Developing a REST Framework for Medical Device Data Using FHIR Standards

Tyler Fricks
Montana Tech

Kevin George
Montana Tech

Julie Miller
Montana Tech

Phil Curtiss
Montana Tech

Charie Faught
Montana Tech

See next page for additional authors

Follow this and additional works at: https://digitalcommons.mtech.edu/urp_aug_2018

Recommended Citation
Fricks, Tyler; George, Kevin; Miller, Julie; Curtiss, Phil; Faught, Charie; Coe, Janet; and McGruder, Casey, "Developing a REST Framework for Medical Device Data Using FHIR Standards" (2018). 2018 Undergraduate Research. 5.
https://digitalcommons.mtech.edu/urp_aug_2018/5

This Book is brought to you for free and open access by the Other Undergraduate Research at Digital Commons @ Montana Tech. It has been accepted for inclusion in 2018 Undergraduate Research by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu.
Developing a REST Framework for Medical Device Data using FHIR Standards

Tyler Fricks (Computer Science), Kevin George (Health Care Informatics), Julie Miller (Nursing), Phil Curtiss (Computer Science), Charie Faught, (Health Care Informatics) Janet Coe (Nursing), Casey McGruder (Organ Talk)

Background

- Healthcare technology development and advancements require more device interoperability and information exchange.
- Electronic Health Records currently are limited to close sourced applications and hinder the use of applications and devices available from third parties.
- Fast Healthcare Interoperability Resources (FHIR) allows for developers to use agreed upon standards and design new APIs for easier data exchange.
- The researchers aimed to show current medical devices could be updated to FHIR standards and stream data via protocols using a RESTful framework.

Methods

- Welch Allyn Atlas Monitor was connected with a network bridge and streamed EKG and heart rate data from a simulation mannequin.
- Data was sent over the network to a gateway that interpreted the information and formed FHIR commands.
- Commands were queued and serviced consecutively via a resource hierarchy.
- Messaging protocols using FHIR standards were developed to route the generated data into the correct queue.
- Device data was collected in real time and compared to the data provided from the Atlas monitor itself to confirm data retrieved.

Use Case Scenario

- A medical situation was developed and used to identify the different resources needed.
- The scenario used a 67 year old male with angina, elevated heart rate, and premature ventricular contractions.
- This allowed for the simulation mannequin to demonstrate the expected data values.
- This data was streamed and compared to show the device was sending it correctly.

960 data points (6 seconds) were taken from the Atlas monitor and converted to a waveform image represented below. This was compared to the actual print off from the Atlas monitor to confirm data retrieval.

Acknowledgements

This work was supported by Montana Tech’s Summer Undergraduate Research Fellowship (SURF). We thank Welch Allyn for use of the Atlas Monitor and Pangea API, and the engineering department for use of their tools and equipment.

This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P20GM103474. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.