Catalytic Neutralization of Organophosphate Simulant Over Undercoordinated Fe, Cu, Co, and Zn on SiO2

Quinn Cunneen
Montana Technological University

Katelyn Alley
Montana Technological University

Dario Prieto
Montana Technological University

Follow this and additional works at: https://digitalcommons.mtech.edu/techxpo

Recommended Citation
Cunneen, Quinn; Alley, Katelyn; and Prieto, Dario, "Catalytic Neutralization of Organophosphate Simulant Over Undercoordinated Fe, Cu, Co, and Zn on SiO2" (2020). *TECHxpo*. 18.
https://digitalcommons.mtech.edu/techxpo/18

This Poster is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in TECHxpo by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu.
Catalytic neutralization of organophosphate simulant over undercoordinated Fe, Cu, Co, and Zn on SiO₂

Quinn Cunneen (BS Chem. ‘20), Katelyn Alley (BS Chem. ‘21), Dario Prieto
Applied Surface Science Laboratory
Mechanical Engineering Department
Montana Technological University, Butte, MT 59701

Background
• Organophosphates (OP) inhibit normal breakdown of neurotransmitters

Hypothesis
Low-coordination transition metals on SiO₂ will catalyze the hydrolysis of OP

EDTA mass loss correlates to loading
• Ligand mass loss as metal loading proxy
• Metal loadings of 0.6–2.4 wt%
• Surface density of 0.16–0.64 nm²

EDTA promotes metal dispersion
• Higher dispersion relative to M-nitrates

Catalytic OP neutralization w/ H₂O₂
• No reaction without H₂O₂
• No activity-precursor relations
• No selectivity-precursor relations
• ~ 1-to-1 reaction a to reaction b
• Activity increases Co = Fe < Zn < Cu

Homogeneous reaction of OP with •OH

References

This research was sponsored by the Combat Capabilities Development Command Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-15-2-0020