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Nanofabrication of Surface-Enhanced Raman Scattering Device by an
Integrated Block-Copolymer and Nanoimprint Lithography Method

Abstract
The integration of block-copolymers and nanoimprint lithography presents a novel and cost-effective
approach to achieving nanoscale patterning capabilities. The authors demonstrate the fabrication of a surface-
enhanced Raman scattering device using templates created by the block-copolymers nanoimprint lithography
integrated method.
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The integration of block-copolymers �BCPs� and nanoimprint lithography �NIL� presents a novel
and cost-effective approach to achieving nanoscale patterning capabilities. The authors demonstrate
the fabrication of a surface-enhanced Raman scattering device using templates created by the
BCP-NIL integrated method. The method utilizes a poly�styrene-block-methyl methacrylate�
cylindrical-forming diblock-copolymer as a masking material to create a Si template, which is then
used to perform a thermal imprint of a poly�methyl methacrylate� �PMMA� layer on a Si substrate.
Au with a Cr adhesion layer was evaporated onto the patterned PMMA and the subsequent lift-off
resulted in an array of nanodots. Raman spectra collected for samples of R6G on Si substrates with
and without patterned nanodots showed enhancement of peak intensities due to the presence of the
nanodot array. The demonstrated BCP-NIL fabrication method shows promise for cost-effective
nanoscale fabrication of plasmonic and nanoelectronic devices. © 2010 American Vacuum
Society. �DOI: 10.1116/1.3501341�

I. INTRODUCTION

Innovative solutions are necessary in order to continue
satisfying Moore’s law in the field of microelectronics.1

Standard photolithography techniques are no longer viable as
a solution to the reduction of feature sizes due to physical
limits of diffraction.2 Electron beam �e-beam� lithography
was originally the elected solution due to its sub-50 nm
single exposure resolution capability, but has fundamental
limitations due to the serial write method. However, serial
write methods can be economical and manufacturable when
used to make masks or templates that pattern substrates in a
parallel fashion, such as nanoimprint lithography �NIL�. The
need for nanolithography �sub-100 nm� techniques has led to
novel solutions, with some advancing beyond the standard
photolithography paradigm.

These next-generation lithography solutions include
shorter-wavelength lithography approaches �e.g., extreme ul-
traviolet lithography and x-ray lithography�, biological or
chemically induced self-assembled lithography �e.g., DNA
based templating and block-copolymers �BCPs��, and alter-
native lithographic techniques �e.g., nanoimprint lithography
and interference lithography�.3 Of these solutions, nanoim-
print is considered a promising avenue, boasting 5 nm line-
width and 14 nm pitch feature capability as well as high

throughput capability due to its simple pattern transfer
technique.4 Some industrial companies, such as makers of
magnetic and optical media, are investigating a combination
of e-beam lithography �for imprint template writing� and
nanoimprint lithography �for high throughput fabrication� as
the most promising solution.5

E-beam lithography used to pattern imprint templates,
however, has limitations. Although the intrinsic resolution of
writing is around 5 nm, pattern transfer from the resist to the
substrate generally leads to more realistic feature sizes of 10
nm with minimum pitch around 30 nm.6 In addition, e-beam
lithography is a slow, serial patterning process and is expen-
sive due to complex machinery.

In this article, we present an integrated BCP and NIL
method as a manufacturable solution for nanoscale lithogra-
phy. Block-copolymers present a self-assembly based ap-
proach toward rapid nanoimprint template production with
no need for complex machinery. Typically, the periodic do-
mains formed by phase separation of two or more dissimilar
polymers are on the order of 5–50 nm in size.7 The morphol-
ogy of the nanodomains depends on the volume fractions of
the two blocks. Block-copolymers for nanolithography is an
emerging field, and literature already demonstrates feasible
applications such as biomolecular arrays and CMOS
devices.8–10
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Using our integrated BCP-NIL process, we demonstrate
the fabrication of a surface-enhanced Raman spectroscopy
�SERS� device. A nanoimprint template was fabricated by
using the self-assembly of a diblock-copolymer
�poly�styrene-block-methyl methacrylate� �PS-b-PMMA�� to
form an etching mask for the creation of posts on a silicon
wafer. This template in turn was used in a nanoimprint pat-
tern transfer to create a resist layer with holes. Metal depo-
sition and lift-off resulted in an array of Au nanodots mea-
suring 20 nm in diameter. These nanodots were subsequently
shown to produce an enhancement in the Raman scattering
signature of Rhodamine 6G �R6G� interrogation molecules.

To the authors’ knowledge, only one group has demon-
strated a similar integrated approach of using block-
copolymers to create a silicon template for nanoimprinting.
They were successful in fabricating 30 nm pitch magnetic
dot arrays for the purpose of magnetic media.11 An analo-
gous idea was carried out in another group by employing the
self-assembly of anodic aluminum oxide templates for
nanoimprint lithography.12 Other than these two groups, the
only other related work found involved using nanoimprint as
a physical prepattern tool for the self-assembly of
diblock-copolymers.13,14 The work presented here is the first
to apply the integrated BCP-NIL fabrication method to create
a working device, namely, a SERS device.

II. FABRICATION

The fabrication procedure involves a series of two pattern
transfers. First, a directed block-copolymer assembly is uti-
lized to form an array of perpendicularly oriented PMMA
cylinders in a PS matrix. This pattern is transferred to a
silicon substrate via lift-off and plasma etching, resulting in
an array of silicon posts. These posts are used in a second
pattern transfer via nanoimprinting to a layer of resist. An
array of holes is produced in the resist, and this pattern is
used to fabricate the SERS device.

A. Diblock-copolymer template

The diblock-copolymer self-assembly uses thin films of
PS-b-PMMA. The fabrication process is illustrated in Fig. 1.
First, a hydroxyl-terminated random copolymer brush layer
was deposited on a 4 in. silicon substrate. Then, a thin film
�35 nm� of the block-copolymer �PS-b-PMMA� was spun
onto the substrate and annealed under vacuum to initiate self-

assembly. The result was hexagonal arrays of perpendicu-
larly oriented PMMA cylinders in a PS matrix. The PMMA
domains were then selectively removed with UV exposure
and subsequent glacial acetic acid exposure. Details of this
diblock-copolymer self-assembly process are described
elsewhere.15–18 Chromium �measuring 15 nm in thickness�
was evaporated onto the exposed underlying Si and remain-
ing PS matrix. Lift-off in a piranha solution removed the PS
and left hexagonal arrays of Cr nanodots to serve as an etch
mask for the subsequent dry plasma Si etch. An inductively
coupled plasma reactive ion etch �using C4F8, SF6, and Ar
with a power of 60 W� was performed to transfer the pattern
into the silicon substrate. The resulting silicon posts shown
by the scanning electron images in Fig. 2 have dimensions of
approximately 20 nm in diameter, 40 nm in pitch, and 44 nm
in height. The sidewalls are approximately vertical and the
rods are circular in cross section. The hexagonal patterns
reside in larger “grains” and structural defects could be at-
tributed to imperfections in the self-assembly process.

B. Nanoimprint lithography

The silicon template was then employed in a nanoimprint
pattern transfer. The fabrication process is illustrated in Fig.
3. A diluted solution of PMMA was spun onto a separate 4
in. silicon wafer to a thickness of approximately 50 nm. A
thermal imprint was performed at 200 °C and 400 psi for 5
min. Scanning electron microscopy �SEM� images of the im-

FIG. 1. �Color online� Fabrication procedure of silicon template by diblock-
copolymer self-assembly.

FIG. 2. ��a�–�c�� Top view and �d� tilted view SEM images of silicon tem-
plate made by diblock-copolymer self-assembly.

FIG. 3. �Color online� Fabrication procedure of SERS device by nanoimprint
lithography.
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printed PMMA resist are shown in Fig. 4. The small holes
seen in the imprint are a result of successful pattern transfer.
Larger voids were formed with nominal diameters of 150
nm. The origin of these larger voids are still not well under-
stood and are speculated to be either gas bubbles originating
from the dilution of the PMMA or areas of PMMA that
delaminated during the pattern transfer step.

C. Surface-enhanced Raman spectroscopy device

After imprint, the residual PMMA layer at the bottom of
the holes was removed by an oxygen plasma inductively
coupled reactive ion etch �30 W rf power, 25 SCCM �de-
noted as standard cubic centimeter per minute at STP�, of O2

flow, and 5 mTorr chamber pressure�. Cr of 1 nm thickness
was e-beam evaporated onto the imprinted substrate as an
adhesion layer, followed by 5 nm of Au. Lift-off was then
performed for 30 min in an ultrasonic bath to remove the
unwanted PMMA and metal layers, leaving behind Au nan-
odots. It was found that removing 25 nm of the PMMA �half
of the initial thickness� during the oxygen plasma etch pro-
vided the optimum conditions for a successful resist lift-off.
If less than 25 nm of the initial PMMA thickness were
etched, the residual PMMA layer from the imprint process
was not removed completely. The evaporated metal would,
therefore, not adhere to the substrate. If more than 25 nm of
the initial PMMA thickness were removed, then lock-in
would occur due to excessive sidewall deposition of the
evaporated metal. Lift-off would then be unsuccessful in re-
moving the PMMA. Metal thicknesses of 1 nm Cr and 5 nm
Au proved to be the most optimal thicknesses for a success-
ful lift-off.

Figure 5�a� presents a SEM image of the Cr/Au metal

deposited onto the PMMA imprint pattern before lift-off. The
metal dots �dark gray� are clearly visible inside the imprinted
holes. It is apparent that some dimensionality and circularity
have been lost during the nanoimprint pattern transfer pro-
cess. The imprinted holes now measure 20–35 nm in diam-
eter. After lift-off, Cr/Au nanodots remain on the surface of
the silicon substrate. The dimensionality and circularity loss
in these nanodots is transferred from the imprint pattern and
could be seen in the SEM images in Figs. 5�b�–5�d�. The
metal nanodots measure 20–33 nm in diameter. Peanut
shaped defects are due to the transfer of imperfections from
the original block-copolymer assembly, while single dot
voids are due to the failure of punching through the entire
residual PMMA layer.

Atomic force microscopy �AFM� measurements were also
taken on the Cr/Au nanodot sample. The height of the nan-
odots appears relatively uniform across the sample. These
measurements are shown in Fig. 6.

III. RESULTS AND DISCUSSION

A. Surface-enhanced Raman scattering

Localized surface plasmon resonances are excited when
light is incident upon metal nanoparticles, resulting in local-
ized electric field oscillations.19 Molecules adsorbed to these
metal surfaces, and therefore residing within the vicinity of
the electric fields, have been shown to exhibit enhanced Ra-
man scattering due to both an increase in light absorption by
the molecules as well as an increase in the resulting Raman
scattering intensities.20 This phenomenon is well known and
was first discovered in the 1970s.21,22

When the incident light is near the plasmon resonance
frequency of a particular metal material, the effect is more
significant. Silver and gold have plasmon resonance frequen-
cies in the visible region and, therefore, are commonly used
in performing SERS experiments.19 The effect can be further
enhanced by roughening the metal surfaces or creating
shapes with sharp edges or corners to further localize the
electric fields, creating “hot spots.”23 Furthermore, placing
the particles in close proximity to one another could also
enhance the effect by creating collective electric field
oscillations.24,25

FIG. 4. Tilted view SEM images of PMMA imprint made by nanoimprint
lithography.

FIG. 5. Top down SEM images of Au nanodot SERS device �a� before
lift-off and ��b�–�d�� after lift-off.

FIG. 6. �Color online� �a� Amplitude and �b� height AFM measurements of
Au nanodot SERS device.
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B. Experimental setup

R6G was chosen as the interrogation molecule for testing
the SERS device due to its richly featured and recognizable
Raman scattering spectrum.26 One droplet �approximately
0.05 ml� of 1�105M R6G in methanol was placed on a 1
�1 cm2 device chip �cleaved from the original wafer� and
allowed to air dry. The 532 nm line of a neodymium:yttrium
aluminum garnet laser was used as the excitation source.
Gold was chosen as the plasmonic material due to its well
known resonance in the midvisible region and was, there-
fore, well matched to the excitation wavelength.19,20 The to-
tal power incident on the substrate surface was approxi-
mately 1 mW and the laser spot size was approximately 650
nm in diameter. The Raman scattering spectra were collected
over 1 s collection times.

C. Raman scattering

The Raman scattering spectra in Fig. 7 indicate an en-
hancement of the R6G peaks in the presence of the Au nan-
odots. The spectra were collected in three scenarios: �1� the
laser spot was focused on an area of the device chip where
there are Au nanodots, �2� the laser spot was focused on a
bare silicon area of the same device chip where there were
no Au nanodots, and �3� the laser spot was focused on a
control chip of bare silicon with no Au nanodots.

In scenario 1, many peaks are visible in the Raman scat-
tering spectra. The peaks denoted by the arrows are associ-
ated with R6G and are clearly visible.26 In scenarios 2 and 3,
the same peaks are not discernible, suggesting enhanced Ra-
man scattering in scenario 1. Furthermore, the 519 cm−1

peak is clearly visible on all three spectra and is associated
with the Raman signature of the silicon substrate. In fact, the
magnitude of the 519 cm−1 peak in the three scenarios is
virtually unchanged, which supports the conclusion that the
enhancement in the R6G peaks is indeed caused by the pres-
ence of the Cr/Au nanodots. Scenario 2 further supports the
claim by ensuring that approximately the same number of

R6G molecules resided in the interrogation areas, since the
substrate used in scenarios 1 and 2 was the same substrate
that was subjected to the same droplet of R6G solution. In
total, approximately 15 measurements were done on inde-
pendently located Au nanodots to verify the enhancement.

IV. CONCLUSIONS

In summary, the integration of diblock-copolymer self-
assembly and nanoimprint lithography presents a more rapid
and cost-effective approach to nanofabrication as compared
to conventional e-beam template writing. The technique en-
ables sub-50 nm feature pattern transfers. We have demon-
strated the fabrication of a Cr/Au nanodot SERS device and
confirmed the enhanced Raman scattering signals of R6G
molecules adsorbed onto the device surface.

Initial results show varying defects and imperfections en-
suing each pattern transfer step. Future work will focus on
obtaining more ordered diblock-copolymer assemblies, im-
proving imprint yield over larger areas, eliminating imprint
voids, and retaining the dimensionality and fidelity of
shapes. Also, the magnitude of enhancement of Raman scat-
tering peaks could likely be improved by optimizing the size
of the nanoparticles.

Our demonstrated BCP-NIL fabrication method shows
promise for cost-effective nanoscale fabrication and could be
adopted for potential applications in plasmonic and nano-
electronic devices.
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