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Abstract 

An evaluation of current industrial hygiene practices were performed at a foundry located 

in the Northwestern United States. The foundry was evaluated for respirable and inhalable 

manganese, respirable crystalline silica and noise exposure. Personal breathing zone sampling 

was performed using proper safety and health practices on workers in the foundry and around the 

entire facility. Results showed that workers were being exposed to respirable manganese but not 

inhalable manganese. Bulk crystalline silica sampling was performed and personal breathing 

zone sampling was performed as a follow up to certain control measures which showed low 

concentrations. Area noise sampling was conducted in various parts of the facility and personal 

noise dosimetry was performed on workers in all areas of the facility. Noise exposure above the 

OSHA PEL was found in a few sites but most of the limits were above the OSHA Hearing 

Conservation criterion. Few locations were over the NIOSH and ACGIH criterions. Engineering 

control measures included a ventilation system being installed above the furnaces, for metal 

fume control, the paving of a back lot to reduce exogenous crystalline silica from the foundry. 

Hearing protection, along with the inclusion of a revised hearing conservation program, was also 

implemented for reduced worker exposure. 

 

 

Keywords: Foundry, Crystalline Silica, Noise, Manganese, Exposure Testing 
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1. Introduction 

For centuries, human kind has found ways to make the most of and expound upon its modern 

technologies. It has used innovative tools and ideas to form amazing concepts and wonders. One of 

the greatest and most beneficial human creations is that of metal casting. Starting as early as 3200 

B.C., metal was melted, molded, and formed into desired shapes and configurations (History of 

Metal Casting, n.d.). There are many benefits to configuring metals into various shapes and sizes. 

Regardless of the era, weapons of war, building materials, or even consumer goods are, were, and 

will be continuously made for the benefit of human kind. Just about all the metal that is 

commercially available today has come about as a result of foundries and smelting facilities. 

The word foundry comes from the 17th century French word, fonderie, which means “to melt 

or mold” (Oxford Learner's Dictionaries, n.d.). Foundries are facilities that take metals in their raw 

form and reform them into the various products their buyers’ desire. Throughout the United States, 

there are hundreds of foundries in operation today. Many foundries mold and produce various types 

of products and alloys. Foundries are categorized as either ferrous or non-ferrous metal foundries. 

Ferrous metals are metals and alloys that contain iron whereas nonferrous metals do not. 

Ferrous metals include mild steel, carbon steel, stainless steel, and cast iron. Non-ferrous metals 

include aluminum, brass, copper, nickel, tin, and zinc. Even though each type of foundry produces 

distinct products, the functional processes are very similar (Alton Materials, 2013). 

As shown in Figure 1, metals are typically processed following a specific order in most 

foundries. The process starts with molding material which can be either sand, metal, or plaster. These 

molds are sized and shaped into the specifications that the buyer requests for their product. Once a 

worker or machine forms the mold, that mold is then sent to the casting area where it awaits the 

metal based compound used to form the final product. 
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Figure 1. Foundry Process: From Start to Finish 

 

Figure 2 shows the smelting area of the foundry examined in this study. According to D. 

Herbert, raw ore, scrap metal, and specific metal ores needed for various products are then put into a 

large smelting pot where temperatures can reach up to 3000+ degrees Fahrenheit. Increasing the 

temperature of the metals to 3000+ degrees Fahrenheit helps turns the metal compound to a liquid 

pliable material that can be poured into the molds. (Personal communication, February 9, 2016). 
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Figure 2: Pouring Work Area 

 

Once the metal has reached a molten state, it is taken from the heating furnaces and 

transported to an area where a worker pours in an amorphous silicate compound to remove any 

impurities. Once the impurities are removed from the molten metal, the metal is brought to the 

pouring area where the compound is poured into the molds. That molten metal is then left to cool 

from 3-16 hours, depending on the material, until it can be transported safety to the shakeout area. 

At the shakeout area, the solid metal object is put in the shakeout machine where the excess 

molding material separates from the metal product. After the metal is sifted from the molding 

material, the product is sent to a welder and grinder where it is polished and finalized to ship to the 

buyer. The complete process takes time and creates many opportunities for workers to be exposed to 

worksite hazards.  
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While foundry use is key to the production of many metal and nonmetal based industrial 

products, special attention should be given to worker health and industrial hygienic practices used to 

assess those potential workplace hazards. Depending on if the foundry is a ferrous or non-ferrous 

facility and what specific metal is being poured, a plethora of worker hazards could be present. In 

1990, iron and steel accounted for 84% of all metals cast (McKinley, Jefcoat, Herz, & Frederick, 

1994). Overexposure to iron can cause problems such as siderosis and lung disease (New Jersey 

Department of Health and Senior Services, 2007). In addition to metal exposure, other hazards such 

as noise and crystalline silica exposure could present problems for foundry workers  

In any facility where multiple machines are running, workers have the possibility of being 

overexposed to noise pollution. For example, a foundry contains grinders and welders, arc welding 

machines, and sand blasting areas. Any one of these areas alone offers a potential noise exposure 

problem. Combine all of them together in a small facility and there will most likely be a high 

probability that worker noise exposure is above allowable and permissible limits.  

Dust exposure can also present serious hazards to workers, regardless of the industry. 

According to the National Institute for Occupational Safety and Health (NIOSH), “[a]t least 1.7 

million U.S. workers are exposed to respirable crystalline silica in a variety of industries and 

occupations, including construction, sandblasting, and mining” (NIOSH, 2015). Foundries are not 

immune to potential overexposure that crystalline silica can bring to a worksite.  

In this project, an industrial hygiene assessment was performed in a foundry in the 

Northwestern United States. This assessment focused on potential metal, noise and crystalline silica 

exposures. This foundry was started in the late 19th century when copper mining in the general area 

needed a smelter to take the raw ore and smelt it into a variety of components that were then shipped 

across the world. Over the past century, the smelter has been sold and rebought out by a couple 

different companies and/or men. The foundry today includes a foundry area, a machine shop, an 

expanded fabrication shop and even a construction development group that works close with mines 
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in the general geographical area. The environment in and outside the foundry is very old. Buildings 

around the production site have been around for more than a century.  

Metals, crystalline silica and noise, all provide serious potential problems for the foundry 

workers. The objective of this research was to assess current industrial hygiene hazards, evaluate 

control measures associated with an operating foundry, and provide guidance to control these 

hazards. The primary areas of focus were manganese, crystalline silica, and noise exposures.  The 

assessment included a review of current exposures and a remediation of the company’s industrial 

hygiene control measures throughout the entire facility. Sampling and evaluation results were then 

used to make recommendations for control strategies. Control strategies included a revision to the 

respiratory protection and hearing conservation programs, revisions to foundry operations and the 

addition of a local exhaust ventilation system. 

There are 6 hypothesizes have been developed for this thesis. A null hypothesis (Ho) suggests 

that statistically, there is not a significant difference between the two values. A research hypothesis 

(Ha) indicates that there is a significant difference between the first sets of hypothesizes. An alpha (α) 

of 0.05 was used to evaluate the following hypothesizes which are as follows. 

 Ho1 – Respirable manganese samples will be less than or equal to the threshold limit 

value (TLV) of 0.02mg/m3 

 Ha1  - Respirable manganese samples will be greater than or equal to the TLV of 

0.02mg/m3 

 Ho2 – Inhalable manganese samples will be less than or equal to the TLV of 0.1mg/m3 

 Ha2  - Inhalable manganese samples will be greater than or equal to the TLV of 0.1mg/m3 

 Ho3 – Personal noise dosimetry will be less than or equal to the permissible exposure 

limit (PEL) of 90dBA 
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 Ha3  - Personal noise dosimetry will be greater than or equal to the permissible exposure 

limit (PEL) of 90dBA 

 Ho4 - Personal noise dosimetry will be less than or equal to the OSHA Hearing 

Conservation limit of 85dBA 

 Ha4  - Personal noise dosimetry will be greater than or equal to the OSHA Hearing 

Conservation limit of 85dBA 

 Ho5 – Respirable crystalline silica samples will be less than or equal to the current 

calculated PEL 

 Ha5  - Respirable crystalline silica samples will be greater than or equal to the current 

calculated PEL  

 Ho6 - Respirable crystalline silica samples will be less than or equal to the purposed PEL 

of 0.05mg/m3 

 Ha6  - Respirable crystalline silica samples will be greater than or equal to the purposed 

PEL 0.05mg/m3 
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2. Background: Occupational Hazards of Concern 

2.1. Particulate Matter 

Particulate matter has the potential to enter into various parts of the respiratory tract and 

have a toxic affect. Many studies model particulate matter deposition in the human respiratory 

tract. The efficiency of particulates entering a specific region of the respiratory tract is 

determined by the aerodynamic diameter of the particles. According to the Environmental 

Protection Agency (EPA), the aerodynamic diameter of a particulate is defined as “The diameter 

of a sphere with unit density that has aerodynamic behavior identical to that of the particle” 

(Environmental Protection Agency, 2011). The aerodynamic diameter plays a role in the cut 

point of a particulate. The term 50% cut point is used to describe the performance of cyclones 

and other particulate size selective devices. The 50% cut point is the size of dust that the device 

collects with 50% efficiency. Particulates can be deposited into one of three regions in the 

respiratory tract: the inhalable, thoracic, or respirable regions.  

New workplace exposure guidelines adopted by several international agencies define 

three particulate mass fractions; inhalable, thoracic, and respirable mass fractions. The inhalable 

fraction describes particulates that are hazardous when deposited anywhere in the respiratory tree 

including the nose and mouth, and has a 50% cut point of 100μm and includes larger and smaller 

diameter particles. The thoracic fraction is defined as those particulates that are hazardous when 

deposited anywhere within the lung airways and the gas-exchange region and has a 50% cut 

point of 10μm. The respirable fraction includes particulates that reach the alveolar region of the 

lung and has a cut point of 4μm. Figure 3 provides a visual image of the information presented 

here and Figure 4 provides a view of particulate mass fractions and deposition curves for further 

information. 
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Figure 3: Inhalable, Thoracic and Respirable Respiratory Systems 
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Figure 4: Particulate Mass Fractions and Deposition Curves 

 

2.2. Manganese 

Manganese (Mn) is one of the most basic atomic elements that can be found naturally 

throughout the world. It has the atomic number of 25 and is usually found in a solid form. While 

manganese byproducts were found in prehistoric cave drawings, two chemists are given the credit for 

first isolating the metal, Ignatius Kaim and Johan Gottlieb Gahn (Royal Society of Chemistry, 2016). 

Manganese has numerous beneficial properties and is found in many industrial-based goods 

today. Small percentages of manganese can be found in aluminum drinking cans to improve 

resistance to corrosion. It can also be used as a rubber additive and can be found in steel components 

to increase their strength and workability (Royal Society of Chemistry, 2016). In 1816, scientists 

realized that adding manganese to iron produced a harder alloy without creating a more brittle metal 

(Manganese, 2015). Manganese, at the facility tested, has been used in alloys to provide more 

durable metals for their buyers. The benefits of manganese can be found in a variety of common and 
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work related objects. It is not until manganese can either be inhaled or ingested that acute and 

chronic toxicological side effects occur. 

2.2.1. Toxicology - Manganese 

Manganese is an essential nutrient for metabolic and cellular functions. Human beings ingest 

daily normal levels of manganese through vegetables, grains and fruits. Daily intake levels can range 

from 2.0-9.0mg. Adequate intake for men is about 2.3mg/day and for women, about 1.8mg/day 

(Klaassen, 2013). Manganese is needed for neurologic homeostasis but in excess concentrations, it 

can cause toxicity. If manganese enters the body in normal, stable amounts, the liver and kidneys can 

remove a reasonable excess amount from the body.  

There are a variety of areas in which workers can inhale or be exposed to manganese. Some 

of those include mines, smelters, and foundries, such as the one studied in this research. Some 

facilities that produce electrical coils, batteries, glass, manganese steel alloys and other manganese 

based products, may also cause a worker to be overexposed (Klaassen, 2013). 

In the body, especially when ingested orally, manganese and iron seem to have similar 

interactions. Both “compete for the same binding protein in serum (transferrin) and the same 

transport systems (DMT1).” Manganese seems to concentrate itself in mitochondria so organs such 

as the pancreas, liver, kidneys, and intestines appear to have the highest concentrations of manganese 

in the body. Many studies have shown that manganese can easily cross the blood-brain barrier and 

can accumulate in specific cerebral regions. Manganese is also removed in the bile and then brought 

into the intestines where it is reabsorbed. The main route for excretion from the body is through feces 

(Klaassen, 2013). 

Some possible effects of overexposure to manganese can include damage to the lungs, 

kidney, and Central Nervous System (CNS); fertility problems in men; and neurological and 

neurobehavioral issues (Center for Disease Control and Prevention, 2015). 
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The organ that seems to be most affected by manganese exposure is the brain. Manganese-

induced neurotoxicity, manganism, affects the release of dopamine to receptive neurons. Workers 

who are at risk to manganism are those who are exposed to aerosols containing high amounts of 

manganese ranging from 0.1mg/m3 to 5.0mg/m3. Manganism also occurs with manganese 

contaminated water which has a particulate count anywhere between 1.8-14.0 ppm. Manganism is 

focused in the areas of the brain where high brain activity usually occurs (Klaassen, 2013). 

As workers are exposed to manganese, acute and chronic effects begin to occur. Primary 

indicators of manganism include headaches, insomnia, memory loss, muscle cramps, and emotional 

instability. Continued, neurotoxic exposure to manganese may lead to decreased muscle movement, 

hand tremors, and speech disturbances. These manifestations are due to the impaired neurons 

associated with muscle movement (Klaassen, 2013). 

Excess amounts of manganese in the brain can induce Parkinson’s-like symptoms by 

producing cognitive, psychiatric, and movement irregularities within the body. Parkinson’s disease 

(PD) is a neurological disorder that disrupts the basic motor functions of an individual. There are four 

main symptoms associated with PD: tremors while resting, bradykinesia, rigidity, and postural 

instability (Guilarte, 2010). Over time, more profound effects tend to disturb basic motor capabilities 

such as talking or walking. Currently, there is no cure for PD. Some medications help replenish the 

brain’s lack of dopamine but no cure has currently been universally accepted (National Institute of 

Neurological Disorders and Stroke, 2016). 

 According to Guilarte (2010) while manganese can produce Parkinson’s like effects in the 

brain, manganese does not directly cause PD. Guilarte (2010) found that while manganese can 

accumulate within the brain, it does not lead to the degradation of dopaminergic neurons in the brain. 

The study stated that the problem is not necessarily associated with the decreased synthesis or 

concentration of dopamine in presynaptic terminals, but a problem of releasing the available 

dopamine to the terminals (Guilarte, 2010). 
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In a study performed on manganese induced cytotoxicity, correlations were made between 

Parkinson’s disease and manganism. Similarly, they both produce symptoms of gait imbalance, 

rigidity, tremors and bradykinesia. A big difference between the two is that manganism produces 

dystonia whereas Parkinson's does not. Manganese neurotoxicity can involve an imbalance of 

dopaminergic neurotransmissions which could result in dopamine-mediated cell death. Manganese 

does decrease antioxidants and could elevate reactive oxygen species (ROS) formation and decrease 

the total antioxidant levels in favor of cellular toxicity (Stredrick, et al., 2004). Even though 

differences exist between both PD and manganism, manganese does impede basic motor skills.  

As previously mentioned, this article by Stredrick (2004) further explains possible effects 

that manganese can have on dopamine (DA) producing cells. Some of the proposed mechanisms of 

manganese toxicity are through dopamine levels. The study researched the effect that DA levels 

would have on catecholaminergic (CATH.a) and human neuroblastoma SK-N-SH cells. In general, 

manganese was significantly more toxic to catecholaminergic cells than to the neuroblastoma cells. 

Tests were performed comparing glutathione (GHS) and N-acetyl cysteine (NAC) levels, glutathione 

levels, internucleosomal fragmentation, and apoptosis. 

It is possible that manganese can be considered to have some type of hormetic effect on the 

body. Protection from cell death was observed on cells treated with antioxidants NAC and GSH. 

ROS formation may provide a role in manganese neurotoxicity in CATH.a cells (Stredrick, et al., 

2004). 

Another organ in the body that is affected by manganese is the lungs. As manganese 

containing dust enters the lungs, an inflammatory response begins to occur. Lung irritation, cough, 

bronchitis, and pneumonitis can all develop as a result of manganese dust exposure. Men found to 

work in plants where high concentrations of manganese dust are present have been shown to be 30 

times more susceptible to respiratory disease than those who are not affected (Klaassen, 2013). 
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Overall, manganese affects the brain, lungs, and kidney in different ways. Elevated levels, 

outside those normally needed for dietary intake, can produce severe and drastic side effects that can 

chronically last for the rest of one’s life.  

2.2.2. Occupational Exposure Limits – Manganese 

While manganese exposure can present potential harm to a worker, limits have been set to 

help reduce the overall worker exposure. For the United States Occupational Safety and Health 

Administration (OSHA), the PEL is 5.0mg/m3 (Permissible Exposure Limits - Annotated Table, 

n.d.). For the NIOSH, the recommended exposure limit (REL) is 1.0 mg/m3 (Center for Disease 

Control and Prevention, 2015). For the American Conference of Governmental Industrial Hygienists 

(ACGIH), the TLV are 0.02mg/m3 for respirable size fractions and 0.1mg/m3 for inhalable size 

fractions. While OSHA’s PELs are a regulatory standard and citable by law, ACGIH’s TLVs are 

what is considered best practice for industrial hygienists to follow today. 

2.3. Crystalline Silica 

Silica (SiO2), or silicon dioxide, is derived from the element silicon with the addition of 

two oxygen atoms. Silica makes up about 26% of the earth’s crust and is found in most minerals, 

rocks, sand, and clay. Some of the most natural forms of silica that are present throughout the 

world which include quartz and talc. Silica can also be found in man-made products such as 

computer chips, glass products, and ceramics (Martin, 2007). 

Besides industrial uses for silica, it has also been found in food additives, vitamins, and 

drugs. The dietary intake for most Western populations is between 20-50mg Si/day 

(Jugdaohsingh, 2007). Silicon is naturally found in beverages but most especially in water. 

Depending on the water source and mode of delivery, silica concentrations can be between 1.0-

100mg/L. Beverages contain 55% of dietary silica intake while grain based products provide 

around 14% and vegetables can add about 8% (Martin, 2007). In one way or another, silica is 
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present in many of the products used by human beings on a daily basis. Complete elimination of 

exposure to silica would be nearly impossible and impractical.  

In nature, silica presents itself into two forms: crystalline silica and non-crystalline 

structured silica. Crystalline silica has three forms: quartz, cristobalite, and tridymite. Non-

crystalline silica is sub-classified as amorphous, diatomaceous earth, fumed silica and silica gel. 

The toxicities of crystalline and non-crystalline silica are quite different from one another 

(American Industrial Hygiene Association, 2011). 

According to OSHA, nearly two million US workers are being overexposed to crystalline 

silica daily. More than 100,000 of those two million workers are working in high risk jobs such 

as abrasive blasting, foundry work, stonecutting, rock drilling, quarry, and tunneling work.  

Due to the number of workers continually being exposed to crystalline silica, OSHA has 

provided guidelines for what employers and employees can do to help prevent or lessen their 

exposure. As per the Industrial Hygiene Hierarchy of Controls, a possible engineering control 

would include a local exhaust ventilation system, substitution of any crystalline silica substance, 

and the wetting of silica based products. For administrative controls, reduced worker shifts and 

training on crystalline silica exposure are recommended. For personal protective equipment, 

NIOSH recommends that a minimum of a N95 NIOSH approved respirator, with tight seals, be 

used. It is always recommended to have workers constantly aware of potential exposure while on 

the worksite. 

2.3.1. Toxicology – Crystalline Silica 

The most common route of exposure to crystalline silica is through inhaling particulate 

matter. As fine respirable particulates of silica enter into the lungs, can deposit into the furthest 

region of the alveoli, or the respirable region. Once the particulate is caught in the mucosa, 
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macrophages remove the foreign substances from the alveolar sacs. Because of the shape and 

size of the silica particulate, the macrophages do not fully break down the silica particulate and 

inflammation occurs. Over time, more alveolar sacs are congested with dead macrophages and 

the silica particulate produces fibrosis within the lung. Once fibrosis occurs, the lung loses its 

ability to fully retract after air is inhaled. The alveoli are obstructed from up taking or releasing 

oxygen and carbon dioxide to and from the blood stream. Once all of this occurs, the person is 

left with an incurable disease known as silicosis. 

Silicosis is described as chronic inflammation and scarring in the upper lobes of the lung. 

The inflammation has been described and scarring occurs over long periods of exposure 

throughout the worker’s time of employment (Pollard, 2016). What makes silicosis extremely 

dangerous is the fact that there are no current procedures available to remove the silica from the 

alveoli.  

Silicosis can be broken down into three different categories, as described by OSHA: 

chronic/classic silicosis, accelerated silicosis, and acute silicosis. Chronic silicosis is most 

common and usually starts presenting symptoms 15-20 years after the worker has been exposed 

to lower respirable silica levels. Accelerated silicosis can start occurring after 5-10 years due to 

high levels of silica exposure. Acute silicosis exposure can start presenting symptoms as early as 

a few months to a few years of extremely high exposure. Each stage presents more severe 

symptoms than the previous but the most common symptoms includes shortness of breath, 

fatigue, chest pain, weakness, and weight loss.  

Many studies have been performed on the potential carcinogenic characteristics that silica 

may pose for an overexposed worker’s lungs. According to the International Agency for 

Research on Cancer (IARC) in 1997, crystalline silica had become classified as a class 1 
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carcinogen. This means that there is sufficient evidence in both human and animal subjects to 

show that crystalline silica is a carcinogenic substance.  

While silica itself is a potentially hazardous substance, when combined with other known 

cancer producing substances, such as smoking, the effect of silica can be greatly augmented. In a 

cohort study done on mine workers in China, over 34,000 workers were studied to see if 

exposure to silica increased the probability of lung cancer later in life. After the 44-year study, it 

was found that 44% of the total workers, when compared to an unexposed group, had increased 

risk of lung cancer due to combined smoking and silica exposure. The research team involved 

indicated that smoking cessation could help reduce the potential for silicosis in workers 

(Steenland, et al., 2013). 

While respirable crystalline silica is the focal point for occupational exposure, it should 

also be noted that exposure to crystalline silica can produce problems in the kidneys.  In a review 

of studies done by Kallenberg, various studies involving renal disease associated with silica 

exposure were evaluated. One study performed by Boujemaa (1994) tested 116 workers who had 

been previously diagnosed with silicosis. It was found that these workers had slightly higher 

levels of renal excretion of albumin, retinol-binding proteins and beta-N-acetyl-D-

glucosaminidase without an elevated level in their serum creatinine than workers who did not 

have silicosis. In another study in this same report by Saldanha (1975), a 44 year old male with 

extreme exposure to silicon had focal glomerulonephritis with degenerative changes of the tubuli 

due to his exposure. While in most cases, focus is given to respirable crystalline silica, kidney 

disease due to crystalline silica can also provide potential adverse health effects (Kallenberg, 

1995). 
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While lung and kidney disease have adverse health effects due to silica exposure, 

ingestible silica has had less focus and attention. Although limited in the in vivo studies 

performed on the No Observed Adverse Effects Level (NOAEL), the limit for dietary silica has 

been determined to be about 50,000 ppm. This data was found to err on the safe side until further 

tests were completed and further information is obtained (Martin, 2007). 

A study was performed to test the difference of gene expression and cytokine production 

in crystalline vs. amorphous silica in human pulmonary cells. The researchers found that when 

comparing cristobalite silica to amorphous silica, crystalline silica had more gene expression 

alterations and significant gene changes than the amorphous silica particulate did (Parkins, et al., 

2012). These results are more consistent with current results as to the toxicity and 

carcinogenicity of crystalline silica compared to amorphous silica. For the purpose of this study, 

crystalline silica, and most specifically quartz, was the primary focus of evaluation.  

2.3.2. Occupational Exposure Limits – Crystalline Silica 

Currently, the OSHA PEL is a limit calculated based upon the respirable crystalline silica in a 

sample. For quartz, it is measured by taking 10mg/m3 and dividing it by 2 + the percentage of 

respirable quartz found in the sample. Equation 1 provides a figure of the quartz equation as well. For 

both cristobalite and tridymite, the PEL is half of the value calculated from the previously mentioned 

formula for quartz.  

 

Equation 1: OSHA PEL Crystalline Silica Formula 

 

Starting as soon as June 2017, employers will have to follow a new purposed standard for 

crystalline silica that OSHA has outlined. This standard will not require the previous formula 
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mentioned above based upon the sample results for silica. The new standard will set 0.05mg/m3 as 

the regulatory standard for all crystalline silica subcomponents, regardless of the industry. 

For the NIOSH RELs, all crystalline silica substituents, quartz, cristobalite and tridymite, 

have an REL set at 0.05mg/m3 for up to a 10 hour workday during a 40 hour workweek. For the 

ACGIH TLVs, respirable limits for both quartz and cristobalite are set at 0.025mg/m3 based on an 8-

hour time-weighted average. 

2.4. Noise 

Occupational noise exposure is one of the most prevalent health concerns found in the 

workplace today. According to OSHA, 30 million workers every year are exposed to hazardous 

occupational noise. No one specific industry or occupational setting is immune from the potential 

effects of noise exposure.  

To understand occupational noise exposure, one must understand the basic subcategories 

of noise. Three basic and fundamental components of noise are wavelength, frequency, and 

speed of sound. Wavelength, commonly expressed in units of feet or meters, is defined as the 

distance traveled by a sound or vibration wave during one pressure cycle. Frequency, which is 

commonly expressed in units of hertz (Hz), is the rate at which pressure oscillations are 

produced. The speed of sound is a product of both frequency and wavelength. Figure 5 provides 

a graph of the relationship that both frequency and wavelength have in a single sound wave. 

Both are closely intertwined when it comes to possible control measures one would install in an 

occupational environment as some materials react differently with different frequencies or 

wavelengths (The American Industrial Hygiene Association, 2011). 
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While frequency and wavelength have a direct correlation with each other, sound 

pressure provides a way of understanding the displacement amplitude of vibrating sounds. Sound 

pressure levels (SPL) indicate how potent a sound may be to a worker and how to evaluate its 

effects on the body. As a worker nears a source of high intensity noise pollution, the sound 

pressure level increases.  

While sound pressure levels can vary depending upon the work environment, 

understanding the basic physiology of the ear helps give a more in-depth perspective about what 

happens on a miniature level. There are three sections of the ear: the outer or external, the 

middle, and the inner sections. The outer section of the ear can modify the acoustic waves so the 

sound that reaches the eardrum is not as potent as the sound received at the origin. The middle 

section of the ear is separated from the outer section of the ear by the tympanic membrane which 

Figure 5: Sound Wave 
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transfers sound energy from the outer part to the inner part of the ear. The inner area of the ear is 

the most complex part of the ear as it contains the cochlea. The cochlea is a spiral passage way 

where a large number of hair cells, or cilia, are located. These cilia will bend and move with any 

level of sound pressure in the ear, regardless of potency. The problem lies in the dose and 

duration of exposure. If high sound pressure levels constantly bombard the cilia, the hairs will 

not be able to return to their upright, natural position and perception of sound decreases. This is 

what is considered hearing loss. 

While the ear is constantly bombarded with low sound pressure, there are certain ranges 

that the human ear can hear more than others. The average human ear can hear sound pressure 

levels anywhere from 20 – 20,000 Hz but humans are most sensitive to sounds between 500-

4000 Hz.  While a human can hear in these ranges, a tone of 50 decibels can be easily heard at 

1000 Hz but barely audible at 10,000 Hz. Figure 6 below provides a visual understanding of this 

concept (The American Industrial Hygiene Association, 2003). 



21 

 

Figure 6: Noise Threshold Graph 

 

Hearing loss in the workplace can occur either through temporary threshold shifts or 

permanent threshold shifts. When a noise induced sound pressure level provides a short term 

hearing loss, one in which a person hears a high pressure level but then recovers over time, it is 

called an acute or temporary threshold shift. When a temporary threshold shift is continually 

repeated in a workplace over a period of time, permanent hearing loss can ensue and a chronic or 

permanent threshold shift can occur. Permanent threshold shifts occur most commonly in the 

workplace and are the focus of most noise exposure testing.  

In the workplace, noise measurements may be measured as overall sound pressure levels 

or sound pressure levels associated within frequency weightings.  Frequency weightings are 

commonly expressed by the center of the octave band.  The octave band center frequencies at 
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which occupational noise is most often measured include 63, 125, 250, 500, 1000, 2000, and 

4000 Hz (The American Industrial Hygiene Association, 2003). 

Safety and health professionals may select from a variety of noise sampling instruments. 

Dosimeters, for example, are personal sound pressure level meters that record the percent dose 

and time-weighted average for that specific worker. The dosimeter microphone is placed in the 

hearing zone of the worker for the total work shift to record integrated exposures. This exposure 

is then calculated usually by the dosimeter itself towards one of many pre-established threshold 

and criterion limits. These limits have been tested by one of the safety and health governing 

bodies shown in the next section. 

Another tool used to evaluate overall sound pressure levels are the sound level meters. 

Sound level meters can be used if one is trying to find the specific source of noise in a workplace 

or used to measure real time sound pressure levels.  Sound level meters fitted with octave band 

filters can also be used to evaluate the sound pressure levels associated with specific frequencies. 

Most modern sound level meters have octave band analyzers built into the device. 

2.4.1. Occupational Exposure Limits – Noise 

There are several published occupational exposure limits for noise given by either 

governmental agencies or industry organizations. These occupational exposure limits for noise 

are distinguished by criteria such as exchange rate, criterion, and threshold. The exchange rate is 

the rate at which sound pressure level is increased when the permissible noise exposure is 

decreased by 50%. The criterion is a continuous, 8-hour work shift exposure that constitutes 

100% of the allowable noise exposure. The threshold is the lowest sound pressure level at which 

sound is measured based on the criterion. 
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There are different regulatory or recommended noise exposure standards in the industry 

today. OSHA has a regulatory standard which has a criterion and threshold of 90dBA and an 

exchange rate of 5dBA. To prevent worksites from ever reaching this level, OSHA also has the 

Hearing Conservation limits which sets the same criterion and exchange rate but lowers the 

threshold to 80dBA. NIOSH, along with the (ACGIH), have non-regulatory, recommended 

limits. They set their criterion at 85dBA, have a threshold of 80dBA and an exchange rate of 

3dBA. 

Table I below shows the noise level exchange rates, thresholds and criterions of all four 

governmental agencies or industry organizations who have occupational noise limits. These 

limits were used in comparison to the current study of noise exposure at a foundry. 

Table I: Noise Levels 

 

Exchange 

Rate 
Threshold Criterion 

OSHA 5 dBA 90 dBA 90 dBA 

OSHA Hearing 

Conservation 
5 dBA 80 dBA 90 dBA 

NIOSH 3 dBA 80 dBA 85 dBA 

ACGIH 3 dBA 80 dBA 85 dBA 

 

 

 

 

 

 

 



24 

3. Literature Review 

3.1. Manganese (Mn) in Foundries 

Many possible health concerns exist when manganese is used in any foundry or scrap 

metal facility. In a study performed in Funen, Denmark, from February 1996 to May 1997, 24 

furnacemen and 21 scrap recycling workers were tested for their blood manganese levels and 

manganese in the ambient air. The scope of the study was to verify current control measures and 

to see if the workers were over the previous Dutch occupational exposure limit of 1.0mg/m3. The 

study revealed higher blood and air manganese concentrations in two foundries with insufficient 

ventilation compared with a foundry and scrap metal facility with adequate ventilation. Two of 

the workers working in the overexposed facilities had demonstrated neurological issues 

associated with manganese exposure (Lander, Kristiansen, & Lauritsen, 1999). 

In a study performed in Solna, Sweden, (Iregren, 1990) psychological tests were 

performed on 30 foundry workers exposed to low levels of manganese.  On average, workers 

were exposed to manganese between 0.02-1.4mg/m3 of air and had not had a significant change 

in their exposure for the previous 18 years. 

Psychological tests, such as hand dexterity, verbal ability, and tapping speed revealed that 

exposure limits at the time, 2.5mg/m3 for Sweden and 5.0mg/m3in most other countries, were not 

suffcient to protect workers from the acute psychological effects of manganese exposure. 

Workers seemed to have a difficult time reactinng to the finger tapping and digit span tests. 

Iregren hyopthesized that these may be early signs for potential manganese exposure in a 

foundry setting that should be further studied (Iregren, 1990). 

While respirable manganese is the main focus of this project, once manganese enters the 

body it has a difficult time leaving the body. In a biological monitoring study performed in the 
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Gansu province of China, manganese uric acid levels in human urine were analyzed (Sun, et al., 

2011). A total of 94 volunteers working in a welding and foundry environment, including a 

control group, were tested to determine if a long term, low level occupational manganese 

exposure influnced urinary uric acid levels. 

When compared to the control group, the foundry and welding workers exposed to low 

levels of manganese were found to have significantly lower levels of uric acid than those of the 

control group. It was deemed that low levels of long term manganese exposure did indeed induce 

low levels of uric acid in the body. The study found that uric acid levels in exposed men seem to 

be much lower than those of exposed women. Not only can manganese exposure to foundry 

workers entice low levels of uric acid in the body, they can potentially increase the effect of 

neurodegernerative disease (Sun, et al., 2011). 

The rate at which manganese can exit the body is based on a vareity of factors. A study 

performed in Poland evaluated workers who were known to have manganese exposure and 

removed them from their regular work enviornment. After a year or two, a follow up study was 

performed to evaluate the worker’s blood manganese levels and compare them to the previous 

test results. The study concluded that workers who were exposed to manganese and then 

removed from the contaminent were found to have lower blood manganese levels (Jonderko, 

Kujawska, & Langauer-Lewowicka, 1971). 

3.2. Crystalline Silica in Foundries 

Crystalline silica exposure is very common and is seen as an occupational hazard in a 

wide variety of foundry processeses. In an exposure assessment done in Pakdasht, Iran 

(Omidianidost, Ghasemkhani, Azari, & Golbabaei, 2015), 417 foundry workers in over 82 

workshops were evaluated for silica exposure using total and respirable dust sampling 



26 

techniques. Exposure monitoring was conducted when four different metals, e.g. cast iron, brass, 

aluminum, and an alloy using all three metals, were being processed.   

Results showed that the aluminum processing workshops and the workshops that 

processed a combination of cast iron, brass, and aluminum had the highest mean respirable 

crystalline silica concentrations at 0.10 and 0.19mg/m3 respectively. The aluminum casting total 

dust concentration seemed to be significantly higher than the rest of the metals tested at a mean 

of 2.30mg/m3.  

Part of their control measure was to install a fan to drive some of the lighter particulate 

out of the breathing zone of the worker and reduce the amount of total dust throughout the 

workplace. Once fans were installed and retesting was completed, samples were organized into 

two categories, suitable, or that with a fan system, and unsuitable, or that without any fan system. 

Previously, the average crystalline silica concentration was 0.07mg/m3 but was reduced to 

0.01mg/m3 with a fan. The average total dust concentration was also reduced from 2.04mg/m3 to 

1.39mg/m3. This fan option was deemed to be an effective control measure to reduce overall 

worker exposure throughout all foundries tested (Omidianidost, Ghasemkhani, Azari, & 

Golbabaei, 2015). 

In a study performed in Iran in 2013, (Mehrizi Morteza, et al., 2013) a local exhaust 

ventilation system was used as a control measure to help reduce the exposure of crystalline silica 

and formaldehyde from the workplace environment. The local exhaust system was designed 

using ACGIH specifications. Crystalline silica and formaldehyde sampling was performed when 

the ventilation system was running and when the ventilation system was turned off. A total of 40 

crystalline silica and 39 formaldehyde samples were collected.  
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While the ventilation system was not running, the mean exposure for crystalline silica 

was 0.218mg/m3. After the local exhaust ventilation system was installed and functioning 

properly, the mean exposure was 0.043mg/m3 for crystalline silica. The local exhaust ventilation 

system helped reduce the overall worker exposure significantly below the NIOSH REL for 

crystalline silica thus showing that local exhaust ventilation systems can provide a valuable and 

reliable way to remove most contaminants outside the breathing zone of a worker (Mehrizi 

Morteza, et al., 2013). 

While ventilation systems may provide potential control measures throughout foundries, 

silica exposure can also be found after the molten metal is casted, when the grinders grind the 

steel down and potentially expose themselves to crystalline silica. In a study done by the 

American Industrial Hygiene Association (AIHA) in 1992, (O'Brien, et al., 1992), hand grinders 

who ground steel castings were tested for crystalline silica exposure. The study’s main focus was 

on the grinders and how to prevent further cases of silicosis from occurring in the workplace. 

Researchers employed a three step model to analyze and remove the possible contaminates from 

the work zone. First, personal breathing zone (PBZ) sampling was performed to assess the 

workers exposure. Second, real time measurements were taken with a hand held aerosol 

monitoring device that detected all respirable dust, not just crystalline silica. Third and last, a 

downdraft ventilation bench was installed to evaluate the efficiency of pulling the contaminant 

away from the worker’s breathing zone.  

Four of the total 15 samples were over the NIOSH REL limit of 0.05mg/m3. No worker 

was exposed above the OSHA PEL and the majority of the samples came back under the 

detectable limit. Grinder operators have the potential to be overexposed to crystalline silica 

(O'Brien, et al., 1992). 
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3.3. Noise in Foundries 

As in most industries, occupational noise exposure provides a very real and serious 

hazard, not only workers but even the ambient environment around them. In a study performed 

in Nagpur, India, (Pandya & Dharmadhikari, 2002), occupational noise exposure was evaluated 

in and around an integrated iron and steel works facility. Worker exposure, as well as ambient 

environmental noise exposure, was tested and evaluated. The facility being evaluated was 

located in the heart of Nagpur, with ambient noise coming from constant traffic and the 

neighborhoods around it. Workers were evaluated based on the OSHA criterion of 90dBA for an 

8-hour time-weighted average.  

The areas that were found to exceed the OSHA criterion of 90dBA were the plate mill 

rollers and the sheet mills area, located in the handling and transportation section of the facility, 

and all but one area in the power house area of the facility. When workers were assessed for 

speech interference, they found that every frequency tested, 63-8000Hz, were over the 90dBA 

criterion. For speech, the 500, 1000, and 2000Hz ranges were observed most specifically and 

were found to have a sound pressure level of 93, 97, 93dBA respectively. This methodology 

provides a resource to understand the hearing loss potential that noise can produce on workers 

operating with metal based products, especially in a large city environment (Pandya & 

Dharmadhikari, 2002). 

While noise induced hearing loss can occur on the worksite, what is not often studied is 

the potential effects noise can have on other occupational injuries and fatalities. In a study 

performed in a total of 1790 factories in the northern Gyeonggi Province of South Korea, a noise 

dose response relationship was analyzed between noise exposure and the risk of occupational 

injury. Workplaces were evaluated based upon noise and dust concentrations. The dust 

concentrations were classified as either <1.0 or ≥1.0mg/m3, whereas the noise concentrations 
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were categorized as either <80, 80-89, or >90dBA. The data was gathered from the South 

Korean Worker’s Compensation and Welfare Services.  

When compared to facilities that did not have high incident rates, results revealed that 

high occupational noise exposure had significant correlation with high incident rates in 

workplaces. There was no consistent correlation between noise and dust exposure on the 

worksite (Yoon, Hong, Roh, Kim, & Won, 2015). 

In correlation with the previous study, another noise related study was performed in 

Quebec, Canada, (Deshaies, et al., 2015), specifically looking at work related fatality reports and 

their association with occupational noise exposure. This study analyzed fatal occupational work 

related accidents between the years of 1990 and 2005 for all that had some type of connection 

with noise exposure and death. The study revealed that noise is not necessarily a direct factor in 

work related accidents but a contributing factor that leads workers to perform or act in a way that 

they would not otherwise do.  

In the total 788 work related accident reports involving noise, noise was explicitly 

mentioned in 67, or 8.5%, of the total reports. Out of those 67 cases, 17 cases concluded that 

noise was one of the main causes of fatality. During 2000-2005, 161 fatal accidents occurred in 

noisy work environments. This information provides an interesting understanding that elevated 

noise levels can potentially cause a significant amount of other related occupational injuries and 

deaths for those who are exposed. Factors such as improper communication due to loud noises, 

and lack of perception due to elevated noise can contribute to a large number of deaths and 

injuries (Deshaies, et al., 2015). 

Not only does elevated occpuational noise exposure potentially cause injuries and 

fatalities on the worksite, it can also potentially increase the likelihood for hematomatic related 
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injuries. Various studies have been performed on noise induced elevated blood pressure, 

hypertention, and a wide variety of cardiovascular diseases. In a study performed by de Souza, 

Périssé, & Moura, (2015) on 1,729 petrochemical workers in Rio de Janeiro, Brazil, a cross 

section study was done to see if there were correlations between noise exposure and 

hypertention. Their study confirmed that noise exposure is independently associated with 

hyertension. (Skogstad, et al., 2016) verified this information by reviewing and confirming that 

occupational noise is strongly associated with hypertention but suggested weak correlation 

between occupational noise exposure and other cardiovascular effects.  
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4. Methodology 

As noted previously, the objective of this study was to evaluate metal, crystalline silica 

and noise exposures at a foundry in the Northwest and to provide recommendations regarding 

exposure control strategies.  This project was prompted by manganese and crystalline silica 

sampling conducted at this facility the previous year which revealed increased employee Mn and 

crystalline silica exposures in the foundry compared with previous sampling campaigns.  

Inhalable and respirable size fractioned metal sampling was performed with a primary emphasis 

on Mn exposure.  In addition, respirable crystalline silica air sampling and bulk crystalline silica 

sampling was performed. Personal and area noise monitoring was also performed throughout the 

foundry and the supporting facility structures, such as the weld shop and machine shop. Written 

Hearing Conservation and Respiratory Protection Program reviews were also performed with 

suggested revisions. 

For the use of human subjects in this experiment, permission from the University of 

Montana Institutional Review Board (IRB), was obtained. Online training on proper ethical 

treatment of test subjects was completed. Permission was granted from the Board, along with 

approval from the company at which the testing was completed. 

4.1. Respirable and Inhalable Metals Sampling 

Personal breathing zone metal sampling was conducted in the pouring, shake-out and 

grinding area of the foundry.  Since the primary emphasis of the metal sampling was Mn 

exposure, respirable and inhalable particulate matter size fractionating techniques were 

employed for best practice industrial hygiene exposure assessment techniques.  As noted on page 

13, the ACGIH TLV for Mn, which is based on respirable and inhalable size fractions, is 

considerably lower than the OSHA PEL.   
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Respirable metals sampling was performed using SKC aluminum cyclones fitted with 37 

mm 0.8 micron mixed cellulose ester membrane (MCE) filters.  Inhalable metals sampling was 

performed with Institute of Occupational Medicine (IOM) samplers fitted with 25 mm, 0.8 

micron MCE filters. SKC Aircheck 224 sampling pumps were calibrated before and after each 

sampling period with a Bios® Defender 520 dry cal primary flow meter. The respirable samples 

were calibrated before and after sampling at 2.5 liters per minute and the inhalable samples were 

pre and post calibrated at 2.0 liters per minute. All calibrations were performed in the Montana 

Tech industrial hygiene laboratory, Science and Engineering Building, Room 206.  

Throughout each period, employees wore a sampling pump with the size selective filter 

media placed in their breathing zone. At the conclusion of each sampling period, the MCE filter 

was removed from the sampling assembly and capped. Once all the samples were collected, they 

were submitted to ALS Laboratories in Salt Lake City, Utah, an American Industrial Hygiene 

Association accredited laboratory, for analysis. These samples were analyzed for metals per 

NIOSH analytical method 7300, elements by Inductively Coupled Plasma (ICP).  

A total of 18 PBZ samples were collected along with four area samples over the three day 

period. Ten of the eighteen samples were respirable samples and the other eight were inhalable 

samples. Out of the four area samples that were taken, two of the samples were sent to the 

laboratory for sample analysis.  The remaining two samples were reserved for later analysis 

using a portable Nikon x-ray fluorescence (XRF) machine.  The purpose of these additional 

samples was to determine if a correlation exists between sample results obtained from integrated 

analyses and direct reading XRF analyses. In addition, 10% field blanks were submitted for 

analysis as per NIOSH method 7300 recommendations. 
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During the May 7, 2015 sampling trial, filter media for the pourer was switched out 

during general foundry tasks vs. pouring tasks. The purpose of this approach was to assess the 

pourer’s metal exposure during general foundry work as well as his exposure only during 

pouring tasks. Currently, employees only wear respiratory protection while they are pouring. 

Job tasks, sample duration, and percent Mn in the molten metal poured were recorded 

during each sampling period. The majority of the sampling was conducted indoors with 

temperate conditions comparable to that of the calibration conditions. 

An internal audit was performed to evaluate current respiratory protection practices with 

a newly developed respiratory protection program. The audit itself was performed by surveying 

five workers who use respiratory protection in various parts of the facility. One worker worked 

in the painting and sand blasting area. Another worker worked in the grinding and welding area 

of the foundry. Two workers worked in the pouring area of the foundry and the last worker 

worked in the sand moving area, between the pouring station and the shake-out station. All 

workers were asked a series of questions about current workplace standards. These questions 

were derived directly from the company’s respiratory protection program and the federal OSHA 

respiratory protection standard, 29 CFR 1910.134, and are provided in Appendix G. 

4.2. Crystalline Silica 

Crystalline silica personal breathing zone sampling was performed using SKC aluminum 

cyclones fitted with 37 mm 0.8 micron MCE filters. SKC Aircheck 224 sampling pumps were 

calibrated before and after each sampling period with a Bios® Defender 520 dry cal primary 

flow meter. The respirable samples were calibrated before and after sampling at 2.5 liters per 

minute. All calibrations were performed in the Montana Tech industrial hygiene laboratory, 

Science and Engineering Building, Room 206.  
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While performing PBZ sampling, employees wore a sampling pump with the size 

selective filter media placed in the breathing zone. At the conclusion of each sampling period, 

the MCE filter was removed from the sampling assembly and capped. Once all the samples were 

collected, they were submitted to ALS Laboratories in Salt Lake City, Utah for analysis per 

NIOSH Manual of Analytical Method 7500 and 600.  

Job tasks and sample duration were recorded during the sampling period. The sampling 

was conducted mostly indoors with a few workers exiting the facility throughout the day. The 

temperate conditions were comparable to that of the calibration conditions. 

4.3. Noise 

One of the most noticeable industrial hygiene hazards present from the beginning of this 

research was the elevated levels of noise all throughout the foundry and other areas on company 

property. Both noise mapping of the foundry, when machines were working and when they were 

not, and personal noise dosimetry sampling were performed. This sampling strategy was 

intended to assess sound pressure levels in the foundry, machine shop, welding shop, sand 

blasting/paint shop, and the back fabrication/welding shop. 

On April 23, 2015, two workers in the foundry shop were tested. On May 5, 2015, seven 

workers were tested in the foundry area, machine shop, and welding shop. On May 7, 2015, 12 

workers were tested in the welding shop, machine shop, and back fabrication shop area. The 

personal dosimetry devices used in this study were Quest Edge dosimeters. The dosimeters were 

calibrated before and after sampling to 114dBA using a Quest QC-10 calibrator. On October 30, 

2015, noise mapping was performed in the foundry, machine, and fabrication shops. A 3M Quest 

Sound Pro sound level meter, calibrated before and after sampling to 114dBA using a Quest 

Electronic QC-10 calibrator, were used to perform the sampling.  
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Job tasks and sample duration were taken during each noise dosimetry sampling period. 

All sampling was conducted indoors with temperate conditions comparable to that of the 

calibration conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

5. Results and Discussion 

 Metal sampling was performed prior to the start of this assessment. That initial report 

found slightly elevated levels of manganese and required further testing. The following results 

are given in chronological order as they were recommended or performed throughout the course 

of sampling. 

5.1. Initial Personal Breathing Zone Sampling 

Of the five PBZ respirable dust samples collected, two samples contained crystalline 

silica in a mass above the laboratory limit of detection: samples 44 and 76.  The remaining 

samples reported crystalline silica, in all its forms, below the laboratory limit of detection. The 

concentration of quartz in sample 44 was 0.035mg/m3 or 1.8% and the concentration of quartz in 

sample 76 was 0.83% (<1%). Considering the percent quartz for these samples, and the current 

OSH respirable crystalline silica PEL calculation, the PEL for sample 44 for an 8-hour shift is 

2.6mg/m3. 

Under the current OSHA standard, samples containing < 1% crystalline silica should be 

compared to the OSHA PNOR PEL of 5.0mg/m3 or the 12-hour shift modified PEL of 3.3mg/m3. 

Sample 76 exceeded this value.  In addition, samples 44 and 76 exceeded the ACGIH TLV for 

crystalline silica of 0.025mg/m3.  Therefore, samples 44 and 76 would exceed the proposed 

OSHA crystalline silica standard. Table II shows the results from this sampling period. Over 

exceeded levels are in shown in bold. 
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Table II: Initial Crystalline Silica Results 

Sample 

Date 

Sample 

Number 

Task  

Performed 

Sample 

Duration 

(minutes) 

Respirable 

Dust 

Concentration 

(mg/m3)A 

Crystalline 

Silcia: 

Quartz 

Cristobalite 

Tridymite 

(mg/m3)A 

12/9/14 
 

76 

Foundry – 
getting 
product ready 
for grinder/air 
arcing 431  8.3 

0.83B 
<1.0 
<1.0 

12/9/14 
68 

Foundry- 
grinding 470 1.3 

<0.0085 
<0.017 
<0.017 

12/9/14 
44 

Foundry – 
making sand- 
shake out 465 2.0 

0.035, 1.8B 
<0.017 
<0.017 

12/9/14 

42 

Machine 
shop – 
cleaning and 
changing 
baghouse 257 0.33 

<0.015 
<0.031 
<0.031 

12/9/14 
60 

Foundry - 
molder 278 0.96  

<0.014 
<0.029 
<0.029 

A Less than (<) indicates sample mass below Laboratory Limit of Detection (LOD); respirable dust:  

0.02mg/sample, quartz: 0.01mg/sample, cristobalite: 0.02mg/sample, and tridymite: 0.02mg/sample. 

These samples are indicated with shading. 
BResults are presented as % of the total gravimetric sample. 

 

5.2. Manganese Personal Breathing Zone Sampling 

Appendix A: Manganese Sampling Results by Worker, provides the sampling results, per 

each worker, for manganese sampling in detail. The sample date, number, percent manganese 

associated with each pour, number of pours, task performed, sample duration, metals sampled, 

sample results along with OSHA PEL and ACGIH TLV limits are provided in these tables.  

In all of these results, both the sample weighted concentration and time-weighted 

concentrations were given. The sample weighted concentration reflects the concentration 

measured for the sampling period. Because some of the samples taken were collected for less 

than 480 minutes, or 8-hour time-weighted averages, the data are extrapolated to an 8-hour 
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exposure period so that the data could be compared to the time-weighted average exposure 

standards. 

On April 23rd, a total of four pours, equaling 4800lbs with 12-13% manganese in each 

pour, was melted. On that same day, there were three melts performed with 3600lbs with less 

than 1% manganese. On May 5th, a total of three pours, equaling 3200lbs with 12-13% 

manganese in each pour, were melted. On that same day, there were six melts performed with 

9900lbs with less than 1% manganese. On May 7th, a total of three pours, equaling 3600lbs with 

12-13% manganese in each pour, was melted. On that same day, there were three melts 

performed with 5100lbs with less than 1% manganese.  

Out of 10 respirable manganese samples tested throughout the project, eight samples 

exceeded the ACGIH TLV for respirable manganese. The two samples that were below the limit 

were also very close to exceeding the 20 μg/m3 limit. These samples are shaded green in 

Appendix A. 

Out of the thirteen inhalable samples that were collected, nine samples were PBZ 

samples; four area samples were collected at a stationary location next to the pouring area. Two 

inhalable samples exceeded the ACGIH inhalable Mn TLV. On April 23, 2015, one worker who 

was grinding and welding revealed manganese concentrations over the inhalable TLV. In 

addition, a pourer was found to have an inhalable concentration over the TLV on May 7, 2015. 

On this date, samples were collected to distinguish pouring task concentrations from non-pouring 

task concentration. It is important to note that pouring tasks, with a total time of just 33 minutes a 

day, resulted in the highest manganese concentration. The respirable manganese concentrations 

during general non-pouring foundry work still exceeded the respirable TLV. 
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As stated previously, the first two hypothesizes stated that respirable and inhalable 

manganese concentrations would be less than or equal to the TLV of 0.02 mg/m3. When 

comparing the statistical data, it was found that the respirable data was not normally distributed, 

and was not logarithmically normal, thus a t-test could not be used. A 1-sample sign non-

parametric test was performed and the p-value for respirable manganese was 0.0547. Even 

though multiple samples came back above the TLV, the p-value was not significantly greater 

than the TLV, thus one would then fail to reject the null hypothesis for respirable manganese. 

The inhalable data was also found to not be normally distributed but was distributed 

logarithmically. Even though a t-test could be used to evaluate this data, it was decided that a 1-

sample sign non-parametric test would be used to keep consistency with the respirable test. The 

p-value for inhalable manganese was found to be 0.9998, thus not significantly greater than the 

TLV. One would then fail to reject the null hypothesis for inhalable manganese.  

5.3. Personal Noise Dosimetry Sampling 

The results of the noise dosimetry sampling are presented in Table III, Noise Dosimetry 

Testing in Machine and Welding Shop Table IV and Table V. The tables show the OSHA PEL 

and Hearing Conservation Program levels, including their respective dose percentages. ACGIH 

limits were tested for only a few workers, as only a few of the dosimeters used had the electronic 

capability of categorizing ACGIH readings. Readings that are highlighted in green are those that 

are overexposed to their respected criterions. Red highlighted cells are those that are over the 

100% dose for that shift. 

In the Foundry, out of the seven samples that were taken, three workers exceeded the 

OSHA criterion. Five of the seven workers were found to be above the OSHA Hearing 



40 

Conservation Program criterion of 90dBA and the one person who was sampled for ACGIH in 

the Foundry was above the criterion as well.  

Table III: Noise Dosimetry Testing in Foundry 

Sample 

Date

Dosimeter 

Number
Employee Task Performed

Sample 

Duration 

(minutes)

OSHA PEL % 

Dose and TWA 

equivalent 

sound pressure 

level (dBA)

PEL 

Criterion

OSHA Hearing 

Conservation % 

Dose and TWA 

equivalent 

sound pressure 

level (dBA)

Hearing 

Conservation 

Criterion

ACGIH TLV % 

Dose and TWA 

equivalent 

sound pressure 

level (dBA)

TLV 

Criterion

29.74% 100.00% 26.86% 100.00% N/A 100.00%

81.6 90.0 80.9 85.0 N/A 85.0

11.22% 100.00% 42.54% 100.00% N/A 100.00%

74.6 90.0 84.2 85.0 N/A 85.0

126.70% 100.00% 146.80% 100.00% N/A 100.00%

92.1 90.0 93.1 85.0 N/A 85.0

112.50% 100.00% 118.40% 100.00% 362.40% 100.00%

92.1 90.0 92.5 85.0 96.4 85.0

152.80% 100.00% 172.80% 100.00% N/A 100.00%

93.4 90.0 94.3 85.0 N/A 85.0

74.54% 100.00% 88.87% 100.00% N/A 100.00%

88.5 90.0 89.8 85.0 N/A 85.0

33.89% 100.00% 48.34% 100.00% N/A 100.00%

83.5 90.0 86.1 85.0 N/A 85.0

4/23/2015 2

Employee 

# 1
Bit of everything

458

4/23/2015 3

Employee 

# 2

Furnace and 

Welding 454

5/5/2015 5

Employee 

# 3
Pouring

458

5/5/2015 3

Employee 

# 4
Welding 

402

5/5/2015 10

Employee 

# 5

Shake Out & 

Assistant Pourer 757

5/5/2015 11

Employee 

# 6

Molding area & 

Shake Out 442

5/5/2015 13

Employee 

# 7

By the welding & 

grinding area 402

Foundry

 

Table IV shows results for the Machine Shop and the Welding Shop. In the Machine 

Shop, there were three samples taken and none of the samples exceeded the OSHA PEL or 

Hearing Conservation limit. None of the samples had the ACGIH electronic function. 

In the Welding Shop, six samples were taken of four workers over two different days. 

Out of all six samples, none exceeded the OSHA criterion, although two samples came back with 

elevated levels close to the criterion. While no sample in the Welding Shop exceeded the OSHA 

criterion of 90dBA, all six samples were above the OSHA Hearing Conservation Program 

threshold and one exceeded the criterion. No ACGIH samples were taken in this sample group.  
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Table IV: Noise Dosimetry Testing in Machine and Welding Shop 

Sample 

Date

Dosimeter 

Number
Employee Task Performed

Sample 

Duration 

(minutes)

OSHA PEL % 

Dose and TWA 

equivalent 

sound pressure 

level (dBA)

PEL 

Criterion

OSHA Hearing 

Conservation % 

Dose and TWA 

equivalent 

sound pressure 

level (dBA)

Hearing 

Conservation 

Criterion

ACGIH TLV % 

Dose and TWA 

equivalent 

sound pressure 

level (dBA)

TLV 

Criterion

12.36% 100.00% 42.70% 100.00% N/A 100.00%

75.6 90.0 84.6 85.0 N/A 85.0

13.36% 100.00% 6.49% 100.00% N/A 100.00%

78.4 90.0 80.2 85.0 N/A 85.0

1.23% 100.00% 10.84% 100.00% N/A 100.00%

61.7 90.0 77.4 85.0 N/A 85.0

37.58% 100.00% 61.40% 100.00% N/A 100.00%

83.7 90.0 87.3 85.0 N/A 85.0

18.95% 100.00% 37.31% 100.00% N/A 100.00%

81.3 90.0 86.2 85.0 N/A 85.0

48.79% 100.00% 61.78% 100.00% N/A 100.00%

85.2 90.0 86.9 85.0 N/A 85.0

23.17% 100.00% 34.95% 100.00% N/A 100.00%

82.6 90.0 85.6 85.0 N/A 85.0

88.62% 100.00% 103.90% 100.00% N/A 100.00%

89.5 90.0 90.7 85.0 N/A 85.0

50.42% 100.00% 59.88% 100.00% N/A 100.00%

88.2 90.0 89.4 85.0 N/A 85.0

6

Employee 

# 2

Ergonomic 

Welding Area
304

5/5/2015 6

Employee 

# 1
Rod Turning

437

5/5/2015 9

Employee 

# 5

Grinding & 

Welding on large 

cylinder 455

5/5/2015 12

Employee 

# 3

Plasma Cutting 

Area

Rod Turning
299

5/7/2015 5

Employee 

# 2

Cleaning & 

Maintainence 308

458

5/7/2015 4

Employee 

# 4

Plasma Cutting 

Area
310

5/5/2015 4

Employee 

# 1

Ergonomic 

Welding Area
430

5/7/2015

Machine Shop

Welding Shop

5/7/2015 11

Employee 

# 6

Grinding & 

Welding on large 

cylinder 312

5/7/2015 9

Employee 

# 3

 

 

Table V provides the results for the Sand Blasting and Paint Shop area and the Back 

Fabrication/Welding Shop. In the Sand Blasting and Paint Shop area, one of the only workers 

who consistently works in that area was tested. He was below both the OSHA and the OSHA 

Hearing Conservation Program limit criterions. He was, although, slightly over the ACGIH 

criterion of 85dBA.  

In the Back Fabrication/Welding Shop, four different employees were tested over during 

one day. No worker was over exposed per OSHA PEL and Hearing Conservation Program 

criterion. The same holds true for the ACGIH limit. No hearing protection is required for 

workers in this area. 



42 

Table V: Noise Dosimetry Testing in the Sand Blasting and Back Fab Shop Areas 

Sample 

Date

Dosimeter 

Number
Employee Task Performed

Sample 

Duration 

(minutes)

OSHA PEL % 

Dose and TWA 

equivalent 

sound pressure 

level (dBA)

PEL 

Criterion

OSHA Hearing 

Conservation % 

Dose and TWA 

equivalent 

sound pressure 

level (dBA)

Hearing 

Conservation 

Criterion

ACGIH TLV % 

Dose and TWA 

equivalent 

sound pressure 

level (dBA)

TLV 

Criterion

8.48% 100.00% 13.37% 100.00% 78.83% 100.00%

74.5 90.0 77.8 85.0 85.3 85.0

4.33% 100.00% 9.09% 100.00% 14.93% 100.00%

70.0 90.0 75.4 85.0 83.4 85.0

7.62% 100.00% 12.29% 100.00% N/A 100.00%

74.0 90.0 77.5 85.0 N/A 85.0

3.88% 100.00% 9.73% 100.00% N/A 100.00%

69.3 90.0 75.9 85.0 N/A 85.0

9.87% 100.00% 20.70% 100.00% N/A 100.00%

75.3 90.0 81.4 85.0 N/A 85.0

5/7/2015 2

Employee 

# 1

Sand Blasting 

Area/Paint Shop 350

5/7/2015 13

Employee 

# 4
Welding

328

5/7/2015 10

Employee 

# 2

Tack Welding & 

Grinding 336

Sand Blasting Area/ Paint Shop

Back Fab Shop/Welding

5/7/2015 12

Employee 

# 3

Bending and 

Rolling 329

5/7/2015 8

Employee 

# 1
Welding

331

 

As stated previously, the third and fourth hypothesizes stated that the personal noise 

dosimetry would be less than or equal to the PEL of 90dBA and the OSHA Hearing 

Conservation limit of 85dBA, respectively. When comparing the statistical data, it was found 

that both sets of data were normally distributed so a 1-sample t-test was used. Hypothesis 3, 

which tested the PEL, had a p-value of 1.00 while hypothesis 4 had a p-value of 0.613. It was 

then deemed that both p-values were not at or below the α limit of 0.05 so one would fail to 

reject the null hypothesis for both hypothesizes.  

5.4. Noise Mapping 

The results of the noise mapping are shown in Figure 7-Figure 9 below. Figure 7 and 

Figure 8 represent the foundry when the machines are not running and when they are. The 

comparison was given to show the difference of noise levels when certain equipment was 

running and when it was not. Figure 9 shows the machine and fabrication shop results during a 

normal functioning time period. 

The following noise mapping figures are color coded for easy interpretation. Areas 

colored green are areas that are below 79.9dBA and need no immediate attention. Areas colored 

yellow are areas that are between 80-84.9dBA. Per the ACGIH best practice criteria, this area is 
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recommended to have hearing protection. Per the OSHA limits, this area does not require any 

immediate action. It should be noted that hearing loss has been found in people who are exposed 

to 80dBA over an 8-hour time-weighted average. Areas that are colored red are areas that are at 

or above 85dBA and require immediate attention. Until engineering controls are established to 

lower the noise exposure below 85dBA, a Hearing Conservation Program should be 

implemented and monitored closely.  

Figure 7 depicts when machines, such as grinders, welders, and molding area machinery, 

were not being operated. When the machines were not operating, the entire facility was under the 

90dBA regulatory OSHA PEL. There were 14 total areas that were above 80dBA that need 

caution and two of those areas that were above the hearing conservation and ACGIH limit of 

85dBA. These areas had elevated levels due to a forklift that was moving the sand based product 

around the facility while testing was being performed. While the machines were not running, no 

sound pressure level measurements exceeded the OSHA PEL of 90dBA. 

 

 

 
Figure 7: Foundry Map without Machines Running 
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In Figure 8, which depicts when machines were operating, many areas were found to be 

over the 85dBA best practice limit. Out of the whole facility, 26 areas were over 85dBA. 

Thirteen of those 26 were over the 85dBA criterion and out of those 13, four were over the 

90dBA regulatory limit. The two main areas that had the highest sound pressure levels 

throughout the foundry were located on the east and west ends. On the west end of the facility, 

three areas had elevated noise levels above 85dBA which can be attributed to machines in the 

molding area. While none of these areas was above the 90dBA limit, two areas were very close 

to passing that limit. On the east end of the foundry, eight areas had elevated noise levels and 

four of those areas were above the 90dBA limit. This elevated level was attributed to the one arc 

welder who was working in that area at that time. This figure does not take into account the fact 

that the rest of the welders were not working when this sampling was conducted. It can only 

assumed that the decibel readings would increase as more machines start working. 

 

 

Figure 9 represents both the Machine and Fabrication Shops. The Machine Shop, which 

is found on the upper area of Figure 9, had low to moderate noise levels with only two areas with 

Figure 8: Foundry with Machines Running 
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readings above 80dBA. In the Fabrication Shop, there were considerably high sound pressure 

levels around the arc welding area. Twenty-one out of the total 32 areas were above 80dBA with 

13 areas being over the 85dBA Hearing Conservation Limit. Six of the 13 elevated areas were 

above the 90dBA OSHA PEL. It should also be noted that the testing performed was only 

performed when the plasma arc welding machine was running. As per previous visits, multiple 

welders were welding various objects throughout the Fabrication Shop.  

 

 

5.5. Post Crystalline Silica Personal Breathing Zone Sampling Results 

Table VI below shows the specific results for the personal breathing zone sampling that 

was performed on September 25, 2015. This information includes the sample date, number, 

employee sample duration, and the current and proposed OSHA crystalline silica standard. In 

Figure 9: Machine and Fabrication Shop 
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each silica standard, the sample weighted respirable dust concentration, 8-hour shift time-

weighted average respirable dust concentration and calculated permissible exposure limit are 

given.  

Table VI: Crystalline Silica PBZ Sampling Results 

Sample 

Date

Sample 

Number

Task Performed Sample Duration 

(minutes)

Sample 

Weighted 

Respirable 

Dust 

Concentration 

(mg/m3)

8-Hour Shift 

Time Weighted 

Average (TWA) 

Respirable Dust 

Concentration 

(mg/m3)

OSHA PEL 

(mg/m3)

Sample Weighted 

Crystalline Silica: 

Quartz 

Cristobalite 

Tridymite 

(mg/m3)

8-Hour Shift 

Time Weighted 

Average (TWA)  

Crystalline Silica: 

Quartz 

Cristobalite 

Tridymite 

(mg/m3)

OSHA PEL 

(mg/m3)

(0.014) 0.10

<0.023 0.017

<0.023 0.017

(0.027) 0.021

<0.021 0.017

<0.021 0.017

(0.017) 0.014

<0.020 0.017

<0.020 0.017

9/25/2015 CS04

<0.042 0.0084

<0.084 0.017

<0.084 0.017

Current Standard Proposed Standard

0.05

0.05

0.87

2.375

3.23

0.34

4.1

PNOR PEL: 

5mg/m3 
0.17

3.9

9/25/2015 CS02

0.05

0.05

9/25/2015 CS01

Welding outside 

by east door & 

welding inside

348

3.46

3.125

Cutting and 

entering and 

exiting east end

380 3

1.2

9/25/2015 CS05
Molding Area, Far 

west end
96

9/25/2015 CS03

Welding, Shake 

out; Entering in 

and outside

397

  

Currently, the OSHA PEL is a calculated limit based upon the collected data as shown 

previously in Equation 1.  

Out of the four samples taken, no worker exceeded the current OSHA calculated PEL. 

The two workers who seemed to be located outside more than inside the foundry had higher 

TWAs than those working inside the foundry but did not exceed the limit.  

While the current OSHA PEL is considered the regulatory requirement for companies to 

follow, consideration was also taken for the newly proposed OSHA PEL for silica. This 

proposed standard is not based off of the sample’s calculated equation but merely a set 

concentration of 0.05mg/m3.  

Out of the four samples taken, no worker exceeded the proposed OSHA PEL for 

crystalline silica. From the samples compared to the proposed OSHA PEL for crystalline silica, 

the quartz was detected in all the samples with the exception of the molding area sample and 
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field blank. The concentrations detected were below the Limit of Detection (LOD) and above the 

Limit of Quantitation (LOQ). The LOD ranges from 0.0-0.01mg/m3 and the LOQ ranges from 

0.03-0.05mg/m3.  

As stated previously, the fifth and sixth hypothesizes stated that the post crystalline silica 

PBZ sampling would be less than or equal to the calculated PEL and newly purposed PEL of 

0.05mg/m3. While performing the statistical analysis of the data, both sets of data were not found 

to be normally distributed, nor logarithmically normal, so a t-test could not be used. A 1-sample 

sign non-parametric test was used on both sets of data and both sets of data came back with a p-

value of 1.00. This value was not significantly greater than the current and newly purposed PEL 

so one would then fail to reject the null hypothesis for hypothesis 5. 

5.6. Respiratory Protection Audit Results 

The audit itself produced a wide variety of results, some of which were known to 

management and others which came as a surprise to both management and worker alike. 

Employees seemed to have a well-managed understanding of when to report damages to 

respirators and when to go get a new one. Management made sure that workers were provided 

respirators at no cost to the employee and that all those respirators were NIOSH approved. 

Before entering the worksite, all employees received medical evaluations by trained physicians 

who then deemed the employees ok to don and doff a respirator. No employee stated that they 

have ever altered the overall integrity of their respirator in any way and each seemed to 

understand how to properly use their respirator. 
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6. Recommended Control Strategies 

Personal exposure testing was performed in a foundry in the Northwestern United States 

to evaluate manganese, crystalline silica and noise exposure to workers. The following control 

strategies are given in chronological order as they were recommended and/or implemented.  

6.1. Crystalline Silica Bulk Sampling Assessment 

As illustrated in Table II, initial respirable dust in the foundry revealed crystalline silica 

in two samples. In an effort to determine the source of crystalline silica in this area, bulk 

sampling was conducted. Bulk samples of particulate matter (100 grams) were collected in three 

locations of the foundry floor and of the bulk sand purchased for the molding process. As shown 

previously in Figure 2, the floor of the foundry is made of a particulate matter that has been used 

and recycled in the molding process for years. As of a few years ago, a new olivine based 

substance was purchased and eventually over time and through the molding process, ended up on 

the floor of the facility. Although there were two different molding substances on the floor, the 

ability to differentiate between the two for testing purposes is nearly impossible. A review of the 

Safety Data Sheets (SDS) revealed that the current bulk product is primarily comprised of 

amorphous silica, not crystalline silica. 

For bulk samples, three from the foundry floor and one from the bulk olivine sand 

material were analyzed for crystalline silica for the NIOSH Manual of Analytical Methods 

(NMAM) 7500 by ALS Laboratories in Salt Lake City, Utah. Results of this sampling are 

presented in Table VII below. Results revealed that two samples had detectable amounts of 

quartz and two did not. Sample B and C, which had detectable amount of quartz, were the 

samples that were taken closest to the west end of the foundry, where a large door allowed 
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airflow to enter the facility. These two samples, taken near the grinding area and the furnace 

area, were found to have 3.8% quartz and 2.2% quartz respectively.  

 

 

It was hypothesized that quartz was most likely being transported into the facility with 

equipment or found in the foundry from processes performed years ago and not from the 

manufacturer’s bulk sand product. After speaking to management, it was then planned that the 

outside area next to the west side of the foundry would be paved as a control measure. 

Management had already had this control measure planned prior to the given recommendation. 

During the summer of 2015, the area next to the west entrance was paved.  

On September 25, 2015, personal breathing zone sampling was performed to verify that 

current control measures of paving the west end of the foundry provided adequate protection for 

the foundry workers. A total of four personal breathing zone samples were taken. One worker 

worked right outside the west end door to the foundry, welding various metal products. Two 

other workers worked in together most of the day welding, cutting and in the shake-out area. 

These two workers entered and exited the foundry frequently. The last worker worked on the 

Table VII: Crystalline Silica Bulk Sampling 

Results 
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west end of the foundry in the molding area. One field blank was also submitted to ALS 

Laboratory for quality control. NIOSH method 7500 and 0600 were used to evaluate the PBZ 

and bulk samples. 

Elevated levels of crystalline silica were noticed at the start of this survey. To mitigate 

worker exposure, bulk sampling was first taken to find the source of the problem, then personal 

breathing zone sampling was taken to assess individual worker exposure. When the results came 

back, elevated levels of quartz were found on the west end of the foundry and lessen the further 

into the foundry the samples were taken. It was presumed and hypothesized that the source of 

crystalline silica exposure came from the west end, the non-paved lot, when motorized vehicles 

entered and exited the facility. It was recommended that retesting be completed once the back lot 

had been paved with asphalt.  

During the summer of 2015, the back lot was paved and during September 2015, follow-

up PBZ respirable crystalline silica sampling was performed in the foundry following the same 

sampling and analytical techniques utilized in the initial sampling campaign.  Although the 

number of samples were limited in this assessment, the data suggests that paving the west lot 

may have had a positive impact on reducing respirable crystalline silica exposures. Additional 

sampling is recommended to verify these results. 

6.2. Respiratory Protection Audit 

As for potential improvements, employees and management seemed to have a 

misunderstanding as it pertained to a few regulatory standards. Prior to this audit, the company 

did not have an annual fit testing regimen for its employees and some had not received a fit test 

in some time. Facial hair was a visible issue on all those who were audited. Each employee who 

was evaluated had facial hair that would impede the respirator’s tight forming seal. Seal checks 
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seemed to be an issue for four out of the five workers tested. They either did not know how to 

perform the test properly or had not been trained on it in some time. Cleaning and storage was a 

problem for one of the workers tested. While performing the audit, it was noticed that his 

respirator was hanging behind him in the foundry without any protection from the dust and 

debris volatilizing in the area. While only the worker in the paint shop used cartridges, there was 

no formal change out schedule set in place for when that should be performed. The last important 

item was that of respiratory training. Four of the five workers stated that they could not 

remember when the last respiratory protection training was given. They did however state that 

they had received some type of training between the time they started their employment and 

January 19th, when the assessment was given.  

There were a few items of mention noticed during and after the audit to be in compliance 

with current OSHA respiratory protection standards. Management and supervisors were to 

ensure that their workers are in proper compliance with the workplace standard. Since the 

workplace standard was just revised, this item could not yet be properly evaluated. While 

standard have the possibility of changing over time, an evaluation of the program will be 

completed when new standards and practices are implemented. As this program was newly 

revised, this has not occurred yet. Another item of mention was that of respirator cleaning after 

every fit test. As most employees had not performed a fit test in the past few years, this question 

was also difficult to effectively answer. Last, as an appendix to the respiratory protection 

program, a training guideline was added. Since training using this new program had not yet been 

implemented, this question was also difficult to evaluate. 
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6.3. Respiratory Protection Program 

As an added control measure to all workers that work at the foundry, an update of the 

current written respiratory protection program was completed. The previous program completed 

in 1999 was updated, revised, and now provides the necessary training for this foundry’s 

workers. 

The respiratory protection program stated such things as the company’s responsibility to 

the worker, the supervisor’s responsibility to the worker, and the employee’s responsibility as it 

pertains to respiratory protection. Selection of respirators throughout the facility was mentioned 

as well as stating which job task and area required which specific type of respirator.  

Currently, respirators are used in four areas throughout the facility. Disposable N95 

filtering face piece respirators are being used in the pouring area of the foundry and are available 

for any who request respirators for their specific job task. Air purifying full face elastomer 

respirators are currently used in the paint shop while the painter is painting. Supplied air 

respirators, including airline respirators, are currently being used in the sand blasting area. 

As part of the recommendations and additions to the newly revised respiratory protection 

program, recommendations were given regarding which respirator should be used in which area. 

For when workers are pouring, grinding, or welding, where fine particulate matter is generated, 

air purifying half or full face elastomer respirators equipped with N100 filters are recommended. 

For any other potential particulate exposing areas, such as the sand molding area, a disposable 

filtering face piece respirator, N95, is recommended. The recommendations for the painting area 

and the sand blasting area, were the same as currently being mandated by the company. 

As per all respiratory protection program guidelines set by OSHA, this respiratory 

program included such sections as medical evaluations, fit testing, procedures for respirator 
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usage, inspection and cleaning, training, and program evaluation. These sections were written in 

accordance to 29 CFR 1910.95, the OSHA Respiratory Protection standard. 

On March 31, 2016, in correlation with the newly revised respiratory protection program, 

training of that program was given to all company employees who use respirators on the 

worksite. This training was given to verify that workers knew the current OSHA and best 

practice standards. Training included the reason why respiratory protection is needed, what the 

company is doing to mitigate future hazards, which respirators are recommended for each work 

task, medical evaluations, fit testing, rules and procedures for wearing respirators, cleaning, 

inspections, and repairs. Workers were also shown how and what to look for when they 

inspected their respirators, and how to don and doff them. 

6.4. Noise 

To reduce the noise hazard in the foundry, it is recommended to have all workers be 

fitted with proper hearing protection to lower their exposure limits. Current basic hearing 

protection provided by the company was shown to have an NRR rating of 33. Equation 2 

provides the formula used to properly evaluate the NRR rating. 

 

Equation 2: Corrected NRR Rating 

 

After doing the NRR conversion equation listed below, the corrected NRR Rating would 

be 13. As per the results shown in Table II, the worker exposed to the loudest decibel rating was 

cited at 96.4dBA. If this hearing protection would be provided to the workers, it would 

essentially reduce the hearing protection down to 83.4dBA, even below the ACGIH and NIOSH 
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criterion. While this would lower the exposure limit below all Occupational Exposure Limits 

(OEL), this would just put the worker barely below the limits. Special attention would need to be 

given to verify that workers would not exceed this limit. Further testing to verify this data is then 

warranted.  

In the Welding Shop, it was also found that workers, although not above the OSHA PEL 

criterion, were above the OSHA Hearing Conservation threshold and a hearing conservation 

program would need to be instituted in this area. It is recommended that all employees in the 

Welding Shop wear hearing protection. The above mentioned ear plugs with a calculated NRR of 

13 would be suitable protection, as the highest worker TWA was 90.7dBA. 

In the Sand Blasting/Paint Shop area, the only consistent worker in that area was tested 

and was barely above the ACGIH and NIOSH criterion of 85dBA. Hearing protection is 

recommended to be worn as a best practice measure for this worker but is not required by OSHA 

standards. Current ear plugs will provide sufficient worker hearing reduction to the area.  

The Back Fabrication/Welding Shop and the Machine Shop, according to the personal 

dosimetry testing, did not exceed any of the regulatory and recommended criterion, thus hearing 

protection in these areas is not required. It is up to the discretion of the worker whether or not 

they chose to wearing hearing protection. 

As previously mentioned in the literature review section, (Jonderko, Kujawska, & 

Langauer-Lewowicka, 1971) provided an alternative control measure to reduce noise exposure to 

foundry workers. Jonderko implemented a frequent rotational shift to workers in their foundry. 

This control measure could also potentially be implemented in the foundry studied here by 

moving workers out of their work areas into quieter work areas at least once a day depending 

upon the overexposed location. 
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6.5. Hearing Conservation Program Revisions 

As part of the control measures for occupational noise in the workplace, a review of the 

company’s Hearing Conservation Program was completed. This involved taking the previous 

program that was completed in 1999 and updating, revising and providing the necessary training 

for all company workers. 

The hearing conservation program stated such things as the company’s responsibility to 

the worker, the supervisor’s responsibility to the worker, and the employee’s responsibility 

regarding hearing protection. The program gave a brief overview of which areas are most 

affected by high sound pressure levels. Another table that specifies job task and the potential 

noise pollution it can have on the worker was given to give a comparison between area and 

personal worker exposure based on worker task. Sections on employee notification are also 

included. 

One section of the program goes into detail about audiometric testing and when that is to 

be performed. Baseline tests should be performed starting from the time that workplace noise is 

first evaluated. Annual audiogram testing should be performed to verify that workers are not 

showing signs of hearing loss that may be due to high sound pressure levels in the workplace.  

The last part of the program goes into the specifics of hearing protection, training, and 

recordkeeping. As part of this evaluation and to verify that workers fully understood the effects 

of hearing loss, hearing protection training was given on April 21, 2016. The training included 

the effects of noise on hearing, the purpose of hearing protection, audiometric testing, and how to 

properly use hearing protection while on the worksite. The training was given to all company 

employees who were in the areas potentially affected by high sound pressure levels. 
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6.6. Ventilation 

As part of a best practice control measure for manganese, a local exhaust ventilation 

system was recommended around the furnace area of the foundry, specifically when molten 

metal is smelted and poured. The local exhaust ventilation system would then provide a way to 

pull the contaminant out of the entire foundry and the breathing zone of the worker. Figure 10 

provides a picture of the smelting station with no local exhaust ventilation. 

 

Figure 10: Furnace Area before Ventilation (Picture taken by J. Sargetis)  

 

Following the recommendation, the company decided to build two mobile ventilation 

systems above the furnaces. These mobile systems will allow the workers to manually move the 

capture hoods above the furnaces each time a manganese-based metal is being used. The 
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ventilation system will remove the particulate and plume coming from the furnace for all 

workers working in the foundry. 

Ever since a high manganese-based product has been added to their mixes, the company 

has noticed an increase in the amount of plume smoke up and around the foundry. By mid-day, 

the visibility throughout the foundry is reduced and workers notice the problem. Due to the age 

of the building the foundry is located in, proper general exhaust ventilation is not installed. The 

only way for particulate to leave the foundry is either through the large doors leading out of the 

foundry on the west and south end of the facility or through the tilted windows on the ceiling of 

the building. Large fans are installed on the ceiling to remove particulate but do not provide 

sufficient flow to remove the particulate. 

Currently, the ventilation systems are in the process of being designed and built. The 

design of the ventilation system will have a flow rate of 6000 cfm for each furnace. As the 

ventilation systems will remove metal smokes away from the worker, it is recommended that a 

capture velocity of 2000-2500 fpm be used (ACGIH, 2013). The basic blueprints are shown in 

Appendix H.  

Due to time constraints, retesting the proposed ventilation system is not an option. 

Currently, the ventilation system is still in its design phase and was not available for retesting at 

the time this thesis was published. Although the final testing to prove that the ventilation system 

functions properly is not feasible, it is recommended that future testing take place to verify that 

the capture velocity and flow rate of the system sufficiently provide the necessary protection 

from metals for the worker.  
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7. Conclusion 

In this study, the foundry was evaluated for worker exposure to metals, crystalline silica, 

and noise, and control measures were recommended. Manganese exposure has been linked to a 

variety of neurological health issues even at low levels. In this study, manganese was tested and 

compared against the ACGIH TLV for inhalable and respirable limits. It was found that workers 

were overexposed to respirable manganese in the foundry but few workers exceeded the 

inhalable limit. To remediate this pollutant, a ventilation system was recommended to pull the 

metal away from the worker breathing zone. Although this recommendation was given, the 

ventilation system is still in the design phase. For the time being, an update was made to the 

company’s respiratory protection program to provide a suitable control measure until the 

ventilation system is installed.  

Personal breathing zone sampling was conducted at the start of this project for crystalline 

silica. Elevated levels of crystalline silica were found which prompted bulk sampling to be taken 

at multiple points in the foundry. Elevated bulk samples were found closer to the west end of the 

foundry and it was assumed that motorized equipment tracked in crystalline silica from the 

outside soil. It was recommended that the west end back lot be paved to prevent further worker 

exposure. After the lot was paved, personal breathing zone sampling was then retested to verify 

the adequacy of the purposed control measure. It was found that the paving of the back lot had 

provided reasonable protection from crystalline silica exposure. Further testing in the future is 

recommended to verify results taken in this study.  

Noise testing was performed in the Foundry, Machine Shop, Fabrication Shop and other 

areas throughout company property. It was found that the three main areas showing elevated 

levels of noise pollution were in the foundry and machine shop. Due to the fact that multiple 
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areas of the facility were now required to fall under OSHA’s Hearing Conservation Program, the 

company’s hearing conservation program was updated and revised. These revisions, along with 

an evaluation of the current hearing protection provided by the company, were recommended as 

control measures for noise exposure. Further testing is always recommended to verify that the 

results found in this study are accurate and true. 

Beyond further testing, keeping up with current safety and health practices will provide a 

way for this company, and all foundry workers, to prevent and ultimately hinder the progression 

of future hazards found in the workplace.  
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Appendix A: Manganese Sampling Results by Worker 

Sample Date
Sample 

Number
Task Performed

Sample 

Duration 

(minutes)

Total Weight, 

Pours & 

Percentage    

of Manganese

Metals 

Samples

Metal 

Sample 

results 

(μg/m3)

8 Hour 

Extrapolated  

Data 

(μg/m3)

OSHA PEL 

(μg/m3)

ACGIH TLV 

(μg/m3)

Aluminum 9.40 5.97 5000 5000

Arsenic 1.00 0.64 10 10

Beryllium 0.02 0.01 2 2

Cadmium 0.03 0.02 5 10

Calcium 7.80 4.96 5000 2

Chromium 1.10 0.70 500

Copper 6.80 4.32 100 200

Iron 490.00 311.35 10000 5000

Lead 0.52 0.33 50 50

Manganese 140.00 88.96 15000 20

Nickel 6.30 4.00 1000 1500

Selenium 1.00 0.64 200 200

Silver 0.18 0.11 10 100

Sodium 57.00 36.22
Zinc 1.00 0.64 5000 5000

Aluminum 25.00 15.89 5000 5000

Arsenic 1.20 0.76 10 10

Beryllium 0.01 0.00 2 2

Cadmium 0.04 0.02 5 10

Calcium 26.00 16.52 5000 2

Chromium 4.10 2.61 500

Copper 9.00 5.72 100 200

Iron 1500.00 953.13 10000 5000

Lead 0.73 0.46 50 50

Manganese 270.00 171.56 15000 100

Nickel 12.00 7.63 1000 1500

Selenium 1.20 0.76 200 200

Silver 0.31 0.20 10 100

Sodium 81.00 51.47
Zinc 2.00 1.27 5000 5000

4/23/2015 IMn1
Grinding and 

welding
305

Worker #1

4/23/2015 RMn1
Grinding and 

welding
305

4800lbs,          

4 Melts,        

12-13% 

Manganese

3600lbs,          

3 Melts,        

>1% 

Manganese

4800lbs,          

4 Melts,        

12-13% 

Manganese

3600lbs,          

3 Melts,        

>1% 

Manganese
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Sample Date
Sample 

Number
Task Performed

Sample 

Duration 

(minutes)

Total Weight, 

Pours & 

Percentage    

of Manganese

Metals 

Samples

Metal 

Sample 

results 

(μg/m3)

8 Hour 

Extrapolated  

Data 

(μg/m3)

OSHA PEL 

(μg/m3)

ACGIH TLV 

(μg/m3)

Aluminum 33.00 28.05 5000 5000

Arsenic 0.74 0.63 10 10

Beryll ium 0.01 0.01 2 2

Cadmium 0.02 0.02 5 10

Calcium 18.00 15.30 5000 2

Chromium 17.00 14.45 500

Copper 2.10 1.79 100 200

Iron 310.00 263.50 10000 5000

Lead 0.37 0.31 50 50

Manganese 27.00 22.95 15000 20

Nickel 4.20 3.57 1000 1500

Selenium 0.74 0.63 200 200

Silver 0.09 0.08 10 100

Sodium 19.00 16.15
Zinc 0.94 0.80 5000 5000

Aluminum 100.00 72.29 5000 5000

Arsenic 5.30 3.83 10 10

Beryll ium 0.02 0.02 2 2

Cadmium 0.06 0.05 5 10

Calcium 55.00 39.76 5000 2

Chromium 45.00 32.53 500

Copper 27.00 19.52 100 200

Iron 3300.00 2385.63 10000 5000

Lead 1.30 0.94 50 50

Manganese 360.00 260.25 15000 20

Nickel 22.00 15.90 1000 1500

Selenium 2.10 1.52 200 200

Silver 0.68 0.49 10 100

Sodium 150.00 108.44
Zinc 3.00 2.17 5000 5000

Aluminum 19.00 16.15 5000 5000

Arsenic 0.93 0.79 10 10

Beryll ium 0.00 0.00 2 2

Cadmium 0.03 0.02 5 10

Calcium 18.00 15.30 5000 2

Chromium 12.00 10.20 500

Copper 1.60 1.36 100 200

Iron 300.00 255.00 10000 5000

Lead 0.47 0.40 50 50

Manganese 29.00 24.65 15000 100

Nickel 3.50 2.98 1000 1500

Selenium 0.93 0.79 200 200

Silver 0.09 0.08 10 100

Sodium 12.00 10.20
Zinc 0.72 0.61 5000 5000

IMn3
Grinding and 

welding
408

Worker #2

4/23/2015 RMn2
Grinding and 

welding
408

4800lbs,          

4 Melts,        

12-13% 

Manganese

3600lbs,          

3 Melts,        

>1% 

Manganese

5/5/2015 RMn8
Grinding and 

welding
347

3200lbs,          

3 Melts,        

12-13% 

Manganese

9900lbs,          

6 Melts,        

>1% 

Manganese

4800lbs,          

4 Melts,        

12-13% 

Manganese

3600lbs,          

3 Melts,        

>1% 

Manganese

4/23/2015
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Sample Date
Sample 

Number
Task Performed

Sample 

Duration 

(minutes)

Total Weight, 

Pours & 

Percentage    

of Manganese

Metals 

Samples

Metal 

Sample 

results 

(μg/m3)

8 Hour 

Extrapolated  

Data 

(μg/m3)

OSHA PEL 

(μg/m3)

ACGIH TLV 

(μg/m3)

Aluminum 14.00 12.25 5000 5000

Arsenic 0.72 0.63 10 10

Beryll ium 0.01 0.01 2 2

Cadmium 0.02 0.02 5 10

Calcium 15.00 13.13 5000 2

Chromium 2.50 2.19 500

Copper 1.30 1.14 100 200

Iron 79.00 69.13  5000

Lead 0.59 0.52 50 50

Manganese 38.00 33.25 15000 20

Nickel 1.20 1.05 1000 1500

Selenium 0.72 0.63 200 200

Silver 0.07 0.06 10 100

Sodium 7.20 6.30
Zinc 2.80 2.45 5000 5000

Aluminum 13.00 10.97 5000 5000

Arsenic 0.75 0.63 10 10

Beryll ium 0.01 0.01 2 2

Cadmium 0.02 0.02 5 10

Calcium 16.00 13.50 5000 2

Chromium 5.00 4.22 500

Copper 0.90 0.76 100 200

Iron 61.00 51.47 10000 5000

Lead 0.86 0.73 50 50

Manganese 18.00 15.19 15000 20

Nickel 0.68 0.57 1000 1500

Selenium 0.75 0.63 200 200

Silver 0.08 0.06 10 100

Sodium 3.70 3.12
Zinc 1.30 1.10 5000 5000

Aluminum 28.00 24.50 5000 5000

Arsenic 0.90 0.79 10 10

Beryll ium 0.01 0.01 2 2

Cadmium 0.03 0.02 5 10

Calcium 30.00 26.25 5000 2

Chromium 2.70 2.36 500

Copper 1.30 1.14 100 200

Iron 150.00 131.25 10000 5000

Lead 0.72 0.63 50 50

Manganese 41.00 35.88 15000 100

Nickel 2.70 2.36 1000 1500

Selenium 0.90 0.79 200 200

Silver 0.09 0.08 10 100

Sodium 14.00 12.25
Zinc 2.70 2.36 5000 5000

Aluminum 18.00 15.23 5000 5000

Arsenic 0.98 0.83 10 10

Beryll ium 0.01 0.01 2 2

Cadmium 0.03 0.02 5 10

Calcium 31.00 26.22 5000 2

Chromium 4.80 4.06 500

Copper 1.60 1.35 100 200

Iron 140.00 118.42 10000 5000

Lead 0.95 0.80 50 50

Manganese 64.00 54.13 15000 100

Nickel 1.60 1.35 1000 1500

Selenium 0.98 0.83 200 200

Silver 0.10 0.08 10 100

Sodium 7.50 6.34
Zinc 1.80 1.52 5000 5000

5/5/2015 IMn6
Helped pour; 

Drag chain
406

4/23/2015 IMn4
Helping pour; 

Drag chain
420

9900lbs,          

6 Melts,        

>1% 

Manganese

3200lbs,          

3 Melts,        

12-13% 

Manganese

9900lbs,          

6 Melts,        

>1% 

Manganese

3200lbs,          

3 Melts,        

12-13% 

Manganese

3600lbs,          

3 Melts,        

>1% 

Manganese

4800lbs,          

4 Melts,        

12-13% 

Manganese

3600lbs,          

3 Melts,        

>1% 

Manganese

4800lbs,          

4 Melts,        

12-13% 

Manganese

Worker #3

5/5/2015 RMn5
Helping pour; 

Drag chain
405

4/23/2015 RMn3
Helping pour; 

Drag chain
420
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Sample Date
Sample 

Number
Task Performed

Sample 

Duration 

(minutes)

Total Weight, 

Pours & 

Percentage    

of Manganese

Metals 

Samples

Metal 

Sample 

results 

(μg/m3)

8 Hour 

Extrapolated  

Data 

(μg/m3)

OSHA PEL 

(μg/m3)

ACGIH TLV 

(μg/m3)

Aluminum 25.00 20.63 5000 5000

Arsenic 0.78 0.64 10 10

Beryllium 0.01 0.01 2 2

Cadmium 0.02 0.02 5 10

Calcium 19.00 15.68 5000 2

Chromium 1.80 1.49 500

Copper 1.00 0.83 100 200

Iron 60.00 49.50 10000 5000

Lead 1.10 0.91 50 50

Manganese 17.00 14.03 15000 20

Nickel 0.93 0.77 1000 1500

Selenium 0.78 0.64 200 200

Silver 0.08 0.06 10 100

Sodium 6.60 5.45
Zinc 1.50 1.24 5000 5000

Worker #4

5/5/2015 RMn7
Drag chain, 

Furnace
396

3200lbs,          

3 Melts,        

12-13% 

Manganese

9900lbs,          

6 Melts,        

>1% 

Manganese
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Sample Date
Sample 

Number
Task Performed

Sample 

Duration 

(minutes)

Total Weight, 

Pours & 

Percentage    

of Manganese

Metals 

Samples

Metal 

Sample 

results 

(μg/m3)

8 Hour 

Extrapolated  

Data 

(μg/m3)

OSHA PEL 

(μg/m3)

ACGIH TLV 

(μg/m3)

Aluminum 10.00 10.00 5000 5000

Arsenic 0.64 0.64 10 10

Beryll ium 0.01 0.01 2 2

Cadmium 0.02 0.02 5 10

Calcium 11.00 11.00 5000 2

Chromium 1.20 1.20 500

Copper 0.82 0.82 100 200

Iron 50.00 50.00 10000 5000

Lead 1.10 1.10 50 50

Manganese 50.00 50.00 15000 20

Nickel 0.47 0.47 1000 1500

Selenium 0.64 0.64 200 200

Silver 0.06 0.06 10 100

Sodium 4.60 4.60
Zinc 2.70 2.70 5000 5000

Aluminum 17.00 16.33 5000 5000

Arsenic 0.67 0.64 10 10

Beryll ium 0.01 0.01 2 2

Cadmium 0.02 0.02 5 10

Calcium 20.00 19.21 5000 2

Chromium 3.70 3.55 500

Copper 1.30 1.25 100 200

Iron 76.00 72.99 10000 5000

Lead 1.00 0.96 50 50

Manganese 27.00 25.93 15000 20

Nickel 0.82 0.79 1000 1500

Selenium 0.67 0.64 200 200

Silver 0.07 0.06 10 100

Sodium 5.40 5.19
Zinc 2.00 1.92 5000 5000

Aluminum 21.00 13.30 5000 5000

Arsenic 0.99 0.63 10 10

Beryll ium 0.02 0.01 2 2

Cadmium 0.07 0.05 5 10

Calcium 30.00 19.00 5000 2

Chromium 10.00 6.33 500

Copper 1.20 0.76 100 200

Iron 77.00 48.77 10000 5000

Lead 1.70 1.08 50 50

Manganese 76.00 48.13 15000 20

Nickel 2.80 1.77 1000 1500

Selenium 0.99 0.63 200 200

Silver 0.11 0.07 10 100

Sodium 6.60 4.18
Zinc 4.20 2.66 5000 5000

Aluminum 41.00 2.82 5000 5000

Arsenic 9.10 0.63 10 10

Beryll ium 0.11 0.01 2 2

Cadmium 0.27 0.02 5 10

Calcium 79.00 5.43 5000 2

Chromium 5.00 0.34 500

Copper 1.80 0.12 100 200

Iron 42.00 2.89 10000 5000

Lead 4.60 0.32 50 50

Manganese 330.00 22.69 15000 20

Nickel 0.97 0.07 1000 1500

Selenium 9.10 0.63 200 200

Silver 0.91 0.06 10 100

Sodium 19.00 1.31
Zinc 9.50 0.65 5000 5000

5/5/2015 RMn6 Pouring 461

Worker #5

4/23/2015 RMn4 Pouring 480

5/7/2015 RMn10 Not Pouring 304

5/7/2015 RMn11 Pouring 33

3200lbs,          

3 Melts,        

12-13% 

Manganese

9900lbs,          

6 Melts,        

>1% 

Manganese

3600lbs,          

3 Melts,        

12-13% 

Manganese

5100lbs,          

3 Melts,        

>1% 

Manganese

3600lbs,          

3 Melts,        

12-13% 

Manganese

5100lbs,          

3 Melts,        

>1% 

Manganese

4800lbs,          

4 Melts,        

12-13% 

Manganese

3600lbs,          

3 Melts,        

>1% 

Manganese
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Sample Date
Sample 

Number
Task Performed

Sample 

Duration 

(minutes)

Total Weight, 

Pours & 

Percentage    

of Manganese

Metals 

Samples

Metal 

Sample 

results 

(μg/m3)

8 Hour 

Extrapolated  

Data 

(μg/m3)

OSHA PEL 

(μg/m3)

ACGIH TLV 

(μg/m3)

Aluminum 6.10 6.11 5000 5000

Arsenic 0.78 0.78 10 10

Beryll ium 0.00 0.00 2 2

Cadmium 0.02 0.02 5 10

Calcium 8.20 8.22 5000 2

Chromium 0.91 0.91 500

Copper 0.18 0.18 100 200

Iron 30.00 30.06 10000 5000

Lead 0.66 0.66 50 50

Manganese 20.00 20.04 15000 100

Nickel 0.31 0.31 1000 1500

Selenium 0.78 0.78 200 200

Silver 0.08 0.08 10 100

Sodium 2.20 2.20
Zinc 0.83 0.83 5000 5000

Aluminum 19.00 18.25 5000 5000

Arsenic 0.87 0.84 10 10

Beryll ium 0.01 0.01 2 2

Cadmium 0.03 0.02 5 10

Calcium 26.00 24.97 5000 2

Chromium 3.80 3.65 500

Copper 1.60 1.54 100 200

Iron 110.00 105.65 10000 5000

Lead 0.94 0.90 50 50

Manganese 43.00 41.30 15000 100

Nickel 1.30 1.25 1000 1500

Selenium 0.87 0.84 200 200

Silver 0.09 0.08 10 100

Sodium 7.70 7.40
Zinc 2.10 2.02 5000 5000

Aluminum 20.00 14.75 5000 5000

Arsenic 1.00 0.74 10 10

Beryll ium 0.01 0.00 2 2

Cadmium 0.03 0.02 5 10

Calcium 38.00 28.03 5000 2

Chromium 7.90 5.83 500

Copper 1.20 0.89 100 200

Iron 130.00 95.88 10000 5000

Lead 1.30 0.96 50 50

Manganese 89.00 65.64 15000 100

Nickel 3.00 2.21 1000 1500

Selenium 1.00 0.74 200 200

Silver 0.10 0.07 10 100

Sodium 8.00 5.90
Zinc 2.70 1.99 5000 5000

Aluminum 110.00 7.56 5000 5000

Arsenic 12.00 0.83 10 10

Beryll ium 0.19 0.01 2 2

Cadmium 0.36 0.02 5 10

Calcium 110.00 7.56 5000 2

Chromium 6.30 0.43 500

Copper 2.40 0.17 100 200

Iron 190.00 13.06 10000 5000

Lead 11.00 0.76 50 50

Manganese 590.00 40.56 15000 100

Nickel 2.80 0.19 1000 1500

Selenium 12.00 0.83 200 200

Silver 1.20 0.08 10 100

Sodium 64.00 4.40
Zinc 17.00 1.17 5000 5000

4/23/2015 IMn2 Pouring 481

5/5/2015 IMn7 Pouring 461

5/7/2015 IMn13 Not Pouring 354

5/7/2015 IMn14 Pouring 33

3600lbs,          

3 Melts,        

>1% 

Manganese

4800lbs,          

4 Melts,        

12-13% 

Manganese

3200lbs,          

3 Melts,        

12-13% 

Manganese

9900lbs,          

6 Melts,        

>1% 

Manganese

3600lbs,          

3 Melts,        

12-13% 

Manganese

5100lbs,          

3 Melts,        

>1% 

Manganese

3600lbs,          

3 Melts,        

12-13% 

Manganese

5100lbs,          

3 Melts,        

>1% 

Manganese
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Sample Date
Sample 

Number
Task Performed

Sample 

Duration 

(minutes)

Total Weight, 

Pours & 

Percentage    

of Manganese

Metals 

Samples

Metal 

Sample 

results 

(μg/m3)

8 Hour 

Extrapolated  

Data 

(μg/m3)

OSHA PEL 

(μg/m3)

ACGIH TLV 

(μg/m3)

Aluminum 5000 5000

Arsenic 10 10

Beryll ium 2 2

Cadmium 5 10

Calcium 5000 2

Chromium 500

Copper 100 200

Iron 10000 5000

Lead 50 50

Manganese 15000 100

Nickel 1000 1500

Selenium 200 200

Silver 10 100

Sodium
Zinc 5000 5000

Aluminum 18.00 18.00 5000 5000

Arsenic 0.82 0.82 10 10

Beryll ium 0.01 0.01 2 2

Cadmium 0.03 0.03 5 10

Calcium 22.00 22.00 5000 2

Chromium 1.20 1.20 500

Copper 0.68 0.68 100 200

Iron 69.00 69.00 10000 5000

Lead 0.68 0.68 50 50

Manganese 19.00 19.00 15000 100

Nickel 0.82 0.82 1000 1500

Selenium 0.82 0.82 200 200

Silver 0.08 0.08 10 100

Sodium 11.00 11.00
Zinc 1.30 1.30 5000 5000

Aluminum 5.30 4.84 5000 5000

Arsenic 0.87 0.79 10 10

Beryll ium 0.00 0.00 2 2

Cadmium 0.03 0.02 5 10

Calcium 5.60 5.11 5000 2

Chromium 0.43 0.39 500

Copper 0.17 0.16 100 200

Iron 7.60 6.94 10000 5000

Lead 0.43 0.39 50 50

Manganese 6.70 6.11 15000 100

Nickel 0.41 0.37 1000 1500

Selenium 0.87 0.79 200 200

Silver 0.09 0.08 10 100

Sodium 1.60 1.46
Zinc 0.36 0.33 5000 5000

Aluminum 5000 5000

Arsenic 10 10

Beryll ium 2 2

Cadmium 5 10

Calcium 5000 2

Chromium 500

Copper 100 200

Iron 10000 5000

Lead 50 50

Manganese 15000 100

Nickel 1000 1500

Selenium 200 200

Silver 10 100

Sodium
Zinc 5000 5000

5/7/2015 IMn12 Area Sample 438

480

5/7/2015 IMn11 Area Sample 438

5/5/2015 IMn9 Area Sample

5/5/2015 IMn8 Area Sample

480

Area Sample

9900lbs,          

6 Melts,        

>1% 

Manganese

3600lbs,          

3 Melts,        

12-13% 

Manganese

5100lbs,          

3 Melts,        

>1% 

Manganese

3600lbs,          

3 Melts,        

12-13% 

Manganese

5100lbs,          

3 Melts,        

>1% 

Manganese

3200lbs,          

3 Melts,        

12-13% 

Manganese

9900lbs,          

6 Melts,        

>1% 

Manganese

3200lbs,          

3 Melts,        

12-13% 

Manganese
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Appendix B: Calculated Flow Rates 

Table VIII: Manganese Calculated Flow Rates 

ID# Pump # Pre-Cal Post-Cal Average Time (min) Rate x time G/1000
RMn1 17 2.50 2.41 2.46 305 748.775 0.748775 Taken on 4/23/2015

RMn2 2 2.50 2.45 2.48 408 1009.8 1.0098 Taken on 5/5/2015

RMn3 15 2.50 2.44 2.47 420 1037.4 1.0374 Taken on 5/8/2015

RMn4 3 2.50 2.40 2.45 480 1176 1.176

RMn5 1 2.50 2.44 2.47 405 1000.35 1.00035

RMn6 2 2.50 2.38 2.44 461 1124.84 1.12484

RMn7 3 2.50 2.38 2.44 396 966.24 0.96624

RMn8 6 2.50 2.41 2.46 347 851.885 0.851885

RMn9

RMn10 1 2.50 2.46 2.48 304 753.92 0.75392

RMn11 8 2.50 2.47 2.49 33 82.005 0.082005

IMn1 16 2.00 1.98 1.99 305 606.95 0.60695

IMn2 12 2.00 1.99 2.00 481 959.595 0.959595

IMn3 14 2.00 1.96 1.98 408 807.84 0.80784

IMn4 10 2.00 1.96 1.98 420 831.6 0.8316

IMn5 14 2.02 1.79 1.91 397 756.285 0.756285

IMn6 9 2.01 1.74 1.88 406 761.25 0.76125

IMn7 8 2.00 1.75 1.88 461 864.375 0.864375

IMn8 12 2.04 1.77 1.91 480 914.4 0.9144

IMn9 13 2.02 1.79 1.91 480 914.4 0.9144

IMn10

IMn11 13 2.00 1.98 1.99 438 871.62 0.87162

IMn12 12 2.01 1.98 2.00 438 873.81 0.87381

IMn13 2 2.03 2.00 2.02 354 713.31 0.71331

IMn14 9 2.00 2.00 2.00 33 66 0.066

Key

Blank Sample

Blank Sample

 

 

Table IX: Post PBZ Crystalline Silica Flow Rate 

ID# Pump # Pre-Cal Post-Cal Average Time (min) Rate x time (L) G/1000 (m3)
2 2.50 2.46

10 2.50 2.45

CS02 4 2.50 2.49 2.50 380 948.10 0.948

CS03 9 2.50 2.47 2.49 397 986.55 0.987

CS04 11 0.324

CS05 14 2.50 2.46 2.48 96 238.08 0.238

0.860

Blank

CS01 2.47 348 859.56
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Appendix C: 4/23/2015 Dosimeter Data and Results 

Person Job Duty Dosimeter # Pre-Cal Post-Cal Average Time Start Time Off Total Time (min) Comments

Lunch Time

Employee #1
Little of 

everything
2 114.0 113.9 113.95 8:00 Kept on 4:08 488

Mufflers weren't being 

used. On hardhat.

Employee #2
Furnace and 

welding
3 114.0 113.9 113.95 8:05 Kept on 3:58 473

Jacket was put on and 

dosimeter moved out of 

hearing zone. Reput back 

in place at 9:29  

Original Extrap. Original Extrapolated Original Extrap.

Dosimeter #

Total Time

Las

Lasmax

Average 74.6 80.9

TWA 74.2 74.62 80.5 75.92

Dose % 11.22% 11.86% 26.86% 28.40%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 81.6 84.2

TWA 81.3 81.59 83.8 79.17

Dose % 29.74% 31.17% 42.54% 44.58%

UL 115

PEL Hearing Conservation ACGIH

7:34:00

114.5
No ACGIH 

collected

3

4/23/2015

7:38:00

124.1
No ACGIH 

collected

2
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Appendix D: 5/5/2015 Dosimeter Data and Results 

Person Job Duty Docimeter #
Average 

Calibration
Time Start Time Off Total Time (hr)

Total Time (min) 

without Lunch 

taken out 

Total Time (min) 

with Lunch taken 

out 

Comments

Lunch Time

Employee #1 Tube Bundles 2 114.00 10:25
Took off: 11:51 

Returned: 12:36
15:48 5:23 323 278

Tube Bundles werent 

being worked on yet this 

day

Employee #2
Welding in 

foundry
3 114.00 8:25

Never left the 

site. Didn't take 

off

15:06 6:41 401

Employee #3

Welding shop; 

ergonomic 

welding area

4 114.00 8:38
Took off: 12:00 

Returned: 12:35
15:47 7:09 429 394

Employee #4
Pourer in 

foundry
5 114.00 7:51

Never left the 

site. Didn't take 

off

15:29 7:38 458

Employee #5

Machine shop; 

Rod turning 

area

6 114.00 8:34

Never left the 

site. Didn't take 

off

15:51 7:17 437

Employee #6

Welding shop; 

grinding and 

welding on 

large cylinder. 

Younger guy

9 114.00 8:10

Never left the 

site. Didn't take 

off

15:45 7:35 455

Employee #7

Foundry; 

shakeout and 

assistant 

pourer

10 114.00 7:55
Took off: 11:55 

Returned: 12:50
15:32 7:37 457 402

Rubbed against 

docimeter at 12:38 on 

accident

Employee #8

Foundry; 

molding area @ 

first then 

moved to shake 

out

11 114.00 8:04

Never left the 

site. Didn't take 

off

15:25 7:21 441

Tapped his hand on the 

docimeter at 12:55. Also 

wears a 3M Optime 95 

respirator

Employee #9

Welding shop; 

plasma cutting 

area

12 114.00 8:07

Never left the 

site. Didn't take 

off

15:46 7:39 459 Wears earplugs

Employee #10

Foundry; By the 

welding and 

grinding area 

all day

13 114.00 7:58
Took off: 12:00 

Returned: 12:53
15:08 7:10 430 377
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Original Extrap. Original Extrapolated Original Extrap.

Dosimeter #

Total Time

Las

Lasmax

Average 83.5 86.1

TWA 82.2 83.47 84.8 81.04

Dose % 33.89% 40.47% 48.34% 57.72%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 92.1 92.5 96.4

TWA 90.9 92.1 91.2 87.5 95.6 95.6

Dose % 112.50% 134.33% 118.40% 141.37% 362.40% 432.72%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 69.0 80.2 83.9

TWA 66.1 69.0 77.3 82.2

Dose % 3.65% 5.42% 17.20% 25.58% 52.81%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 83.7 87.3

TWA 83.0 86.5

Dose % 37.58% 41.95% 61.40%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 92.1 93.1

TWA 91.7 92.8

Dose % 126.70% 146.80%

UL 115

5/5/2015

No ACGIH

13

6:41:46

63.1

138.6

0:00:15

PEL Hearing Conservation ACGIH

3

6:42:27

60.1

117.1

0:00:02

2

5:23:22

63.1

106.6

0:00:00

7:10:01

63.1

0:00:00

No ACGIH

112.9

4

7:37:44

No ACGIH

63.2

139.0

0:02:06

5
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Dosimeter #

Total Time

Las

Lasmax

Average 88.5 89.8

TWA 87.9 89.2

Dose % 74.54% 88.87%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 85.2 86.9

TWA 84.8 86.5

Dose % 48.79% 61.78%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 75.6 84.6

TWA 74.9 83.9

Dose % 12.36% 42.70%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 89.5 90.7

TWA 89.1 90.3

Dose % 88.62% 103.90%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 93.4 94.3

TWA 93.1 94.0

Dose % 152.80% 172.80%

UL 115

7:36:53

No ACGIH

63.9

140.9

0:02:59

10

7:38:10

No ACGIH

63.2

119.2

0:00:03

7:16:48

No ACGIH

63.1

104.3

0:00:00

6

11

7:21:49

No ACGIH

63.1

121.4

0:04:47

7:35:12

No ACGIH

65.0

116.9

0:00:04

9

12
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Appendix E: 5/7/2015 Dosimeter Data and Results 

Person Job Duty Docimeter # Pre-Cal Post-Cal Average Time Start Time Off

Total Time 

without Lunch 

taken out 

Time Actually on 

the person

Lunch Time

Total time without 

dosimeter on for lunch 

(min)

Employee # 1
Sand Blasting 

Area/Paint Shop
2 114.0 113.8 113.90 10:04

Took off: 11:45 

Returned: 12:48
63 15:53 5:49 4:46

Employee # 2 Tube Bundles 3 114.0 113.8 113.90 10:08
Took off: 11:45 

Returned: 12:31
44 15:53 5:45 5:01

Employee # 3
Plasma Cutter in 

Welding Shop
4 114.0 114.0 114.00 10:32

Left On for 

Lunch
0 15:41 5:09 5:09

Employee # 4

Cleaning and a 

bit of everything 

in the Machine 

Shop

5 114.0 114.1 114.05 10:41
Took off: 11:55 

Returned: 12:44
49 15:49 5:08 4:19

Employee # 5
Welding in 

Welding Shop 
6 114.0 113.9 113.95 10:36

Took off: 11:55 

Returned: 12:42
47 15:40 5:04 4:17

Employee # 6 Tube Bundles 7 114.0 113.8 113.90 10:09
Took off: 12:00 

Returned: 12:36
36 15:54 5:45 5:09

Employee # 7
Back Fab 

Shop/Welding
8 114.0 113.9 113.95 10:10

Took off: 12:00 

Returned: 12:40
40 15:45 5:35 4:55

Employee # 8
Rod Turning in 

Machine Shop
9 114.0 114.1 114.05 10:38

Left On for 

Lunch
0 15:37 4:59 4:59

Employee # 9

Tack Welding, 

Back Fab Shop, 

Possible 

Grinding

10 114.0 113.9 113.95 10:15
Left On for 

Lunch
0 15:50 5:35 5:35

Employee # 10

Welding Shop 

on Round 

Cylinder

11 114.0 113.9 113.95 10:30
Left On for 

Lunch
0 15:42 5:12 5:12

Employee # 11

Bending and 

Rolling; Back Fab 

Shop

12 114.0 114.0 114.00 10:15
Left On for 

Lunch
0 15:46 5:31 5:31

Employee # 12

Welding in 

Middle Shop by 

Tube Bundles

13 114.0 113.9 113.95 10:25
Left On for 

Lunch
0 15:53 5:28 5:28
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Original Extrap. Original Extrapolated Original Extrap.

Dosimeter #

Total Time

Las

Lasmax

Average 74.5 77.8 85.3

TWA 72.2 75.5 84.0

Dose % 8.48% 13.37% 78.83%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 97.4 97.7 101.0

TWA 95.1 95.3 99.6

Dose % 201.80% 207.70% 907.60%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 73.0 83.0 87.5

TWA 70.6 80.6 86.0

Dose % 6.82% 27.16% 40.16%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 70.0 75.4 83.4

TWA 67.4 72.7 81.7

Dose % 4.33% 9.09% 14.93%

UL 115

ACGIH

2

5:50:30

66.0

110.4

0:00:00

5/7/2015

PEL Hearing Conservation

3

5:45:32

64.8

119.8

8

5:31:31

66.0

118.4

0:00:02

7

5:44:32

64.8

119.6

0:00:06

0:00:06
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Dosimeter #

Total Time

Las

Lasmax

Average 74.0 77.5

TWA 71.4 74.9

Dose % 7.62% 12.29%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 69.3 75.9

TWA 66.6 73.2

Dose % 3.88% 9.73%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 75.3 81.4

TWA 72.5 78.7

Dose % 9.87% 20.70%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 88.2 89.4

TWA 85.1 86.3

Dose % 50.42% 59.88%

UL 117/115

11

5:12:25

No ACGIH

63.2

127.5

0:00:08

13

5:27:41

No ACGIH

69.7

116.7

0:00:01

12

5:29:17

No ACGIH

66.0

116.2

0:00:01

10

5:35:41

No ACGIH

67.8

117.4

0:00:02
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Dosimeter #

Total Time

Las

Lasmax

Average 82.6 85.6

TWA 79.5 82.4

Dose % 23.17% 34.95%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 81.3 86.2

TWA 78.0 82.9

Dose % 18.95% 37.31%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 61.7 77.4

TWA 58.3 74.0

Dose % 1.23% 10.84%

UL 115

Dosimeter #

Total Time

Las

Lasmax

Average 78.4 80.2

TWA 75.5 77.0

Dose % 13.36% 6.49%

UL 115

5

5:08:04

No ACGIH

63.9

109.7

0:00:00

9

4:59:27

No ACGIH

68.4

106.2

0:00:00

6

5:03:55

No ACGIH

63.6

119.2

0:00:02

4

5:09:54

No ACGIH

63.9

121.5

0:00:06
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Appendix F: Respiratory Audit Report Questions 

Respiratory Program Audit - 1/19/2016 

# 
OSHA Standard 
and/or Program 

Details 
Ok? Worker #1 Worker #2 

Worker 
#3 

Worker #4 Worker #5 

1 

Management will 
provide the 
necessary respirators 
to its employees who 
work in areas where 
the % oxygen 
content is between 
19.5-23.5%. 

            

2 

Management will 
provide, at no cost to 
the employee, 
medical surveillance 
testing to confirm 
that the worker is 
medically fit for duty. 

  

Fit test 
given at 
hire, last 
one a year 
ago. 
Medical 
survey given 
at hire. 

Fit test 
given at 
hire, none 
since. 
Medical 
survey given 
at hire 

Fit test 
given at 
hire, none 
since. 
Medical 
survey 
given at 
hire 

Fit test 
given at 
hire, none 
since. 
Medical 
survey given 
at hire 

Fit test 
given at 
hire, last 
one given in 
2011. 
Medical 
survey given 
at hire & 
once a year 

3 

Management will be 
responsible for 
updating this 
program as new 
types of respirators 
used in the 
workplace change. 

            

4 

Management will 
provide proper 
training on all things 
related to 
respirators. 

  

Last training 
was a bit 
ago, maybe 
2-3 months 

Doesn't 
remember 
training 

Training 
was 
recently 

Had training 
but has 
been a while 

Every 6 
months, 
don’t 
remember 
last time 

5 

Management will be 
responsible for 
verifying that 
supervisors follow 
the following 
standards. 
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6 

Supervisors will 
ensure that their 
employees have up 
to date fit tests for 
every respirator that 
they use. 

            

7 

Supervisors are 
responsible to verify 
that employees 
comply with the 
following standards. 

            

8 

Employees are 
responsible to clean 
and maintain their 
individual respirator. 

  

Cleans every 
now and 
then, maybe 
once a week 

Cleans every 
now and 
then 

Cleans 
every now 
and then, 
disposible 
respirators 
so gets rid 
of them as 
needed 

Cleans every 
now and 
then, 
disposible 
respirators 
so gets rid 
of them as 
needed 

Clean once a 
week or so 

9 

Each employee is 
responsible to 
understand and 
follow the guidelines 
hereafter stated in 
the respiratory 
protection program 

            

10 

Each employee is 
responsible to wear 
the appropriate 
respirator that they 
have been assigned 
by management 

            

11 

It is the responsibility 
of the employee to 
report any damage 
or problem with their 
respirator 
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12 

Respirators will be 
provided to all AFFCo 
employees that work 
in environments 
where work hazards 
to protect employees 
from known 
workplace hazard(s).  

            

13 

The only respirators 
that will be used on 
AFFCO property will 
be NIOSH approved 
respirators. 

            

14 

N95’s will be used in 
certain areas and at 
certain times at 
AFFCo such as when 
pouring and stainless 
steel welding occur. 

            

15 

When using the 
sandblaster, a 
supplied air 
respirator will be 
used to supply air to 
the worker inside the 
room. 

            

16 

Before an employee 
will don any 
respirator or be fit 
tested, the employee 
will have do the 
following: 
1. Completed a 
company medical 
evaluation form 
2. Completed the 
OSHA Questionnaire 
3. Visit ProMed 
Services for 
evaluation 

  Did at hire Did at hire Did at hire Did at hire Did at hire 
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17 

If the employee 
requires a follow up 
examination, the 
company will make 
sure that the 
employee sees the 
medical professional 
for further follow up.  

            

18 

If the employee at 
any time does not 
want to see the 
medical professional 
provided by the 
company, that 
employee will either 
be reassigned or 
terminated from the 
current job where a 
respirator is needed. 

            

19 

After an employee 
has received medical 
clearance from the 
medical professional, 
they will then be fit 
tested to the specific 
respirator(s) that 
they will be using in 
their job.  

            

20 

The company will fit 
test using the 
qualitative fit testing 
procedures 

            

21 

The person will 
perform a fit test: 
a. Before the initial 
use of the 
respirator(s) 
b. Whenever a 
different respirator 
face-piece (size, 
style, model and/or 
make) is used 

  

Fit test is 
not 
performed 
annually, 
but one was 
performed 
in the last 
year for him 

Fit test is 
not 
performed 
annually 

Fit test is 
not 
performed 
annually 

Fit test is 
not 
performed 
annually 

Fit test is 
not 
performed 
annually 
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c. Annually 

22 

If at any time that 
the employee’s 
physical condition 
changes, ie severe 
facial scarring, 
cosmetic surgery, 
dental changes, the 
employee will then 
receive a new fit test 
regardless of when 
their last test was 
performed.  

            

23 

No facial hair is 
permitted on 
workers who’s use a 
respirator 

  Goatee Goatee has stubble has stubble has stubble 

24 

If an employee wears 
glasses of any sort, 
than they will need 
to be worn in a way 
that it will not 
interfere with the 
overall integrity of 
the respirator 

      

Has some 
but are 
worn 
outside of 
work 

    

25 
Alteration of any kind 
to the respirator is 
prohibited 
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26 

Before each and 
every use, employees 
will perform a seal 
check to ensure a 
proper seal is 
obtained on that 
respirator depending 
on the 
manufacturer’s 
instructions. 

  
Seal check is 
semi-
performed 

Straps are 
checked but 
I positive 
and 
negative air 
checks are 
not 
perfomed 

Straps are 
tightened 
but not 
positive or 
negative 
seal checks. 
Gets rid of 
it when he 
can smell 
manganese 

Straps are 
tightened 
but not 
positive or 
negative 
seal checks. 
Gets rid of it 
when he can 
smell 
manganese 

Everytime 

27 

If at any time the 
scope of the project 
requires a different 
respirator to protect 
from another 
chemical that the 
current respirator 
cannot, the area will 
be reevaluated and if 
needed, another 
respirator and fit test 
will be given to the 
worker 

            

28 

If there are any signs 
of damage, or the 
worker can detect 
that the respirator is 
not effectively 
performing its job, 
the worker will then 
need to leave the 
area and inform 
management for 
further instruction.  

      

Throws it 
away and 
grabs a new 
one 

Throws it 
away and 
grabs a new 
one 

Checked 
weekly 

29 

Respirators will be 
cleaned and 
disinfected every 
time they are won by 
someone else. 

Each 
have 
their 
own 
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30 

If a respirator is only 
worn by one person, 
then that person will 
clean and disinfect 
that respirator often 
enough where it can 
maintain a sanitary 
condition. 

Each 
have 
their 
own 

          

31 
Respirators will also 
be cleaned after 
every fit test. 

            

32 

Respirators will be 
stored in a clean and 
neat area that is 
protected from 
sunlight or other 
chemicals that will 
deteriorate the 
integrity of the 
respirator 

  
Stored in 
bag in locker 

Stored in 
locker, left 
out hanging 
when 
working 

Stored in 
bag inside 
pouring 
area shack 

Stored in 
bag inside 
pouring area 
shack 

Stored in 
bag inside 
cabinet in 
the paint 
shop 

33 

All respirators will be 
inspected before 
each use and after 
every cleaning.  

  
bi-monthly 
cleaning 

Never really 
cleans it 

usually 
inspected 
prior to use 

inspected 
sometimes 

Inspected 
every time 
its put on 

34 

If there are problems 
with the respirator, 
that respirator will 
not be donned. 
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35 

A visual inspection of 
the following should 
be noted for any sign 
of damage.  
i. Damage to the 
straps 
ii. If using an 
elastomeric 
respirator, the 
pliability of the 
elastomeric parts 
iii. Missing pieces 
iv. Damage to the 
connecting tubes 
and/or valves 
v. Are the cartridges, 
canisters or filters 
past their usage 
date? 

            

36 

If there are any air 
canisters located on 
site, a monthly check 
of those canisters are 
needed to make sure 
air is still supplied 
therein. 

            

37 

If any repairs are 
needed, they will be 
performed by a 
trained technician or 
new ones issued. 

            

38 

Cartridge change out 
schedule will be per 
the manufacturer’s 
recommendations, 
with consideration 
given to NIOSH for 
any specifics that 
they may have come 
up with.  
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39 

Respiratory 
protection training 
will be given before 
the employee first 
don’s a respirator. It 
will then occur at the 
minimum annually 
thereafter.  

  

Given at 
start of 
employment 
and various 
times 
afterwards 

Given at 
start of 
employment 
and 
annually 

Training 
was not 
given 
and/or 
does not 
remember 
respiratory 
training 

Given at 
start of 
employment 
but not 
afterwards 

Not given at 
start of 
employment 
but had 
some since 

40 

Training will consist 
of the following:a. 
Why is the respirator 
necessaryb. How 
improper use can 
affect the overall 
integrity of the 
productc. Limitations 
and capabilities of 
the respiratord. How 
to use the respirator 
in emergency 
situationsi. How to 
manage respirator 
malfunctionse. How 
to…i. Inspectii. Put 
oniii. Removeiv. 
Usev. Check proper 
sealsf. Procedures for 
maintenance and 
storageg. Recognize 
potential medical 
signs and symptoms 
that may limit or 
prevent respirator 
effectiveness  

            

41 

This program will be 
evaluated on a needs 
basis depending on 
any respiratory 
changes that occur in 
the workplace. 
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42 

The following written 
information will be 
kept on file at the 
workplace.a. Medical 
evaluation will be 
kept for the length of 
employment plus 30 
yearsb. Fit testing 
records will be kept 
until the next fit test 
is performed for each 
workeri. The fit test 
will include the 
following 
information:1. Name 
and/or identification 
of employee2. Type 
of fit test being 
performed3. Specific 
make, model, style 
and size of the 
respirator tested4. 
Date of test5. Pass or 
Fail notification 
marked on 
documentc. 
Respiratory 
protection program 
will be kept until new 
changes are made. 
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Appendix G: Ventilation Blueprints 
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