
Montana Tech Library
Digital Commons @ Montana Tech
Proceedings of the Annual Montana Tech Electrical
and General Engineering Symposium Student Scholarship

2016

Phasor Measurement Unit Testing and Related
Topics
Joe Perigo
Montana Tech of the University of Montana

Follow this and additional works at: http://digitalcommons.mtech.edu/engr-symposium

This Article is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for
inclusion in Proceedings of the Annual Montana Tech Electrical and General Engineering Symposium by an authorized administrator of Digital
Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu.

Recommended Citation
Perigo, Joe, "Phasor Measurement Unit Testing and Related Topics" (2016). Proceedings of the Annual Montana Tech Electrical and
General Engineering Symposium. 10.
http://digitalcommons.mtech.edu/engr-symposium/10

http://digitalcommons.mtech.edu?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/engr-symposium?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/engr-symposium?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/stdt_schr?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/engr-symposium?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/engr-symposium/10?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sjuskiewicz@mtech.edu

Phasor Measurement Unit Testing and Related Topics

by

Joe Perigo

Senior Design Final Report

Montana Tech of The University of Montana

2016

ii

Abstract

Phasor Measurement Units (PMUs) are devices that take three phase voltages as inputs and

output A/B/C phase magnitudes, angles, frequencies, and time stamp data that correlates to

these outputs. PMU functionality is typically built into protection relays which are used to

protect sensitive areas of the power grid such as transformers and substations. PMU’s then

become useful tools that can provide critical insight into the power grid, and may have

applications in feedback controls as a sensor.

The main goal of this project was to obtain the delay time inherent in SEL-421 and SEL-487

PMU hardware. To test these units I needed to construct a test bench of hardware and software

for signal generation, signal monitoring, signal amplification, data acquisition, data parsing,

and calculation software to analyze the results of my tests. My research focuses on a signals

and systems approach to testing this hardware. By inputting various signals such as phase

ramps (frequency steps), amplitude steps, amplitude modulation and phase modulation I am

able to determine characteristics of the PMU hardware such as delay time. By inputting a

frequency spectrum of phase modulation signals I was able to calculate the transfer function

and obtain a bode plot for the SEL 421 which also yields characteristics of the PMU hardware.

These results are a critical part of a much larger grid protection project, and the accuracy of

these results are paramount.

Keywords: Phasor Measurement Unit (PMU), Delay Time, Signal Generation, Transfer

Function, Bode Plot.

iii

Table of Contents

ABSTRACT .. II

TABLE OF CONTENTS ... III

LIST OF FIGURES .. VI

1. INTRODUCTION ... 1

2. WALKTHROUGH OF THE BLOCK DIAGRAM ... 2

2.1. The Signal and Convert Blocks ... 2

2.2. The Gain Block .. 2

2.3. The SEL 2407 GPS IRIG-B Block ... 3

2.4. The NI PXIe-4300 and NI PXIe-8840 Embedded Controller Blocks 3

2.5. The SEL-421-5-R319 and SEL-487 PMU .. 4

3. PMU TESTING PROCEDURE ... 4

3.1. Precautionary Steps ... 4

3.2. Start Up .. 4

3.3. LabVIEW ... 5

3.4. Phasor and Analog .csv File Contents... 6

4. MATH DOCUMENT .. 7

5. WALKTHROUGH OF MATLAB CODE ... 7

5.1. Signal Generation Code .. 7

5.2. Data Parsing Code .. 7

5.3. Data Loader / Transfer Function Calculator / Bode Plotter .. 8

6. BASELINE TEST .. 8

7. ISSUES RELATED TO PMU TESTING ... 9

7.1. Time.. 9

7.2. Analog Time ... 10

iv

7.3. PMU Time ... 11

7.4. C37.118 Arrival Time .. 12

8. STREAMLINING THE TEST BENCH AND FUTURE TESTING ... 15

9. THE TEAM .. 16

REFERENCES CITED ... 17

APPENDIX A: PHASOR AND ANALOG .CSV CONTENTS .. 18

APPENDIX B: SIGNAL GENERATION CODE .. 20

SINUSOID SIGNAL GENERATION EXAMPLE... 20

DAQ COMMUNICATION CODE ... 21

APPENDIX C: DATA PARSING CODE .. 21

DATA PARSING CODE ... 21

PHASOR DATA PARSING .. 22

ANALOG DATA PARSING ... 23

APPENDIX D: DATA LOADER / TRANSFER FUNCTION CALCULATOR / BODE PLOTTER............................. 24

DATA LOADER / TRANSFER FUNCTION CALCULATOR / BODE PLOTTER .. 24

SETTING UP AN ARRAY FOR THE MODULATION VALUES. .. 25

TRANSFER FUNCTION CALCULATION .. 25

DAN'S CODE .. 27

CREATE SPECTRUM DATA .. 27

PLOT BODES ... 28

APPENDIX E: BASELINE TESTING CODE ... 30

BASELINE TESTING SIGNAL GENERATION. ... 30

SIGNAL PARAMETERS ... 30

A PHASE.. 31

v

B PHASE .. 32

C PHASE .. 32

SETUP TRIGGER .. 33

DAQ COMMUNICATION ... 34

APPENDIX E: BASELINE .CSV READER ... 35

BASELINE .CSV READER ... 35

ESTABLISHED PHASOR BASELINE DATA SET ... 35

NEW PHASOR DATA FOR BASELINE COMPARISON .. 36

ESTABLISHED ANALOG BASELINE DATA SET ... 37

NEW ANALOG DATA FOR BASELINE COMPARISON .. 37

PLOTTING FOR COMPARISON ... 38

APPENDIX F: MATH DOCUMENT .. 40

vi

List of Figures

Figure 1: Test Bench Block Diagram ..1

Figure 2: Analog Check Test ...10

Figure 3: Non-Causal Response Plotted Using PMU Time...11

Figure 4: 'C37.118_Timestamp' Jitter ..13

Figure 5: Stacked Data Points ..13

Figure 6: Data Streching ..14

Figure 7: Streamlined Test Bench..16

1

1. Introduction

The process required to run tests on the SEL-421 and the SEL-487 Phasor Measurement

Unit (PMU) hardware requires several steps and an understanding of the block diagram shown in

Figure 1. The first section of this paper will explain each block in Figure 1 as it pertains to

testing PMUs. At this point a step by step procedure will be explained for running a typical test

on the PMU. To understand the mathematics required for signal generation a discussion of the

equations will be covered. A detailed reference to the math document for this project is also

given in Appendix E. The next section of the paper will detail some of the Matlab code used for

signal generation, data parsing, and calculation. At this point a section of the paper will be

dedicated to baseline testing. This will help ensure that the PMU is functioning as expected and

that future testing will yield good results. From here issues related to PMU testing will be

covered to aid future testing. The last topic covered will look at our plans for streamlining the

test bench and future testing.

Figure 1: Test Bench Block Diagram

2

2. Walkthrough of the Block Diagram

2.1. The Signal and Convert Blocks

The signal block in figure 1 is a PC with Matlab setup to communicate with the NI-

cDAQ-9174. The NI-cDAQ-9174 is a digital to analog converter (DAC) and is connected to the

PC via USB. The sample rate of the NI-cDAQ-9174 can be adjusted up to 100,000 sps. At the

time of this writing the sample rate for this device is set to 40,000 sps. In a script file the desired

signal can be constructed with the code necessary to communicate with the DAC. Examples of

signal generation code with the DAC communication code is provided in Appendix B.

2.2. The Gain Block

Once the signal generation code is compiled Matlab will communicate with the DAC to

create an analog signal which is then amplified via the Tabor 9400-25. This is a four channel

wide band signal amplifier with an ideal gain of 25. There are a few important things to note

about this amplifier. On the back panel of this module there is a ‘Unipolar Mode’ option. This

turns the amplifier into a two input / four output rectified amplifier. It is important for PMU

testing that this option be turned off.

If the PMU is opened up you’ll notice that the first thing the input sees is a set of

transformers. This means that the input impedance to PMU is inductive. So at low frequencies

the input impedance to the PMU is small. The Tabor 9400 is only rated to output 50mA of

current but at low frequencies the PMU is drawing more than this. If sinusoid signals are fed to

the PMU with frequencies below 30Hz the fuse in the Tabor 9400 amplifier will blow. For PMU

testing the frequency range should not drop below 50 Hz. If a fuse is blown there is a cylindrical

tab on the back of the module which can be released with a flat head screw driver. The fuses

needed for this amplifier are rated for 2 Amps at 250 Volts.

3

2.3. The SEL 2407 GPS IRIG-B Block

This block represents a GPS clock which provides an absolute time that is used by both

the NI PXIe and the SEL PMU hardware in time stamping data packets. When looking at the

front panel of this module you will notice a set of LED indicators. For testing purposes it is

important that the green LEDs for ‘Enabled’ and ‘Satellite Lock’ are on. If the orange LED for

‘Holdover’ is on that means that the unit has lost its satellite connection. An antenna is

connected to the side of the Main Hall building that provides a clear view of the sky and the GPS

clock should not have trouble with receiving time from the satellite.

2.4. The NI PXIe-4300 and NI PXIe-8840 Embedded Controller Blocks

The NI PXIe-8840 is a data acquisition system operating with Window OS. LabVIEW is

used on this platform to obtain both analog data from the NI PXIe-4300 and phasor data from the

PMU. The PXIe-4300 is an analog to digital convertor (ADC) and is plugged directly into the

PXIe-8840 chassis. The analog data is time stamped by LabVIEW using the NI PXIe-6683H

GPS IRIG-B Timing Module. To check that PMU data packets are arriving through the network

as expected it is necessary to open Wireshark on the PXIe-8840 and monitor the appropriate IP

address. The time stamps applied to these packets can be saved as a ‘.csv ‘. Importing this time

data into Matlab makes it easy to check for consistency in the arrival time of the PMU data

packets.

By opening up the ‘PMU C37 Reader.vi’ project in Lab View you will be able to save

both a file for the input analog data to the PMU and the output phasor data from the PMU.

These files will be saved as a ‘.csv ‘and can then be imported to Matlab for processing.

4

2.5. The SEL-421 and SEL-487 PMU

This block is the unit being tested. SEL relays are used for various protection schemes in

the power industry and have additional functionality built into them. The PMU functionality of

these devices is the main focus of this paper. Three phase voltage is input into the PMU. Output

from this unit includes timestamp data, A/B/C phasor voltages and angles, and a frequency

associated with these signals.

3. PMU Testing Procedure

A typical testing procedure is outlined to give a reference for discussions in this paper

and will also facilitate more in depth subjects to be addressed in later sections of this document.

3.1. Precautionary Steps

1. Check the SEL-2407 GPS clock to make sure that the ‘Satellite Lock’ is on (LED indicator

will be green). If ‘Satellite Lock’ is off and the ‘Hold over’ LED is showing orange it can’t

be guaranteed that time stamp data will be accurate.

2. Make sure that the ‘Unipolar Mode’ on the back of the Tabor 9400 amplifier is off.

3. Check the signal generation code to ensure that frequencies below 30Hz are not being

sent to the amplifier. This is assuming that the PMU is being fed the amplified signals.

See the description of the ‘Gain Block’ above for details.

4. The signal generation code should also be checked to make sure that the signals are

zeroed out at the end of the code. This is due to the fact that the DAC will not zero out

signals after the signal generation code is complete. For Example, if you run a plain

60Hz sinusoid through the DAC and at the end of the code the sinusoid ends at 20 Volts,

then instead of the signal dropping to 0 Volts it will instead sit at 20 Volts DC. This is bad

since the PMU will be drawing more current than the amplifier can supply, and a blown

fuse will result.

3.2. Start Up

The PC with Matlab will need to be booted and the desired signal generation code

ready to go. The NI PXIe-8840 will also need to be booted up with LabVIEW loaded and

5

ready to go. Below is a detailed description on how to load the ‘PMU C37 Reader.vi’ project

in LabVIEW.

3.3. LabVIEW

Launch LabVIEW and select the ‘Open Existing’ option. In the file directory select

‘Montana Tech EE PMU Testing Station’, then select ‘pmuTestingStation’ from the project

explorer window. Finally select ‘PMU C37 Reader.vi’ from the new project explorer

window. Once LabVIEW is ready to go it will be necessary to name the data files. In the

Graphic User Interface (GUI) associated with this project there will be two options, ‘Phasor

Data’ and ‘Analog Data’. ‘Phasor Data’ refers to the output from the PMU. ‘Analog Data’

refers to the signal received by the NI PXIe-8840 from the NI PXIe-4300. By clicking on the

folder icon you will be taken to a save screen. It is important that the naming convention be

chosen with some thought as it might make life easier when importing these files into Matlab

later. For example, if a frequency sweep test is being run on the PMU a naming convention

for the files might look like this:

Phasor File Naming Convention for Frequency Sweep Test:

Phasor_FreqSweep_00.1Hz.csv

Phasor_FreqSweep_00.2Hz.csv

Phasor_FreqSweep_00.3Hz.csv

Analog File Naming Convention for Frequency Sweep Test:

Analog_FreqSweep_00.1Hz.csv

Analog_FreqSweep_00.2Hz.csv

Analog_FreqSweep_00.3Hz.csv

6

It is necessary to put the file extension ‘.csv’ in the file name. The only thing that

changes in the file names is the frequency value that is being sent to the NI PXIe-8840 and the

PMU. When these files are imported into Matlab for analysis, instead of importing each file one

at a time, it will be possible to write a for loop that will import all the files at once. This is made

easier with naming conventions similar to the one shown above.

With Matlab and LabVIEW ready to go it is now possible to run tests. The PMU has a

‘config’ frame that starts at the beginning of each minute on the GPS clock. This means that data

packets will be sent out to the NI PXIe-8840 at the beginning of each minute. This also means

that the PMU will not record data until this ‘config’ frame starts. The PMU was designed to be

receiving 3 phase power 24-7. So with this in mind it is good practice that the input signal be

running before the ‘config’ frame starts. A typical test might be run as follows:

1. Have Matlab and LabVIEW ready to go as described above

2. While looking at the GPS clock wait for the 45th second. At this time hit play on the

LabVIEW GUI to start recording analog data. Remember that phasor data won’t record

until the config frame starts at the beginning of the next minute.

3. While looking at the GPS clock wait until the 50th second. At this time hit play on the

Matlab script to generate the test signal. This will give Matlab a few seconds to compile

the signal generation code and send it out before the config frame starts. This will

ensure that the PMU is seeing 3 phase signals before the config frame starts.

4. Once the Matlab signal generation code has completed running then hit stop on the

LabVIEW GUI to stop recording data.

5. Transfer ‘.csv’ data files to a PC with Matlab for processing.

3.4. Phasor and Analog .csv File Contents

Once the phasor and analog files have been saved they can then be imported into Matlab.

Before doing this it might be useful to open up the raw ‘.csv’ files in both Microsoft Excel and in

Notepad for viewing. In Excel the data in both the phasor and analog files will be contained in a

single column vector. This knowledge will be helpful when parsing the data with the ‘textscan’

function in Matlab. When the files are viewed in Notepad there will be separate columns with

7

headers that aren’t quite lined up. With a little effort the headers can be adjusted. An example

of these files is referenced in Appendix A.

4. Math Document

To summarize and prepare the mathematics for this project a math document was

developed. The basis of this document are the equations presented in ‘Frequency Estimation for

Inter-Area Oscillation Feedback Damping Control’ (Trudnowski, Hill, Wold, 2015). The

equations are listed in their base form and are then expanded into a testing form to further aid the

process of writing test code. Before running signals or writing signal generation code a

fundamental knowledge of this document and all the equations listed is paramount. A copy of

this document is referenced in Appendix F.

5. Walkthrough of Matlab Code

5.1. Signal Generation Code

The signal generation script file will contain code that generates 3 phase signals as well

as code for a timing trigger. The timing trigger will be key in detecting when changes in the

input signal occur such as steps in frequency or when switching between frequency modulation

and phase modulation. When the data is parsed out and plots are made it will be possible to see

exactly when the input signal changed and the PMU’s response to this change. The signal

generation script file will also need to contain the commands necessary for communication to the

NI-cDAQ-9174 as seen in Appendix B.

5.2. Data Parsing Code

As mentioned above the Analog and Phasor ‘.csv’ files contain a single column vector.

Within this vector is contained various time stamp, voltage, and frequency data. One method to

parse this data is to use the ‘textscan’ function in Matlab. An example of a data parsing script is

8

given in Appendix C. This script file is particularly useful for parsing multiple data files. It uses

a for loop to step through the naming convention mentioned above. At the end of the for loop

the data of interest is then isolated and saved to a ‘.mat’ file. This option is only useful if the

user wishes to do further calculation in a separate script file, such as calculating transfer

functions, and bode plotting. Otherwise simple plotting can be done directly in the data parsing

script, such as plotting the analog A phase input against the A phasor magnitude output to see the

PMU’s response to a particular input.

5.3. Data Loader / Transfer Function Calculator / Bode Plotter

One of the desired goals of this project was to obtain a transfer function for the PMU

unit. The method for calculating this transfer function is based on equation 6 listed in Appendix

F. With this transfer function a bode plot for the PMU can be used to visualize PMU

characteristics. To accomplish this a frequency spectrum of phase modulation signals were input

to the PMU. Data parsing code written specifically for this testing sequence is then used to

obtain the A phase magnitude, angle, and frequency from each test in the spectrum. An example

of this code is referenced in Appendix D with details commented out pertaining to the various

calculations.

6. Baseline Test

A large amount of testing on the PMU was run to ensure that the device was behaving as

expected. Once it was determined that the devices were giving consistent results a series of base

line tests were developed for pre-testing purposes. Only after reproduceing this baseline test

should futrue testing be conducted. It was decided the best baseline test would consist of a

mixed signal with at least 30 seconds of data. The signal for baseline testing consists of a mix of

steps, AM, FM, and PM. By sending the PMU a good mixed signal any red flags that may exsist

9

in the device should become apparent when running this signal. The signal generation code for

baseline testing is referenced in Appendix E.

7. Issues Related to PMU Testing

7.1. Time

The analog and phasor ‘.csv’ files will contain three timestamp column vectors. The

analog ‘.csv’ file contains a timestamp column vector that corresponds to the analog signals

being received by both the NI PXIe-8840 and the PMU. The phasor ‘.csv’ file contains two

timestamp column vectors. The ‘PMU_Timestamp’ signify the internal timestamps made by the

PMU which correspond to the output of this unit. The ‘C37.118_Timestamp’ signifies the

timestamps made by LabVIEW as the data packets are received from the PMU which also

correspond to the output of this unit. Ideally the ‘PMU_Timestamp’ column vector and the

‘C37.118 Timestamp’ column vectors should line up perfectly and correspond to the output of

the PMU with exact reference to GPS time. Unfortunately they don’t.

10

7.2. Analog Time

With uncertainty in the ‘PMU_Timestamp’ and ‘C37.118_Timestamp’ data one of the

first things we wanted to test was to make sure we could trust the analog GPS timestamp data.

To do this two tests were run. The first was to run a 60 Hz sinusoid through the PMU. The input

was then captured on an oscilliscope and the data saved to a ‘.csv’. The analog data was then

saved from the NI PXIe-8840 and imported into Matlab along with the oscilliscope data. The

signals were then plotted on top of eachother. The results of this test show that the oscilliscope

data and the NI PXIe-8840 data line up right on top of eachother. The figure below shows a

sample of these results.

Figure 2: Analog Check Test

The next test that was run involved sending three signals out to the NI PXIe-8840 that

were all 60Hz sinusoids in phase with eachother. The output data from the NI PXIe-8840 shows

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

-100

-50

0

50

100

Analog Test. Checking to see if Oscope Data Matches Analog Packet Data.

A Phase Analog Oscope

A Phase Analog Packet

11

that these signals lie right on top of eachother as expected. With these results it was concluded

that the analog data could be trusted.

7.3. PMU Time

As mentioned above the ‘PMU_Timestamp’ column vector represents the timestamps

recorded internally by the PMU which are then sent to the NI PXIe-8840 in data packets through

the network. The PMU samples at 60 sps and when the data is plotted the data points are

consitent with this sample rate. An easy way to check this is to use the ‘diff’ funciton in Matlab

to plot the difference between data points in the PMU time vector. The issue with the PMU time

vector is that it shows non-causal responses in our tests. This implies that that the PMU can see

into the future or that this unit is back dating data. After reviewing the data and discusions with

Dr. Trudnowski it has been concluded that the PMU looks at a 6 cycle window of data and puts a

timestamp in the middle of this window instead of at the end of the window. An example of this

response can be seen in the figure below.

Figure 3: Non-Causal Response Plotted Using PMU Time

12.1 12.15 12.2 12.25 12.3

-100

-50

0

50

100

150

Time

rm
s
 V

o
lt
a
g
e

Amplitude Step. Data Set 0002.

Analog A Phase Voltage

A Phasor Voltage

Analog Trigger

12

The plot above shows the PMU’s response to an amplitude step of a 60Hz sinusoid made

at the peak. The blue data shows the analog input to the PMU. The black data plot shows the

timing trigger that is used in various tests to show exactly when points of interest occur in our

tests. The red data corresponds to the PMU’s A phasor output. As can be seen in the plot the

time data shows that the PMU reacts three samples before the amplitude step even occurs. This

is consistent with our knowledge that the PMU is taking a six cycle window of data and applying

the timestamp in the middle of this window.

7.4. C37.118 Arrival Time

The ‘C37.118_Timestamp’ refers to the timestamps made by LabVIEW as data packets

are received at the PXIe through an ethernet connection. These timestamps correspond to the

output of the PMU. The issue with this time stamp data is that the timestamps are made

inconsistently and end up distorting the data. To see this it is necessary to show individual data

points when plotting so that it is possible to see each timestamp. There were two main issues

that came up when using the ‘C37.118_Timestamp’ data. The first is that the data showed a

certain amount of ‘jitter’. This means that the time stamps would show some regularity and then

at somewhat constant intervals the timestamps would get backed up in the system. The second

major issue with ‘C37.118_Timestamp’ data is that the timestamps would be made at regular

intervals and then the data would become stretched. This is not simply a delay, but an increasing

delay with time causeing the data to stretch out. An example of the jitter issue can be seen

13

below.

Figure 4: 'C37.118_Timestamp' Jitter

The above example shows a sinusoidal signal stepping up to an AM signal at approximately 18.6

seconds. When looking closely at the output data from the PMU it is clear that there are gaps in

the data at somewhat regular intervals. There are in fact no missing time stamps. When

zooming in on the gaps you can see how there are two to three data points that lie on top of each

other as shown below.

Figure 5: Stacked Data Points

18.0165 18.0165 18.0165 18.0165 18.0165 18.0165 18.0165

65.4648

65.465

65.4652

65.4654

65.4656

65.4658

65.466

65.4662

Time

rm
s
 V

o
lt
a
g
e

Analog A Phase Voltage Input

A Phasor Voltage Output Using C37.118 Arrival Time

14

The second issue with the ‘C37.118_Timestamp’ data is the stretching effect. This is

more of a rare occurrence as it only occurred a handful of times throughout three months of

testing. At a glance it can be seen that the data is not being just delayed but stretched as the

interval between each time stamp grows.

Figure 6: Data Stretching

The stretching is most obvious towards the end of the data set where the smaller AM signal is

stretched out compared to the original input signal.

To try and solve the issues with the ‘C37.118_Timestamp’ a number of possible solutions

were implemented. In discussions with the team it was speculated that the stretching effect and

even the jitter might be caused from the PXIe being connected to the school network. To try and

solve this we disconnected the PXIe from the network and wired it directly to the PMU through a

cross over cable. This didn’t seem to fix our issues as the jitter continued as well as the

stretching effect. To minimize any delays in the network the PXIe and the PMU remained

connected through the cross over cable.

-5 0 5 10 15 20 25 30 35 40 45
-150

-100

-50

0

50

100

150

Time

rm
s
 V

o
lt
a
g
e

Time Scale Based on c37 Packet Time Data Set 006

Aphase Analog Input

A Voltage Phasor Output

15

There are a few possible reasons why the ‘C37.118_Timestamp’ are having these issues.

One reason might be how LabVIEW runs on Windows OS. Windows is somewhat notorious for

having issues when networking time is critical. The idea is that data packets are arriving at a

buffer in the PXIe, and instead of being timestamped immediately the timestamps are being

made after Windows performs other critical tasks. Another possibility is that the LabVIEW code

itself might have issues as to how this timestamping is being conducted in the loops contained in

the code. The Analog timestamps are also being made by LabVIEW and they don’t display any

of the jitter or stretching issues associated with the ‘C37.118_Timestamp’.

It was decided that the PMU timestamp data would be used since these timestamps were solid in

their consistency.

8. Streamlining the Test Bench and Future Testing

To enhance usability the test bench will be integrated into the rack with the SEL

hardware. The main goal was to be able to remote desktop into the test bench and run signals

into system and pull data from the PXIe from anywhere on campus. A server specific for this

task was considered but the price tag associated with this server made us explore other options.

After some consideration the best option turned out to be a rack mounted PC which could then

be connected to the network switch in lab along with the PXIe. With this setup it is possible to

use the remote desktop application to tap into the test bench. A block diagram of the new test set

16

up is shown in the figure below.

Figure 7: Streamlined Test Bench

9. The Team

I would like to mention that I would not have been able to accomplish this project

without a lot of help from the team that worked with me. James Colwell, Dr. Dan Trudnowski,

Dr. Josh Wold, Matt Stajcar, Dr. Bryce Hill, and Dr. Matt Donnelly not only helped me get the

job done, but also taught me a lot along the way and I would like to thank them for this.

17

References Cited

Wold, J., Trudnowski, D., Hill, B. (2015). Frequency Estimation for Inter-Area Oscillation

Damping Controller. Not Published.

18

Appendix A: Phasor and Analog .csv contents

 Analog File Contents:

19

 Phasor File Contents:

20

Appendix B: Signal Generation Code

Sinusoid Signal Generation Example

% This code generates a simple sinusoid. The frequency can be adjusted via

% the frequency variable "f". If this signal is being amplified via the

% Tabor 9400 and then sent to the Relay/PMU it is important to keep the

% frequency above 30Hz.

clear all;

close all;

clc;

tic

% Signal Parameters

f = 60; % in Hz

% 'sigmag' refers to the signal magnitude in the sinusoids below. To

% calculate this take 6.5*25 = 162 Volts. The '25' refers to the gain of

% the Tabor 9400. We want to keep our signal below 170 Volts so setting

% sigmag = 6.5 should be good.

sigmag = 6.5;

% 'DACfreq' refers to the sample rate of the NI-cDAQ-9174. In the time

% vector 't' it is pointless to try and sample any higher than 1/DACfreq

% since the NI-cDAQ-9174 will only sample at 1/40000. The sample rate of

% the NI-cDAQ-9174 can be adjusted up to 100000 sps. If this adjustment is

% made to the hardware make sure to adjust the code appropriately.

DACfreq = 40000; % in Hz

tend = 45; % in seconds

t = 0:1/DACfreq:tend;

% Signal generation code for A, B, and C phases. Signal code for a timing

% trigger is also included. A, B, and C phases are basic sinusoids. The

% step fun command is used to turn on 0 volts DC at 0 seconds and off at 5

% seconds. Then a basic sinusoid is turned on at 5 seconds and turned off

% at 40 seconds. The signals are then zeroed at 40 seconds until tend. It

% is important to zero the signals out due to the fact that the

% NI-cDAQ-9174 will hold the final sinusoid value as a DC signal at the end

% of the code. The PMU draws more current at low frequencies than the

% Tabor 9400 can supply especially at DC.

Asig = 0.00.*(stepfun(t,0)-stepfun(t,5.00))+...

 sigmag*sin(2*pi*f*t).*(stepfun(t,5.00)-stepfun(t,40.00))+....

 0.00.*(stepfun(t,40.00)-stepfun(t,tend));

Bsig = 0.00.*(stepfun(t,0)-stepfun(t,5.00))+...

 sigmag*sin(2*pi*f*t - 2*pi/3).*(stepfun(t,5.00)-stepfun(t,40.00))+...

 0.00*sin(2*pi*60*t - 2*pi/3).*(stepfun(t,40.00)-stepfun(t,tend));

Csig = 0.00.*(stepfun(t,0)-stepfun(t,5.00))+...

 sigmag*sin(2*pi*f*t + 2*pi/3).*(stepfun(t,5.00)-stepfun(t,40.00))+...

 0.00.*(stepfun(t,40.00)-stepfun(t,tend));

21

Trig = 0.00.*(stepfun(t,0)-stepfun(t,5.00))+...

 6.5*(stepfun(t,5.00)-stepfun(t,40.00))+...

 0.00.*(stepfun(t,40.00)-stepfun(t,tend));

DAQ communication code
The following code is used to communicate with the NI-cDAQ-9174.

dataOut = [Asig' Bsig' Csig' Trig'];

% Create the data acquisition session.

cDAQ = daq.createSession('ni');

% Create analog output channel on board ID 'cDAQ1Mod1', channel # 'ao0', with signal type

'Voltage');

cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao0', 'Voltage');

cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao1', 'Voltage');

cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao2', 'Voltage');

cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao3', 'Voltage');

cDAQ.Rate = DACfreq; % Refresh rate of DAQ [Hz].

queueOutputData(cDAQ,dataOut);

startForeground(cDAQ);

% Clean up and release hardware.

cDAQ.release();

delete(cDAQ);

clear cDAQ;

toc

%

Appendix C: Data Parsing Code

Data Parsing Code
This code is used to retrieve data from the phasor and analog csv files which are saved from LabView.

The format of the csv files requires that various time stamp values, voltages and phase angels are parsed

out using the textscan function. More detail on this function is provided below.

close all;

clear all;

clc;

% 'freq_mod_value' describes a list of modulation frequencies(Hz) used in a

% phasse modulation test. By putting these values in a cell array we are

% able to use a for loop to parse the data out of multiple files all at

% once rather than individually. The for loop will use 'freq_mod_value' for

% indexing.

22

freq_mod_value={'00.1','00.2','00.3','00.4','00.5','00.6','00.7','00.8',...

 '00.9','01.0','01.1','01.2','01.3','01.4','01.5','01.6','01.7',...

 '01.8','01.9','02.0','02.1','02.2','02.3','02.4','02.5','02.6',...

 '02.7','02.8','02.9','03.0','03.1','03.2','03.3','03.4','03.5',...

 '03.6','03.7','03.8','03.9','04.0','04.1','04.2','04.3','04.4',...

 '04.5','04.6','04.7','04.8','04.9','05.0','06.0','07.0','08.0',...

 '09.0','10.0','12.0','14.0','16.0','18.0','20.0','22.0','24.0',...

 '26.0','28.0','30.0','35.0','40.0','45.0','50.0','55.0','60.0'}

Phasor Data Parsing
Using fopen is necessary for the textscan function to get data out of the file. The parameters of the

textscan function are the fileID variable, followed by several character types which appear in a specific

order relative to how the data is organized in the csv file. The textscan function also requires you to

define how many header lines are in the csv file and how it is delimited.

for k=1:length(freq_mod_value)

 infileID=['Phasor_FreqSweep_' freq_mod_value{k} 'Hz.csv'];

 fileID = fopen(infileID);

 CP = textscan(fileID,...

 '%f%c%f:%f:%f%f%c%f:%f:%f %f %f %f %f %f %f %f %f %f ',...

 'Headerlines',1,'Delimiter',',');

 fclose(fileID);

 % The Data is now parsed and seperated out in large columns that are

 % contained in cells. To make this data more accesable and easier to know

 % exactly what the data represents it will be removed from the cells to be

 % stand alone vectors that are named accordingly.

 % Define PMU Time Stamp Variables

 PMUtStampYMD = CP{1};

 PMUtStampHour = CP{3};

 PMUtStampMin = CP{4};

 PMUtStampSec = CP{5};

 % Define c37 Time Stamp Variables

 c37tStampYMD = CP{6};

 c37tStampHour = CP{8};

 c37tStampMin = CP{9};

 c37tStampSec = CP{10};

 % Define Voltage Phase Varables

 posSeqVol = CP{11};

 posSeqAng = CP{12};

 PhasorAVol = CP{13};

 PhasorAAng = CP{14};

 PhasorBVol = CP{15};

 PhasorBAng = CP{16};

 PhasorCVol = CP{17};

 PhasorCAng = CP{18};

23

 PhasorFreq = CP{19};

 % This section of the code is used to obtain the time the test was run.

 % There are two sets of time stamp data. Total test time will be

 % determined for both the PMU time stamps and the c37 time stamps. Each

 % set of data will also have a time vector used for plotting.

 % This section is used to shift the data to start at time = 0 seconds.

 zeroPMUPhasorTime = (PMUtStampHour(1) * 60 * 60) +...

 (PMUtStampMin(1) * 60) + (PMUtStampSec(1));

 zeroC37PhasorTime = (c37tStampHour(1) * 60 * 60) +...

 (c37tStampMin(1) * 60) + (c37tStampSec(1));

 zeroTime1 = zeroPMUPhasorTime;

 % New time vectors. Takes the time vectors from the hour, min, and seconds

 % and then converts all to seconds. Then we shift the scale to start at

 % zero.

 PMUtimeVector = (PMUtStampHour * 60 * 60) + (PMUtStampMin * 60) +...

 PMUtStampSec - zeroTime1;

 c37TimeVector = (c37tStampHour * 60 * 60) + (c37tStampMin * 60) +...

 c37tStampSec - zeroTime1;

Analog Data Parsing
See the above comment for a description on the textscan function

 infileID=['Analog_FreqSweep_' freq_mod_value{k} 'Hz.csv'];

 fileID = fopen(infileID);

 CA = textscan(fileID,'%f%c%f:%f:%f %f %f %f %f ','Headerlines',1,...

 'Delimiter',',');

 fclose(fileID);

 % As described above this section of the code is pulling the data columns

 % out of cells and naming them for easier access and use.

 AnalogtStampHour = CA{3};

 AnalogtStampMin = CA{4};

 AnalogtStampSec = CA{5};

 % This section is used to make sure the plots start at time zero

 zeroAnalogTime = (AnalogtStampHour(1) * 60 * 60) +...

 (AnalogtStampMin(1) * 60) + AnalogtStampSec(1);

 % New time vectors. Takes the time vectors from the hour, min, and seconds

 % and then converts all to seconds. Then we shift the scale to start at

 % zero.

 AnalogTimeVector = (AnalogtStampHour * 60 * 60) +...

 (AnalogtStampMin * 60) + AnalogtStampSec -...

 zeroTime1;

 % Give variable names to the 3 phases

24

 AnalogAphase = CA{6};

 AnalogBphase = CA{7};

 AnalogCphase = CA{8};

 AnalogTrig = CA{9};

% Voltage plot. Good for checking that the data is ok.

% figure

% plot(PMUtimeVector,PhasorAVol,'*-r')

% hold on

% plot(AnalogTimeVector,AnalogAphase/sqrt(2),'b')

% xlabel('Time')

% ylabel('Magnitude')

% legend('A Phasor Voltage','Analog A Phase')

% grid

% title(freq_mod_value{k})

% axis([-10 60 -150 150])

 % This code is used to find a specific voltage magnitude for the

 % timing trigger. By finding the index of the trigger at the desired

 % point we can capture a known input signal time length and a known

 % PMU output time length.

 DataStart = find(AnalogTrig>139.8);

 DataStart = DataStart(1);

 % Use the time vectors to relate Analog and Phasor data.

 PMUstart = find(PMUtimeVector>AnalogTimeVector(DataStart));

 % Starting point of interst for PMU data.

 PMUstartIndx = PMUstart(1)

 % Isolating Phasor frequency, A phase magnitude, and A phase angle data

 % of interest from PMU.

 PhasorFreq_Freq = PhasorFreq(PMUstartIndx:PMUstartIndx + 1800);

 PhasorAVol_Mag = PhasorAVol(PMUstartIndx:PMUstartIndx + 1800);

 PhasorAAng_Ang = PhasorAAng(PMUstartIndx:PMUstartIndx + 1800);

 % Using the for loop index to step through 'freq_mod_value' and save

 % the data above as '.mat' files.

 outfileMag=['PhasorFreqSweep_Mag_' freq_mod_value{k} 'Hz.mat'];

 outfileAng=['PhasorFreqSweep_Ang_' freq_mod_value{k} 'Hz.mat'];

 outfileFreq = ['PhasorFreqSweep_Freq_' freq_mod_value{k} 'Hz.mat'];

 save(outfileMag,'PhasorAVol_Mag')

 save(outfileAng,'PhasorAAng_Ang')

 save(outfileFreq,'PhasorFreq_Freq') end;

Appendix D: Data Loader / Transfer Function Calculator / Bode Plotter

Data Loader / Transfer Function Calculator / Bode Plotter
This script loads the A phase voltage, A phase angle, and frequency output data from the PMU. From

here a numerical derivative is done on the A phase angle to get frequency. Then the fft is done on the

frequency to get eqn. 4 from the 'Frequency Estimation for Inter-Area Oscillation Feedback Damping

Controller' paper. The input term in the denominator is simple since we know the derivative of the

frequency/phase term in the phase modulation signal which was sent to the PMU for processing. With

this derivative we also know the fft of this will be Aphi*wm < wm*to.

25

close all;

clear all;

clc;

Setting up an array for the modulation values.
Set up frequency sweep for the phase modulation in a cell array.

freq_mod_value={'00.1','00.2','00.3','00.4','00.5','00.6','00.7','00.8',...

 '00.9','01.0','01.1','01.2','01.3','01.4','01.5','01.6','01.7',...

 '01.8','01.9','02.0','02.1','02.2','02.3','02.4','02.5','02.6',...

 '02.7','02.8','02.9','03.0','03.1','03.2','03.3','03.4','03.5',...

 '03.6','03.7','03.8','03.9','04.0','04.1','04.2','04.3','04.4',...

 '04.5','04.6','04.7','04.8','04.9','05.0','06.0','07.0','08.0',...

 '09.0','10.0','12.0','14.0','16.0','18.0','20.0','22.0','24.0',...

 '26.0','28.0','30.0','35.0','40.0','45.0','50.0','55.0','60.0'};

Transfer Function Calculation

for k=1:length(freq_mod_value)-1 % Steps through each frequency.

 % Assigns a variable with index of k to a file location which also

 % steps through the naming convention using ' freq_mod_value{k} '

 Angstr{k}=['C:\Users\jhperigo\Desktop\PMU Testing\New PMU with Updated Firmware\Transfer

Function Test 1\PhasorFreqSweep_Ang_' freq_mod_value{k} 'Hz.mat'];

 Magstr{k}=['C:\Users\jhperigo\Desktop\PMU Testing\New PMU with Updated Firmware\Transfer

Function Test 1\PhasorFreqSweep_Mag_' freq_mod_value{k} 'Hz.mat'];

 Freqstr{k} = ['C:\Users\jhperigo\Desktop\PMU Testing\New PMU with Updated Firmware\Transfer

Function Test 1\PhasorFreqSweep_Freq_' freq_mod_value{k} 'Hz.mat'];

 % Sets up modulation frequency by pulling values out of freq_mod_value

 % and converting them to with str2num.

 modfreq(k)=str2num(freq_mod_value{k}); % Hz

 % Now sets a variable for Magnitude and Angle which loads from the

 % variable set up at lines 32 and 33.

 AMag{k} = load(Magstr{k});

 AMag{k} = AMag{k}.PhasorAVol_Mag;

 AAng{k} = load(Angstr{k});

 AAng{k} = AAng{k}.PhasorAAng_Ang;

 PMUfreq{k} = load(Freqstr{k});

 PMUfreq{k} = (PMUfreq{k}.PhasorFreq_Freq-60)*2*pi; % In rads/sec

 % Taking the numerical derivative of the AAng{k} to get frequency.

 Theta = AAng{k};

 Theta = pi/180.*Theta; % Radians

 X = angle(exp(1i*Theta(2:end))./exp(1i*Theta(1:end-1)));

 %FEuler{k} = [0;X]*60; % in radians/sec: Used for comparing freqs.

 FEuler{k} = X*60; % in radians/sec: Used for bode plotting

 % Doing fft of FEuler{k} to get to the transfer function mentioned

26

 % above. Then we break up the fft vector into its magnitude and angle

 % so that the division of phasors can be done.

 FFTofFhat{k} = 2/length(FEuler{k})*fft(FEuler{k}); %exp(-1*2*pi*modfreq(k)*3/60);

 FFTofFhatMag{k} = abs(FFTofFhat{k});

 FFTofFhatAngle{k} = angle(FFTofFhat{k});

 % Now for the frequency that was calculated by the PMU we'll call the

 % variable PMUfreq and then use the fft funtion on it. Then as above

 % I'll split the complex number into it's magnitude and angle to make

 % the polar division easier.

 FFTofPMUfreq{k} = 2/length(PMUfreq{k})*fft(PMUfreq{k}); %*exp(-1i*2*pi*modfreq(k)*3/60);

 FFTofPMUfreqMag{k} = abs(FFTofPMUfreq{k});

 FFTofPMUfreqAngle{k}= angle(FFTofPMUfreq{k});

 % If the FFTofFhatMag is plotted there will be two spikes that

 % correspond to the modulation frequency being fed to the PMU. 'i' is

 % used to find the index of these peaks so that the magnitude and angle

 % at this index can be easily aquired.

 i(k) = round(length(FFTofFhatMag{k})/60*modfreq(k)+1);

 % Transfer function Division 1.

 % The following 4 lines are calculating the transfer function using the

 % frequency values that were calculated using the numerical derivative.

 % 'GMag' is doing the division in the transfer function.

 GMag(k) = FFTofFhatMag{k}(i(k))/(0.1*2*pi*modfreq(k));

 % 'GAng' is doing the subtraction in the transfer function.

 GAng(k) = FFTofFhatAngle{k}(i(k)) - (2*pi*modfreq(k))*(22) - pi/2 - 2*pi*modfreq(k)*3/60;

 % Transfer function Division 2.

 % The following 4 lines are calculating the transfer function using the

 % frequency values that were calculated by the PMU.

 % 'GMag_PMUfreq' is doing the division in the transfer function

 GMag_PMUfreq(k) = FFTofPMUfreqMag{k}(i(k))/(0.1*2*pi*modfreq(k));

 % 'GAng_PMUfreq' is doing the subtraction in the transfer function.

 GAng_PMUfreq(k) = FFTofPMUfreqAngle{k}(i(k)) - (2*pi*modfreq(k))*(22) - pi/2 -

2*pi*modfreq(k)*3/60;

 % Plotting the magnitudes of the fft's both from the numerical

 % derivative frequency and the PMU frequency to check for leakage.

 subplot(211)

 stem(FFTofFhatMag{k},'k')

 hold on

 title('Normalized FFT of FEuler and PMU Freq')

 ylabel('Magnitude')

 legend('FFT on Numerical Derivative Frequency')

 xlim([0 900])

 grid

 subplot(212)

 stem(FFTofPMUfreqMag{k},'b')

 hold on

 ylabel('Magnitude')

 legend('FFT on PMU Frequency')

27

 xlim([0 900])

 grid

end

Dan's Code

% Plot Freq resp

% clear all; close all; clc

% load('FreqResp1A','Test','fSample2'); %kx=0.1, ka=0.1, sinusoid model,Nonlin.nCycles = 1,

nCycles=1

% load('FreqResp1B','Test','fSample2'); %kx=0.1, ka=0.1, rampled sinusoid model, Nonlin.nCycles =

1, nCycles=1

% load('FreqResp1C','Test','fSample2'); %kx=0.1, ka=0.1, rampled sinusoid model, Nonlin.nCycles =

2, nCycles=1

load('FreqResp1D','Test','fSample2'); %kx=0.1, ka=0.1, rampled sinusoid model, Nonlin.nCycles =

2, nCycles=2

Create spectrum data

kC = [1:71]';

Gbode.PMU.F = zeros(length(kC),1);

28

Gbode.PMU.FB = zeros(length(kC),1);

Gbode.f = zeros(length(kC),1);

for k=1:length(kC)

 if Test{kC(k)}.Sig.Param.fm>7

 nCy = ceil([0.2*Test{kC(k)}.Sig.Param.fm; 0.8*Test{kC(k)}.Sig.Param.fm]);

 if abs(round(nCy(1)/2)-nCy(1)/2) > 0.1; nCy(1) = nCy(1) + 1; end

 if abs(round(nCy(2)/2)-nCy(2)/2) > 0.1; nCy(2) = nCy(2) + 1; end

 else

 nCy = [3;7]';

 end

 tR = nCy./Test{kC(k)}.Sig.Param.fm; %Range for plotting in sec.

 nSig = [round(tR(1)*Test{k}.Sig.fSample):1:round(tR(2)*Test{k}.Sig.fSample)-1]';

 tSig = (1/Test{k}.Sig.fSample)*[0:length(Test{kC(k)}.Sig.f)-1]';

 ne = round(((nCy(2)-nCy(1))/Test{kC(k)}.Sig.Param.fm)*fSample2*60);

 [~,ns] = min(abs(tR(1)-Test{1}.PMU.t));

 nPMU = [ns:1:ne+ns-1]';

 clear ns ne tR

 %Freq fesp

 Gbode.f(k) = Test{kC(k)}.Sig.Param.fm;

 f = (fSample2*60/length(nPMU))*[0:length(nPMU)-1]';

 [~,n] = min(abs(Gbode.f(k)-f));

 HPMU = (2/length(nPMU))*fft(Test{kC(k)}.PMU.FEuler(nPMU));

 HPMU = HPMU(n);

 HPMUBD = (2/length(nPMU))*fft(Test{kC(k)}.PMU.FBesselD(nPMU));

 HPMUBD = HPMUBD(n);

 f = (Test{kC(k)}.Sig.fSample/length(nSig))*[0:length(nSig)-1]';

 [~,n] = min(abs(Gbode.f(k)-f));

 Hact = (2/length(nSig))*fft(Test{kC(k)}.Sig.f(nSig));

 Hact = Hact(n);

 Gbode.PMU.F(k) = HPMU/Hact;

 Gbode.PMU.FB(k) = HPMUBD/Hact;

 clear n f HPMUBD HPMU HZeroCrossB HZeroCross HNonlinB HNonlin nZer nSig nNon nPMU nCy

end

clear k

%1-Hz Delay

[~,n] = min(abs(Gbode.f-1));

d = unwrap(angle(Gbode.PMU.F(1:n)));

Gbode.PMU.Fdelay = -(d(end)-d(1))/(2*pi*(Gbode.f(n)-Gbode.f(1)));

clear n d

D = unwrap(GAng(1:10));

derivDelay = -(D(end)-D(1))/(2*pi*(1-0.1));

E = unwrap(GAng_PMUfreq(1:10));

freqDelay = -(E(end)-E(1))/(2*pi*(1-0.1));

Plot bodes
No Bessel filter defining the modulation frequency sweep for plotting below.

29

FreqSweep = [0.1:0.1:4.9, 5:1:10, 12:2:30, 35:5:60];

figure

subplot(211)

semilogx(Gbode.f,abs(Gbode.PMU.F),'r','Linewidth',2)

hold on

semilogx(FreqSweep(1:end -1),GMag,'k','Linewidth',2)

semilogx(FreqSweep(1:end -1),GMag_PMUfreq,'b','Linewidth',2)

hold off

ylim([0 1.2])

xlabel('Freq (Hz)')

ylabel('Gain (abs)')

legend('PMU sim','PMU Angle Derivative','PMU Frequency')

grid

subplot(212)

semilogx(Gbode.f,(180/pi)*angle(Gbode.PMU.F),'r','Linewidth',2)

hold on

semilogx(FreqSweep(1:end -1),wrapToPi(GAng)*180/pi,'k','Linewidth',2)

semilogx(FreqSweep(1:end -1),wrapToPi(GAng_PMUfreq)*180/pi,'b','Linewidth',2)

hold off

ylabel('Phase (deg.)')

xlabel('Freq (Hz)')

legend(['Delay = ' num2str(round(1e3*Gbode.PMU.Fdelay)) ' ms'],...

 ['Angle Derivative Delay = ' num2str(round(1e3*derivDelay)) ' ms'],...

 ['Frequency Delay = ' num2str(round(1e3*freqDelay)) ' ms'],...

 'Location','NorthWest');

grid

% Loading Frequency for comparision between PMU, Numerical Derivative

% Frequency and Matlab.

load('PhasorFreqSweep_Freq_01.0Hz.mat')

% Creating a typical input signal with desired frequency for comparison.

t = 0:1/60:30;

% V(t) = 169.6*cos(2*pi*60*t+0.1*cos(2*pi*0.1*t)); % typical PM voltage

dangdt = 59.9993-0.1*sin(2*pi*1*t+1*pi/72); % DC and phase adjusted 29 0.1^2

% This plot is comparing the numerical derivative frequency, PMU frequency,

% and Matlab frequency. For this plot to work "FEuler{k} = X*60" needs to

% be replaced with "FEuler{k} = [0;X]*60; % in radians/sec". This is so

% the vector lengths will match up.

% figure

% plot(t,PhasorFreq_Freq-0.1,'k',t,FEuler{10}/(2*pi)+60-0.1,'r',t,dangdt,'b')

% title('Frequency Comparison')

% legend('PMU Frequency','Derivative Frequency', 'Matlab Frequency')

% ylabel('Frequency (Hz)')

% xlabel('Time (sec)')

% % ylim([59.985 60.015])

grid

%

30

Appendix E: Baseline Testing Code

Baseline Testing Signal Generation.
Combines Steps/AM/FM/PM signals ensure PMU functionality.

close all;

clear all;

clc;

tic

Signal Parameters

fbase = 60; % In Hz

Tbase = 1/fbase; % in seconds

amodfreq = 0.50; % in Hz

fmodfreq = 1.00; % in Hz

sigmag = 6.70; % rms voltage

ampgain = 1.00;

pmodfreq = 0.25;

31

% Time Vector

DACfreq = 40000; % In Hz

tend = 40; % in seconds

t = 0:1/DACfreq:tend;

A Phase

Astep = 0.00.*...

 (stepfun(t,1)-stepfun(t,4.00))+...

 sigmag/3.5*sin(2*pi*60*t).*...

 (stepfun(t,4.00)-stepfun(t,6.00))+...

 sigmag/2*sin(2*pi*60*t).*...

 (stepfun(t,6.00)-stepfun(t,8.00))+...

 sigmag*(sin(60*2*pi*t)).*...

 (stepfun(t,8.00)-stepfun(t,10.00));

% A AM

Aamod = sigmag/2.5*(sin(60*2*pi*t)).*...

 (stepfun(t,10.00)-stepfun(t,12.00))+...

 sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t)).*...

 (stepfun(t,12.00)-stepfun(t,14.00))+...

 sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t)).*...

 (stepfun(t,14.00)-stepfun(t,16.00))+...

 sigmag/2.5*(sin(60*2*pi*t)).*...

 (stepfun(t,16.00)-stepfun(t,18.00));

% A FM

Afmod = sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))).*...

 (stepfun(t,18.00)-stepfun(t,20.00))+...

 sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))).*...

 (stepfun(t,20.00)-stepfun(t,22.00))+...

 sigmag*(sin(60*2*pi*t)).*...

 (stepfun(t,22.00)-stepfun(t,24.00));

% A PM

Apmod = sigmag*(sin(60*2*pi*t+.2*sin(fmodfreq*2*pi*t))).*...

 (stepfun(t,24.00)-stepfun(t,26.00))+...

 sigmag*(sin(60*2*pi*t+.2*sin(fmodfreq*2*pi*t))).*...

 (stepfun(t,26.00)-stepfun(t,28.00))+...

 sigmag/1.5*(sin(60*2*pi*t)).*...

 (stepfun(t,28.00)-stepfun(t,30.00))+...

 0.00.*...

 (stepfun(t,30.00)-stepfun(t,tend));

Asig = Astep + Aamod + Afmod + Apmod;

32

B phase

Bstep = 0.00.*...

 (stepfun(t,1)-stepfun(t,4.00))+...

 sigmag/3.5*sin(2*pi*60*t-2*pi/3).*...

 (stepfun(t,4.00)-stepfun(t,6.00))+...

 sigmag/2*sin(2*pi*60*t-2*pi/3).*...

 (stepfun(t,6.00)-stepfun(t,8.00))+...

 sigmag*(sin(60*2*pi*t-2*pi/3)).*...

 (stepfun(t,8.00)-stepfun(t,10.00));

% B AM

Bamod = sigmag/2.5*(sin(60*2*pi*t-2*pi/3)).*...

 (stepfun(t,10.00)-stepfun(t,12.00))+...

 sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t-2*pi/3)).*...

 (stepfun(t,12.00)-stepfun(t,14.00))+...

 sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t-2*pi/3)).*...

 (stepfun(t,14.00)-stepfun(t,16.00))+...

 sigmag/2.5*(sin(60*2*pi*t-2*pi/3)).*...

 (stepfun(t,16.00)-stepfun(t,18.00));

% B FM

Bfmod = sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))-2*pi/3).*...

 (stepfun(t,18.00)-stepfun(t,20.00))+...

 sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))-2*pi/3).*...

 (stepfun(t,20.00)-stepfun(t,22.00))+...

 sigmag*(sin(60*2*pi*t-2*pi/3)).*...

 (stepfun(t,22.00)-stepfun(t,24.00));

% B PM

Bpmod = sigmag*(sin(60*2*pi*t-2*pi/3+.2*sin(fmodfreq*2*pi*t))).*...

 (stepfun(t,24.00)-stepfun(t,26.00))+...

 sigmag*(sin(60*2*pi*t-2*pi/3+.2*sin(fmodfreq*2*pi*t))).*...

 (stepfun(t,26.00)-stepfun(t,28.00))+...

 sigmag/1.5*(sin(60*2*pi*t-2*pi/3)).*...

 (stepfun(t,28.00)-stepfun(t,30.00))+...

 0.00.*...

 (stepfun(t,30.00)-stepfun(t,tend));

Bsig = Bstep + Bamod + Bfmod + Bpmod;

C Phase

Cstep = 0.00.*...

 (stepfun(t,1)-stepfun(t,4.00))+...

 sigmag/3.5*sin(2*pi*60*t+2*pi/3).*...

 (stepfun(t,4.00)-stepfun(t,6.00))+...

 sigmag/2*sin(2*pi*60*t+2*pi/3).*...

 (stepfun(t,6.00)-stepfun(t,8.00))+...

 sigmag*(sin(60*2*pi*t+2*pi/3)).*...

 (stepfun(t,8.00)-stepfun(t,10.00));

33

% C AM

Camod = sigmag/2.5*(sin(60*2*pi*t+2*pi/3)).*...

 (stepfun(t,10.00)-stepfun(t,12.00))+...

 sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t+2*pi/3)).*...

 (stepfun(t,12.00)-stepfun(t,14.00))+...

 sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t+2*pi/3)).*...

 (stepfun(t,14.00)-stepfun(t,16.00))+...

 sigmag/2.5*(sin(60*2*pi*t+2*pi/3)).*...

 (stepfun(t,16.00)-stepfun(t,18.00));

% C FM

Cfmod = sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))+2*pi/3).*...

 (stepfun(t,18.00)-stepfun(t,20.00))+...

 sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))+2*pi/3).*...

 (stepfun(t,20.00)-stepfun(t,22.00))+...

 sigmag*(sin(60*2*pi*t+2*pi/3)).*...

 (stepfun(t,22.00)-stepfun(t,24.00));

% C PM

Cpmod = sigmag*(sin(60*2*pi*t+2*pi/3+.2*sin(fmodfreq*2*pi*t))).*...

 (stepfun(t,24.00)-stepfun(t,26.00))+...

 sigmag*(sin(60*2*pi*t+2*pi/3+.2*sin(fmodfreq*2*pi*t))).*...

 (stepfun(t,26.00)-stepfun(t,28.00))+...

 sigmag/1.5*(sin(60*2*pi*t+2*pi/3)).*...

 (stepfun(t,28.00)-stepfun(t,30.00))+...

 0.00.*...

 (stepfun(t,30.00)-stepfun(t,tend));

Csig = Cstep + Camod + Cfmod + Cpmod;

Setup Trigger

Trig = 0.00.*...

 (stepfun(t,0.00)-stepfun(t,4.00))+...

 6.50.*...

 (stepfun(t,4.00)-stepfun(t,6.00))+...

 0.00.*...

 (stepfun(t,6.00)-stepfun(t,8.00))+...

 6.50.*...

 (stepfun(t,8.00)-stepfun(t,10.00))+...

 0.00.*...

 (stepfun(t,10.00)-stepfun(t,12.00))+...

 6.50.*...

 (stepfun(t,12.00)-stepfun(t,14.00))+...

 0.00.*...

 (stepfun(t,14.00)-stepfun(t,16.00))+...

 6.50.*...

 (stepfun(t,16.00)-stepfun(t,18.00))+...

 0.00.*...

 (stepfun(t,18.00)-stepfun(t,20.00))+...

 6.50.*...

34

 (stepfun(t,20.00)-stepfun(t,22.00))+...

 0.00.*...

 (stepfun(t,22.00)-stepfun(t,24.00))+...

 6.50.*...

 (stepfun(t,24.00)-stepfun(t,26.00))+...

 0.00.*...

 (stepfun(t,26.00)-stepfun(t,28.00))+...

 0.00.*...

 (stepfun(t,28.00)-stepfun(t,30.00));

% Plot checking signals before being sent to Relay/PMU

% figure

% plot(t,Asig,'r')

% hold on

% plot(t,Bsig,'g')

% plot(t,Csig,'b')

% plot(t,Trig,'k')

% legend('Asig','Bsig','Csig','Trig')

% grid

DAQ Communication
Setup Session, Add Channels and Configure Parameters.

% Create the data acquisition session.

% cDAQ = daq.createSession('ni')

% Dataout = [Asig’ Bsig’ Csig’ Trig’];

% % Create analog output channel on board ID 'cDAQ1Mod1', channel # 'ao0', with signal type

'Voltage');

% cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao0', 'Voltage');

% cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao1', 'Voltage');

% cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao2', 'Voltage');

% cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao3', 'Voltage');

%

% cDAQ.Rate = DACfreq; % Refresh rate of DAQ [Hz].

%

% queueOutputData(cDAQ,dataOut);

% startForeground(cDAQ);

%

% % Clean up and release hardware.

%

% cDAQ.release();

% delete(cDAQ);

% clear cDAQ;

% toc

% End

35

Appendix E: Baseline .csv Reader

Baseline .csv Reader
Takes two sets of data and compares the two side by side. An established baseline data set can be

compared against a new baseline test using the signal generation code provided in the report and then

loaded using the following code.

close all;

clear all;

clc;

Established Phasor Baseline Data Set

fileID = fopen('PhasorStep_AM_FM_PM_0003.csv');

CP1 = textscan(fileID,...

 '%f%c%f:%f:%f%f%c%f:%f:%f %f %f %f %f %f %f %f %f %f ',...

 'Headerlines',1,'Delimiter',',');

fclose(fileID);

% The Data is now parsed and seperated out in large columns that are

% contained in cells. To make this data more accesable and easier to know

% exactly what the data represents it will be removed from the cells to be

% stand alone vectors that are named accordingly.

% Define PMU Time Stamp Variables

PMUtStampYMD1 = CP1{1};

PMUtStampHour1 = CP1{3};

PMUtStampMin1 = CP1{4};

PMUtStampSec1 = CP1{5};

% Define c37 Time Stamp Variables

c37tStampYMD1 = CP1{6};

c37tStampHour1 = CP1{8};

c37tStampMin1 = CP1{9};

c37tStampSec1 = CP1{10};

% Define Voltage Phase Varables

posSeqVol1 = CP1{11};

posSeqAng1 = CP1{12};

aVol1 = CP1{13};

aAng1 = CP1{14};

bVol1 = CP1{15};

bAng1 = CP1{16};

cVol1 = CP1{17};

cAng1 = CP1{18};

freq1 = CP1{19};

% This section is used to make sure the plots start relative to time zero.

zeroPMUPhasorTime1 = (PMUtStampHour1(1) * 60 * 60) +...

 (PMUtStampMin1(1) * 60) + (PMUtStampSec1(1));

36

zeroC37PhasorTime1 = (c37tStampHour1(1) * 60 * 60) +...

 (c37tStampMin1(1) * 60) + (c37tStampSec1(1));

% New time vectors. Takes the time vectors from the hour, min, and seconds

% and then converts all to seconds. Then we shift the scale to start at

% zero.

PMUtimeVector1 = (PMUtStampHour1 * 60 * 60) + (PMUtStampMin1 * 60) +...

 PMUtStampSec1 - zeroPMUPhasorTime1;

c37TimeVector1 = (c37tStampHour1 * 60 * 60) + (c37tStampMin1 * 60) +...

 c37tStampSec1 - zeroPMUPhasorTime1;

New Phasor Data for Baseline Comparison

fileID = fopen('PhasorStep_AM_FM_PM_0008.csv');

CP2 = textscan(fileID,...

 '%f%c%f:%f:%f%f%c%f:%f:%f %f %f %f %f %f %f %f %f %f ',...

 'Headerlines',1,'Delimiter',',');

fclose(fileID);

% Define PMU Time Stamp Variables

PMUtStampYMD2 = CP2{1};

PMUtStampHour2 = CP2{3};

PMUtStampMin2 = CP2{4};

PMUtStampSec2 = CP2{5};

% Define c37 Time Stamp Variables

c37tStampYMD2 = CP2{6};

c37tStampHour2 = CP2{8};

c37tStampMin2 = CP2{9};

c37tStampSec2 = CP2{10};

% Define Voltage Phase Varables

posSeqVol2 = CP2{11};

posSeqAng2 = CP2{12};

aVol2 = CP2{13};

aAng2 = CP2{14};

bVol2 = CP2{15};

bAng2 = CP2{16};

cVol2 = CP2{17};

cAng2 = CP2{18};

freq2 = CP2{19};

% This section is used to make sure the plots start at time zero

zeroPMUPhasorTime2 = (PMUtStampHour2(1) * 60 * 60) +...

 (PMUtStampMin2(1) * 60) + (PMUtStampSec2(1));

zeroC37PhasorTime2 = (c37tStampHour2(1) * 60 * 60) +...

 (c37tStampMin2(1) * 60) + (c37tStampSec2(1));

% New time vectors. Takes the time vectors from the hour, min, and seconds

% and then converts all to seconds. Then we shift the scale to start at

% zero.

PMUtimeVector2 = (PMUtStampHour2 * 60 * 60) + (PMUtStampMin2 * 60) +...

37

 PMUtStampSec2 - zeroPMUPhasorTime2;

c37TimeVector2 = (c37tStampHour2 * 60 * 60) + (c37tStampMin2 * 60) +...

 c37tStampSec2 - zeroPMUPhasorTime2;

Established Analog Baseline Data Set
See the above comment for a description on the textscan function

fileID = fopen('AnalogStep_AM_FM_PM_0003.csv');

CA1 = textscan(fileID,'%f%c%f:%f:%f %f %f %f %f ','Headerlines',1,...

 'Delimiter',',');

fclose(fileID);

% As described above this section of the code is pulling the data columns

% out of cells and naming them for easier access and use.

AnalogtStampHour1 = CA1{3};

AnalogtStampMin1 = CA1{4};

AnalogtStampSec1 = CA1{5};

% This section is used to make sure the plots start at time zero

zeroAnalogTime1 = (AnalogtStampHour1(1) * 60 * 60) +...

 (AnalogtStampMin1(1) * 60) + AnalogtStampSec1(1);

% New time vectors. Takes the time vectors from the hour, min, and seconds

% and then converts all to seconds. Then we shift the scale to start at

% zero.

AnalogTimeVector1 = (AnalogtStampHour1 * 60 * 60) +...

 (AnalogtStampMin1 * 60) + AnalogtStampSec1 -...

 zeroPMUPhasorTime1;

% Give variable names to the 3 phases

Aphase1 = CA1{6};

Bphase1 = CA1{7};

Cphase1 = CA1{8};

New Analog Data for Baseline Comparison

fileID = fopen('AnalogStep_AM_FM_PM_0008.csv');

CA2 = textscan(fileID,'%f%c%f:%f:%f %f %f %f %f ','Headerlines',1,...

 'Delimiter',',');

fclose(fileID);

% As described above this section of the code is pulling the data columns

% out of cells and naming them for easier access and use.

AnalogtStampHour2 = CA2{3};

AnalogtStampMin2 = CA2{4};

AnalogtStampSec2 = CA2{5};

% This section is used to make sure the plots start at time zero

zeroAnalogTime2 = (AnalogtStampHour2(1) * 60 * 60) +...

38

 (AnalogtStampMin2(1) * 60) + AnalogtStampSec2(1);

% New time vectors. Takes the time vectors from the hour, min, and seconds

% and then converts all to seconds. Then we shift the scale to start at

% zero.

AnalogTimeVector2 = (AnalogtStampHour2 * 60 * 60) +...

 (AnalogtStampMin2 * 60) + AnalogtStampSec2 -...

 zeroPMUPhasorTime2;

% Give variable names to the 3 phases

Aphase2 = CA2{6};

Bphase2 = CA2{7};

Cphase2 = CA2{8};

Plotting For Comparison

figure

subplot(211)

plot(AnalogTimeVector1,Aphase1/sqrt(2),'b')

hold on

plot(PMUtimeVector1,aVol1,'LineWidth',2,'Color',[0 1 0])

legend('Aphase Analog Input','A Voltage Phasor Output')

title('Establishe Baseline Case.')

xlabel('PMU Internal Time (sec)')

ylabel('Voltage')

subplot(212)

plot(AnalogTimeVector2,Aphase2/sqrt(2),'b')

hold on

plot(PMUtimeVector2,aVol2,'LineWidth',2,'Color',[0 1 0])

legend('Aphase Analog Input','A Voltage Phasor Output')

title('New Data Set for Baseline Comparison')

xlabel('PMU Internal Time (sec)')

ylabel('Voltage')

figure

plot(AnalogTimeVector2,Aphase2/sqrt(2),'b')

hold on

plot(PMUtimeVector2,aVol2,'*','LineWidth',2,'Color',[0 1 0])

legend('Aphase Analog','A Voltage Phasor')

title('PMU Response to Steps/AM/FM/PM.')

xlabel('PMU Internal Time (sec)')

ylabel('Voltage')

%end

39

40

Appendix F: Math Document

Math Doc for PMU Testing Project Version: 4

 Date: 2/20/16

Terms

𝐴0 = 𝐷𝐶 𝑜𝑓𝑓𝑠𝑒𝑡

𝐴1 = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙

𝐴𝑖 𝑓𝑜𝑟 𝑖 > 1 𝑎𝑟𝑒 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑡𝑒𝑟𝑚𝑠

𝜑 = 𝑝ℎ𝑎𝑠𝑒 𝑎𝑛𝑔𝑙𝑒

𝑛𝑚 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑛𝑜𝑖𝑠𝑠𝑒

𝑡 = 𝑡𝑖𝑚𝑒

∆𝑓𝑟 = 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Frequency for phase ramp term

𝑢(𝑡 − 𝑡𝑟) = 𝑢𝑛𝑖𝑡 𝑠𝑡𝑒𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑟

𝑓(𝑡) = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑣(𝑡)

𝑅𝑓 = 𝑅𝑎𝑚𝑝 𝑟𝑎𝑡𝑒 𝑖𝑛
𝐻𝑧

𝑠

𝑅𝑓 = 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑅𝑎𝑚𝑝 𝑅𝑎𝑡𝑒

𝑓𝑚 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑝ℎ𝑎𝑠𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

Below is a list of all the equations as they appear in “Frequency Estimation for Inter-Area Oscillation

Feedback Damping Control” and how they will appear in testing form.

Equation 1 Paper Form

Point on Wave (POW) model. This is the fundamental form for our test signals which will be translated

to three phase. The equation in its current form would represent the A phase. The B and C phases will

need to be shifted in phase by 2π/3 rad. For our current studies we are neglecting the harmonic and

noise part of the signal contained in the summation.

𝑣(𝑡) = 𝐴0 + 𝐴1(𝑡) cos(2𝜋60𝑡 + 𝜑(𝑡)) + ∑ 𝐴𝑖 cos(𝑖2𝜋60𝑡 + 𝑖𝜑(𝑡) + 𝜑0𝑖) + 𝑛𝑚(𝑡)

∞

𝑖=2

Equation 1 Testing Form

𝑉𝑎(𝑡) = [𝐴𝑜𝑓𝑓𝑠𝑒𝑡 + 𝐴1(𝑡) cos(2𝜋𝑓𝑜𝑡 + 𝜑(𝑡)] [𝑢(𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡) − 𝑢(𝑡 − 𝑡𝑒𝑛𝑑)]

Equation 2a Paper Form

𝐴1(𝑡) = 𝐴1,0(1 + 𝑘𝑥 cos(2𝜋𝑓𝑚𝑡))

Equation 2a Testing Form

𝐴1(𝑡) = 𝐴1,0{1 + 𝑘𝑥 cos(2𝜋𝑓𝑚𝑡) [𝑢(𝑡 − 𝑡𝐴𝑚𝑜𝑑𝑂𝑛) − 𝑢(𝑡 − 𝑡𝐴𝑚𝑜𝑑𝑂𝑓𝑓)] + ⋯

… + 𝐴𝑠𝑡𝑒𝑝[𝑢(𝑡 − 𝑡𝐴𝑚𝑝𝑆𝑡𝑒𝑝𝑂𝑛) − 𝑢(𝑡 − 𝑡𝐴𝑚𝑝𝑆𝑡𝑒𝑝𝑂𝑓𝑓)]}

41

Equation 2b Paper Form

𝜑(𝑡) = 𝜑0 + 2𝜋∆𝑓𝑟(𝑡 − 𝑡𝑟)𝑢(𝑡 − 𝑡𝑟) + 𝑘𝑎 cos(2𝜋𝑓𝑚𝑡)

Equation 2b Testing Form

𝜑(𝑡) = 𝜑𝑜𝑓𝑓𝑠𝑒𝑡 + 2𝜋∆𝑓𝑟(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑅𝑎𝑚𝑝𝑂𝑛)[𝑢(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑅𝑎𝑚𝑝𝑂𝑛) − 𝑢(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑅𝑎𝑚𝑝𝑂𝑓𝑓)] + ⋯

… + 𝑘𝑎cos (2𝜋𝑓𝑚𝑡)[𝑢(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑀𝑜𝑑𝑂𝑛) − 𝑢(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑀𝑜𝑑𝑂𝑓𝑓)]

Equation 3

Point on wave instantaneous frequency

𝑓(𝑡) = 60 + (
1

2𝜋
)

𝑑𝜑(𝑡)

𝑑𝑡
 𝐻𝑧

Equation 4

Actual Phase Angle, for frequency ramp test.

𝜑(𝑡) = 𝜋𝑅𝑓𝑡2 𝑟𝑎𝑑

Equation 5

Estimated Phase Angle, for frequency ramp test.

𝜑̂(𝑡) = 𝜋𝑅𝑓̂𝑡2 𝑟𝑎𝑑

Equation 6

Transfer Function

𝐺(𝑓𝑚) =
𝐹{𝑓(𝑡)}

𝐹{𝑓(𝑡)}

	Montana Tech Library
	Digital Commons @ Montana Tech
	2016

	Phasor Measurement Unit Testing and Related Topics
	Joe Perigo
	Recommended Citation

	tmp.1467316321.pdf.iDiRu

