</td>
<td>4U</td>
<td>8</td>
</tr>
<tr>
<td>20 x 20 x 30 (12U)</td>
<td>24 kg</td>
<td>80</td>
<td>A,T,P</td>
<td>8U</td>
<td>19 kg</td>
</tr>
</tbody>
</table>

* capability

<table>
<thead>
<tr>
<th>P</th>
<th>Propulsion (electric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ADCS (attitude control & pointing)</td>
</tr>
<tr>
<td>T</td>
<td>TT&C (telemetry & command)</td>
</tr>
</tbody>
</table>

The strategic advance of SmallSats: deployment as swarms/constellations.
- Small, maneuverable platforms, providing multiple points of view and rapid revisit
Continued Mission of FIREBIRD I

FIREBIRD II - Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics

2 satellites launched as a pair: 1/31/2015 (currently operating)

FIREBIRD Flight Units 3 and 4
What is the cause of Terrestrial Gamma Ray Flashes (TGFs)?

BOOMS (Balloon Observations of Microburst Scales)
What does a microburst, studied for 60 years, actually look like? 1000kg payload carried to 40km altitude with x-ray imagers will tell us.

LAFTR (Light and Fast TGF Recorder)
What is the cause of Terrestrial Gamma Ray Flashes? (TGFs)

IMPRESS (IMpulsive Phase Rapid Energetic Solar Spectrometer)
Rapid time variation in electron acceleration during solar flares.

Missions In Development

IT-SPINS (The Ionospheric-Thermospheric Scanning Photometer for Ion-Neutral Studies)
The first two-dimensional (2D) tomographic imaging from a 3U research CubeSat, with the objective of addressing the basic nature of the nocturnal ionosphere.
SSEL Facilities

ESD Work stations; Laminar Flow

Thermal Environment

Ultra-clean T-Vac

24/7 ‘lights-out’ TT&C
SSEL Associated Faculty

David Klumpar, Ph.D – Research Professor, Director SSEL

John Sample, Ph.D. - Assistant Professor of Physics

Charles Kankelborg, Ph.D. Professor of Physics

Larry Springer
Senior Research Engineer, Project Manager

Rubin Meuchel - Senior Research Engineer (ME)

Nevin Leh, Software Engineer

Skylar Tamke, Electrical Engineer

National Science Foundation Award to MSU team to hire an early career faculty member announced by NSF July 23, 2019.

SSEL Professional Staff

???, Ph.D. Asst. Professor of Physics

Montana State University