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Abstract 

Phasor Measurement Units (PMUs) are devices that take three phase voltages as inputs and 

output A/B/C phase magnitudes, angles, frequencies, and time stamp data that correlates to 

these outputs.  PMU functionality is typically built into protection relays which are used to 

protect sensitive areas of the power grid such as transformers and substations.  PMU’s then 

become useful tools that can provide critical insight into the power grid, and may have 

applications in feedback controls as a sensor.   

The main goal of this project was to obtain the delay time inherent in SEL-421 and SEL-487 

PMU hardware.  To test these units I needed to construct a test bench of hardware and software 

for signal generation, signal monitoring, signal amplification, data acquisition, data parsing, 

and calculation software to analyze the results of my tests.  My research focuses on a signals 

and systems approach to testing this hardware.  By inputting various signals such as phase 

ramps (frequency steps), amplitude steps, amplitude modulation and phase modulation I am 

able to determine characteristics of the PMU hardware such as delay time.  By inputting a 

frequency spectrum of phase modulation signals I was able to calculate the transfer function 

and obtain a bode plot for the SEL 421 which also yields characteristics of the PMU hardware.  

These results are a critical part of a much larger grid protection project, and the accuracy of 

these results are paramount.      

 

 

 

 

 

Keywords: Phasor Measurement Unit (PMU), Delay Time, Signal Generation, Transfer 

Function, Bode Plot.  
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1. Introduction  

The process required to run tests on the SEL-421 and the SEL-487 Phasor Measurement 

Unit (PMU) hardware requires several steps and an understanding of the block diagram shown in 

Figure 1.  The first section of this paper will explain each block in Figure 1 as it pertains to 

testing PMUs.  At this point a step by step procedure will be explained for running a typical test 

on the PMU.  To understand the mathematics required for signal generation a discussion of the 

equations will be covered.  A detailed reference to the math document for this project is also 

given in Appendix E.  The next section of the paper will detail some of the Matlab code used for 

signal generation, data parsing, and calculation.  At this point a section of the paper will be 

dedicated to baseline testing.  This will help ensure that the PMU is functioning as expected and 

that future testing will yield good results.  From here issues related to PMU testing will be 

covered to aid future testing.  The last topic covered will look at our plans for streamlining the 

test bench and future testing. 

  

Figure 1: Test Bench Block Diagram 
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2. Walkthrough of the Block Diagram 

2.1. The Signal and Convert Blocks 

The signal block in figure 1 is a PC with Matlab setup to communicate with the NI-

cDAQ-9174.  The NI-cDAQ-9174 is a digital to analog converter (DAC) and is connected to the 

PC via USB.  The sample rate of the NI-cDAQ-9174 can be adjusted up to 100,000 sps.  At the 

time of this writing the sample rate for this device is set to 40,000 sps.  In a script file the desired 

signal can be constructed with the code necessary to communicate with the DAC.  Examples of 

signal generation code with the DAC communication code is provided in Appendix B.   

2.2. The Gain Block 

Once the signal generation code is compiled Matlab will communicate with the DAC to 

create an analog signal which is then amplified via the Tabor 9400-25.  This is a four channel 

wide band signal amplifier with an ideal gain of 25.  There are a few important things to note 

about this amplifier.  On the back panel of this module there is a ‘Unipolar Mode’ option.  This 

turns the amplifier into a two input / four output rectified amplifier.  It is important for PMU 

testing that this option be turned off.  

If the PMU is opened up you’ll notice that the first thing the input sees is a set of 

transformers.  This means that the input impedance to PMU is inductive.  So at low frequencies 

the input impedance to the PMU is small.  The Tabor 9400 is only rated to output 50mA of 

current but at low frequencies the PMU is drawing more than this.  If sinusoid signals are fed to 

the PMU with frequencies below 30Hz the fuse in the Tabor 9400 amplifier will blow.  For PMU 

testing the frequency range should not drop below 50 Hz.  If a fuse is blown there is a cylindrical 

tab on the back of the module which can be released with a flat head screw driver.  The fuses 

needed for this amplifier are rated for 2 Amps at 250 Volts.   
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2.3. The SEL 2407 GPS IRIG-B Block 

This block represents a GPS clock which provides an absolute time that is used by both 

the NI PXIe and the SEL PMU hardware in time stamping data packets.  When looking at the 

front panel of this module you will notice a set of LED indicators.  For testing purposes it is 

important that the green LEDs for ‘Enabled’ and ‘Satellite Lock’ are on.  If the orange LED for 

‘Holdover’ is on that means that the unit has lost its satellite connection.  An antenna is 

connected to the side of the Main Hall building that provides a clear view of the sky and the GPS 

clock should not have trouble with receiving time from the satellite.   

2.4. The NI PXIe-4300 and NI PXIe-8840 Embedded Controller Blocks 

The NI PXIe-8840 is a data acquisition system operating with Window OS.  LabVIEW is 

used on this platform to obtain both analog data from the NI PXIe-4300 and phasor data from the 

PMU.  The PXIe-4300 is an analog to digital convertor (ADC) and is plugged directly into the 

PXIe-8840 chassis.  The analog data is time stamped by LabVIEW using the NI PXIe-6683H 

GPS IRIG-B Timing Module.  To check that PMU data packets are arriving through the network 

as expected it is necessary to open Wireshark on the PXIe-8840 and monitor the appropriate IP 

address.  The time stamps applied to these packets can be saved as a ‘.csv ‘.  Importing this time 

data into Matlab makes it easy to check for consistency in the arrival time of the PMU data 

packets.    

By opening up the ‘PMU C37 Reader.vi’ project in Lab View you will be able to save 

both a file for the input analog data to the PMU and the output phasor data from the PMU.  

These files will be saved as a ‘.csv ‘and can then be imported to Matlab for processing. 
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2.5. The SEL-421 and SEL-487 PMU 

This block is the unit being tested.  SEL relays are used for various protection schemes in 

the power industry and have additional functionality built into them.  The PMU functionality of 

these devices is the main focus of this paper.  Three phase voltage is input into the PMU.  Output 

from this unit includes timestamp data, A/B/C phasor voltages and angles, and a frequency 

associated with these signals.   

3. PMU Testing Procedure 

A typical testing procedure is outlined to give a reference for discussions in this paper 

and will also facilitate more in depth subjects to be addressed in later sections of this document.      

3.1. Precautionary Steps 

1. Check the SEL-2407 GPS clock to make sure that the ‘Satellite Lock’ is on (LED indicator 

will be green).  If ‘Satellite Lock’ is off and the ‘Hold over’ LED is showing orange it can’t 

be guaranteed that time stamp data will be accurate.   

2. Make sure that the ‘Unipolar Mode’ on the back of the Tabor 9400 amplifier is off.   

3. Check the signal generation code to ensure that frequencies below 30Hz are not being 

sent to the amplifier.  This is assuming that the PMU is being fed the amplified signals.  

See the description of the ‘Gain Block’ above for details. 

4. The signal generation code should also be checked to make sure that the signals are 

zeroed out at the end of the code.  This is due to the fact that the DAC will not zero out 

signals after the signal generation code is complete.  For Example, if you run a plain 

60Hz sinusoid through the DAC and at the end of the code the sinusoid ends at 20 Volts, 

then instead of the signal dropping to 0 Volts it will instead sit at 20 Volts DC.  This is bad 

since the PMU will be drawing more current than the amplifier can supply, and a blown 

fuse will result.   

 

3.2. Start Up 

The PC with Matlab will need to be booted and the desired signal generation code 

ready to go.  The NI PXIe-8840 will also need to be booted up with LabVIEW loaded and 
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ready to go.  Below is a detailed description on how to load the ‘PMU C37 Reader.vi’ project 

in LabVIEW.   

3.3. LabVIEW 

Launch LabVIEW and select the ‘Open Existing’ option. In the file directory select 

‘Montana Tech EE PMU Testing Station’, then select ‘pmuTestingStation’ from the project 

explorer window.  Finally select ‘PMU C37 Reader.vi’ from the new project explorer 

window.  Once LabVIEW is ready to go it will be necessary to name the data files.  In the 

Graphic User Interface (GUI) associated with this project there will be two options, ‘Phasor 

Data’ and ‘Analog Data’.  ‘Phasor Data’ refers to the output from the PMU. ‘Analog Data’ 

refers to the signal received by the NI PXIe-8840 from the NI PXIe-4300.  By clicking on the 

folder icon you will be taken to a save screen.  It is important that the naming convention be 

chosen with some thought as it might make life easier when importing these files into Matlab 

later.  For example, if a frequency sweep test is being run on the PMU a naming convention 

for the files might look like this: 

Phasor File Naming Convention for Frequency Sweep Test: 

Phasor_FreqSweep_00.1Hz.csv 

Phasor_FreqSweep_00.2Hz.csv 

Phasor_FreqSweep_00.3Hz.csv 

Analog File Naming Convention for Frequency Sweep Test: 

Analog_FreqSweep_00.1Hz.csv 

Analog_FreqSweep_00.2Hz.csv 

Analog_FreqSweep_00.3Hz.csv 
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It is necessary to put the file extension ‘.csv’ in the file name.  The only thing that 

changes in the file names is the frequency value that is being sent to the NI PXIe-8840 and the 

PMU.  When these files are imported into Matlab for analysis, instead of importing each file one 

at a time, it will be possible to write a for loop that will import all the files at once.  This is made 

easier with naming conventions similar to the one shown above.   

With Matlab and LabVIEW ready to go it is now possible to run tests.  The PMU has a 

‘config’ frame that starts at the beginning of each minute on the GPS clock.  This means that data 

packets will be sent out to the NI PXIe-8840 at the beginning of each minute.  This also means 

that the PMU will not record data until this ‘config’ frame starts.  The PMU was designed to be 

receiving 3 phase power 24-7.  So with this in mind it is good practice that the input signal be 

running before the ‘config’ frame starts.  A typical test might be run as follows:  

1.  Have Matlab and LabVIEW ready to go as described above 

2. While looking at the GPS clock wait for the 45th second.  At this time hit play on the 

LabVIEW GUI to start recording analog data.  Remember that phasor data won’t record 

until the config frame starts at the beginning of the next minute. 

3. While looking at the GPS clock wait until the 50th second.  At this time hit play on the 

Matlab script to generate the test signal.  This will give Matlab a few seconds to compile 

the signal generation code and send it out before the config frame starts.  This will 

ensure that the PMU is seeing 3 phase signals before the config frame starts. 

4. Once the Matlab signal generation code has completed running then hit stop on the 

LabVIEW GUI to stop recording data.   

5. Transfer ‘.csv’ data files to a PC with Matlab for processing.  

3.4. Phasor and Analog .csv File Contents 

Once the phasor and analog files have been saved they can then be imported into Matlab.  

Before doing this it might be useful to open up the raw ‘.csv’ files in both Microsoft Excel and in 

Notepad for viewing.  In Excel the data in both the phasor and analog files will be contained in a 

single column vector.  This knowledge will be helpful when parsing the data with the ‘textscan’ 

function in Matlab.  When the files are viewed in Notepad there will be separate columns with 
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headers that aren’t quite lined up.  With a little effort the headers can be adjusted.  An example 

of these files is referenced in Appendix A.   

4. Math Document 

To summarize and prepare the mathematics for this project a math document was 

developed.  The basis of this document are the equations presented in ‘Frequency Estimation for 

Inter-Area Oscillation Feedback Damping Control’ (Trudnowski, Hill, Wold, 2015).  The 

equations are listed in their base form and are then expanded into a testing form to further aid the 

process of writing test code.  Before running signals or writing signal generation code a 

fundamental knowledge of this document and all the equations listed is paramount.  A copy of 

this document is referenced in Appendix F.     

5. Walkthrough of Matlab Code 

5.1. Signal Generation Code 

The signal generation script file will contain code that generates 3 phase signals as well 

as code for a timing trigger.  The timing trigger will be key in detecting when changes in the 

input signal occur such as steps in frequency or when switching between frequency modulation 

and phase modulation.  When the data is parsed out and plots are made it will be possible to see 

exactly when the input signal changed and the PMU’s response to this change.  The signal 

generation script file will also need to contain the commands necessary for communication to the 

NI-cDAQ-9174 as seen in Appendix B. 

5.2. Data Parsing Code 

As mentioned above the Analog and Phasor ‘.csv’ files contain a single column vector.  

Within this vector is contained various time stamp, voltage, and frequency data.  One method to 

parse this data is to use the ‘textscan’ function in Matlab.  An example of a data parsing script is 
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given in Appendix C.  This script file is particularly useful for parsing multiple data files.  It uses 

a for loop to step through the naming convention mentioned above.  At the end of the for loop 

the data of interest is then isolated and saved to a ‘.mat’ file.  This option is only useful if the 

user wishes to do further calculation in a separate script file, such as calculating transfer 

functions, and bode plotting.  Otherwise simple plotting can be done directly in the data parsing 

script, such as plotting the analog A phase input against the A phasor magnitude output to see the 

PMU’s response to a particular input.   

5.3. Data Loader / Transfer Function Calculator / Bode Plotter 

One of the desired goals of this project was to obtain a transfer function for the PMU 

unit.  The method for calculating this transfer function is based on equation 6 listed in Appendix 

F.  With this transfer function a bode plot for the PMU can be used to visualize PMU 

characteristics.  To accomplish this a frequency spectrum of phase modulation signals were input 

to the PMU.  Data parsing code written specifically for this testing sequence is then used to 

obtain the A phase magnitude, angle, and frequency from each test in the spectrum.  An example 

of this code is referenced in Appendix D with details commented out pertaining to the various 

calculations.   

6. Baseline Test 

A large amount of testing on the PMU was run to ensure that the device was behaving as 

expected.  Once it was determined that the devices were giving consistent results a series of base 

line tests were developed for pre-testing purposes.  Only after reproduceing this baseline test 

should futrue testing be conducted.  It was decided the best baseline test would consist of a 

mixed signal with at least 30 seconds of data.  The signal for baseline testing consists of a mix of 

steps, AM, FM, and PM.  By sending the PMU a good mixed signal any red flags that may exsist 
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in the device should become apparent when running this signal.  The signal generation code for 

baseline testing is referenced in Appendix E. 

7. Issues Related to PMU Testing 

7.1. Time 

The analog and phasor ‘.csv’ files will contain three timestamp column vectors.  The 

analog ‘.csv’ file contains a timestamp column vector that corresponds to the analog signals 

being received by both the NI PXIe-8840 and the PMU.  The phasor ‘.csv’ file contains two 

timestamp column vectors.  The ‘PMU_Timestamp’  signify the internal timestamps made by the 

PMU which correspond to the output of this unit.  The ‘C37.118_Timestamp’ signifies the 

timestamps made by LabVIEW as the data packets are received from the PMU which also 

correspond to the output of this unit.  Ideally the ‘PMU_Timestamp’ column vector and the 

‘C37.118 Timestamp’ column vectors should line up perfectly and correspond to the output of 

the PMU with exact reference to GPS time.  Unfortunately they don’t. 
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7.2. Analog Time 

With uncertainty in the ‘PMU_Timestamp’ and ‘C37.118_Timestamp’ data one of the 

first things we wanted to test was to make sure we could trust the analog GPS timestamp data.  

To do this two tests were run.  The first was to run a 60 Hz sinusoid through the PMU.  The input 

was then captured on an oscilliscope and the data saved to a ‘.csv’.  The analog data was then 

saved from the NI PXIe-8840 and imported into Matlab along with the oscilliscope data.  The 

signals were then plotted on top of eachother.  The results of this test show that the oscilliscope 

data and the NI PXIe-8840 data line up right on top of eachother.  The figure below shows a 

sample of these results. 

 

 

Figure 2: Analog Check Test 
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that these signals lie right on top of eachother as expected.  With these results it was concluded 

that the analog data could be trusted. 

7.3. PMU Time 

As mentioned above the ‘PMU_Timestamp’ column vector represents the timestamps 

recorded internally by the PMU which are then sent to the NI PXIe-8840 in data packets through 

the network.  The PMU samples at 60 sps and when the data is plotted the data points are 

consitent with this sample rate.  An easy way to check this is to use the ‘diff’ funciton in Matlab 

to plot the difference between data points in the PMU time vector.  The issue with the PMU time 

vector is that it shows non-causal responses in our tests.  This implies that that the PMU can see 

into the future or that this unit is back dating data.  After reviewing the data and discusions with 

Dr. Trudnowski it has been concluded that the PMU looks at a 6 cycle window of data and puts a 

timestamp in the middle of this window instead of at the end of the window.  An example of this 

response can be seen in the figure below. 

 

Figure 3: Non-Causal Response Plotted Using PMU Time 
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The plot above shows the PMU’s response to an amplitude step of a 60Hz sinusoid made 

at the peak.  The blue data shows the analog input to the PMU.  The black data plot shows the 

timing trigger that is used in various tests to show exactly when points of interest occur in our 

tests.  The red data corresponds to the PMU’s A phasor output.  As can be seen in the plot the 

time data shows that the PMU reacts three samples before the amplitude step even occurs.  This 

is consistent with our knowledge that the PMU is taking a six cycle window of data and applying 

the timestamp in the middle of this window.   

7.4. C37.118 Arrival Time 

The ‘C37.118_Timestamp’ refers to the timestamps made by LabVIEW as data packets 

are received at the PXIe through an ethernet connection.  These timestamps correspond to the 

output of the PMU.  The issue with this time stamp data is that the timestamps are made 

inconsistently and end up distorting the data.  To see this it is necessary to show individual data 

points when plotting so that it is possible to see each timestamp.  There were two main issues 

that came up when using the ‘C37.118_Timestamp’ data.  The first is that the data showed a 

certain amount of ‘jitter’.  This means that the time stamps would show some regularity and then 

at somewhat constant intervals the timestamps would get backed up in the system.  The second 

major issue with ‘C37.118_Timestamp’ data is that the timestamps would be made at regular 

intervals and then the data would become stretched.  This is not simply a delay, but an increasing 

delay with time causeing the data to stretch out.  An example of the jitter issue can be seen 
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below. 

 

Figure 4: 'C37.118_Timestamp' Jitter 

 

The above example shows a sinusoidal signal stepping up to an AM signal at approximately 18.6 

seconds.  When looking closely at the output data from the PMU it is clear that there are gaps in 
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other as shown below.  

 

Figure 5: Stacked Data Points 
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The second issue with the ‘C37.118_Timestamp’ data is the stretching effect.  This is 

more of a rare occurrence as it only occurred a handful of times throughout three months of 

testing.  At a glance it can be seen that the data is not being just delayed but stretched as the 

interval between each time stamp grows.  

 

Figure 6: Data Stretching 
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There are a few possible reasons why the ‘C37.118_Timestamp’ are having these issues.  

One reason might be how LabVIEW runs on Windows OS.  Windows is somewhat notorious for 

having issues when networking time is critical.  The idea is that data packets are arriving at a 

buffer in the PXIe, and instead of being timestamped immediately the timestamps are being 

made after Windows performs other critical tasks.  Another possibility is that the LabVIEW code 

itself might have issues as to how this timestamping is being conducted in the loops contained in 

the code.  The Analog timestamps are also being made by LabVIEW and they don’t display any 

of the jitter or stretching issues associated with the ‘C37.118_Timestamp’.   

It was decided that the PMU timestamp data would be used since these timestamps were solid in 

their consistency.   

8. Streamlining the Test Bench and Future Testing 

To enhance usability the test bench will be integrated into the rack with the SEL 

hardware.  The main goal was to be able to remote desktop into the test bench and run signals 

into system and pull data from the PXIe from anywhere on campus.  A server specific for this 

task was considered but the price tag associated with this server made us explore other options.  

After some consideration the best option turned out to be a rack mounted PC which could then 

be connected to the network switch in lab along with the PXIe.  With this setup it is possible to 

use the remote desktop application to tap into the test bench.  A block diagram of the new test set 
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up is shown in the figure below. 

 

Figure 7: Streamlined Test Bench 

9. The Team 

I would like to mention that I would not have been able to accomplish this project 

without a lot of help from the team that worked with me.  James Colwell, Dr. Dan Trudnowski, 

Dr. Josh Wold, Matt Stajcar, Dr. Bryce Hill, and Dr. Matt Donnelly not only helped me get the 

job done, but also taught me a lot along the way and I would like to thank them for this.     

 



17 

References Cited  

Wold, J., Trudnowski, D., Hill, B.  (2015). Frequency Estimation for Inter-Area Oscillation 

Damping Controller.  Not Published. 

  



18 

Appendix A: Phasor and Analog .csv contents 

 Analog File Contents: 
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 Phasor File Contents: 
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Appendix B: Signal Generation Code 

Sinusoid Signal Generation Example 

% This code generates a simple sinusoid. The frequency can be adjusted via 

% the frequency variable "f".  If this signal is being amplified via the 

% Tabor 9400 and then sent to the Relay/PMU it is important to keep the 

% frequency above 30Hz. 

 

clear all; 

close all; 

clc; 

tic 

 

% Signal Parameters 

f = 60; % in Hz 

 

% 'sigmag' refers to the signal magnitude in the sinusoids below.  To 

% calculate this take 6.5*25 = 162 Volts. The '25' refers to the gain of 

% the Tabor 9400.  We want to keep our signal below 170 Volts so setting 

% sigmag = 6.5 should be good. 

sigmag = 6.5;  

 

% 'DACfreq' refers to the sample rate of the NI-cDAQ-9174.  In the time 

% vector 't' it is pointless to try and sample any higher than 1/DACfreq 

% since the NI-cDAQ-9174 will only sample at 1/40000.  The sample rate of 

% the NI-cDAQ-9174 can be adjusted up to 100000 sps.  If this adjustment is 

% made to the hardware make sure to adjust the code appropriately. 

DACfreq = 40000; % in Hz 

tend = 45; % in seconds 

t = 0:1/DACfreq:tend; 

 

% Signal generation code for A, B, and C phases.  Signal code for a timing 

% trigger is also included. A, B, and C phases are basic sinusoids.  The 

% step fun command is used to turn on 0 volts DC at 0 seconds and off at 5 

% seconds.  Then a basic sinusoid is turned on at 5 seconds and turned off 

% at 40 seconds.  The signals are then zeroed at 40 seconds until tend.  It 

% is important to zero the signals out due to the fact that the 

% NI-cDAQ-9174 will hold the final sinusoid value as a DC signal at the end 

% of the code.  The PMU draws more current at low frequencies than the 

% Tabor 9400 can supply especially at DC. 

Asig = 0.00.*(stepfun(t,0)-stepfun(t,5.00))+... 

       sigmag*sin(2*pi*f*t).*(stepfun(t,5.00)-stepfun(t,40.00))+.... 

       0.00.*(stepfun(t,40.00)-stepfun(t,tend)); 

 

Bsig = 0.00.*(stepfun(t,0)-stepfun(t,5.00))+... 

       sigmag*sin(2*pi*f*t - 2*pi/3).*(stepfun(t,5.00)-stepfun(t,40.00))+... 

       0.00*sin(2*pi*60*t - 2*pi/3).*(stepfun(t,40.00)-stepfun(t,tend)); 

 

Csig = 0.00.*(stepfun(t,0)-stepfun(t,5.00))+... 

       sigmag*sin(2*pi*f*t + 2*pi/3).*(stepfun(t,5.00)-stepfun(t,40.00))+... 

       0.00.*(stepfun(t,40.00)-stepfun(t,tend)); 
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Trig = 0.00.*(stepfun(t,0)-stepfun(t,5.00))+... 

       6.5*(stepfun(t,5.00)-stepfun(t,40.00))+... 

       0.00.*(stepfun(t,40.00)-stepfun(t,tend)); 

DAQ communication code 
The following code is used to communicate with the NI-cDAQ-9174.  

dataOut = [Asig' Bsig' Csig' Trig']; 

 

% Create the data acquisition session. 

cDAQ = daq.createSession('ni'); 

 

% Create analog output channel on board ID 'cDAQ1Mod1', channel # 'ao0', with signal type 

'Voltage'); 

cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao0', 'Voltage'); 

cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao1', 'Voltage'); 

cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao2', 'Voltage'); 

cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao3', 'Voltage'); 

 

cDAQ.Rate = DACfreq; % Refresh rate of DAQ [Hz]. 

 

queueOutputData(cDAQ,dataOut); 

startForeground(cDAQ); 

 

% Clean up and release hardware. 

cDAQ.release(); 

delete(cDAQ); 

clear cDAQ; 

toc 

 

% 

Appendix C: Data Parsing Code 

Data Parsing Code 
This code is used to retrieve data from the phasor and analog csv files which are saved from LabView.  

The format of the csv files requires that various time stamp values, voltages and phase angels are parsed 

out using the textscan function.  More detail on this function is provided below. 

close all; 

clear all; 

clc; 

 

% 'freq_mod_value' describes a list of modulation frequencies(Hz) used in a 

% phasse modulation test.  By putting these values in a cell array we are 

% able to use a for loop to parse the data out of multiple files all at 

% once rather than individually. The for loop will use 'freq_mod_value' for 

% indexing. 
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freq_mod_value={'00.1','00.2','00.3','00.4','00.5','00.6','00.7','00.8',... 

    '00.9','01.0','01.1','01.2','01.3','01.4','01.5','01.6','01.7',... 

    '01.8','01.9','02.0','02.1','02.2','02.3','02.4','02.5','02.6',... 

    '02.7','02.8','02.9','03.0','03.1','03.2','03.3','03.4','03.5',... 

    '03.6','03.7','03.8','03.9','04.0','04.1','04.2','04.3','04.4',... 

    '04.5','04.6','04.7','04.8','04.9','05.0','06.0','07.0','08.0',... 

    '09.0','10.0','12.0','14.0','16.0','18.0','20.0','22.0','24.0',... 

    '26.0','28.0','30.0','35.0','40.0','45.0','50.0','55.0','60.0'} 

 

Phasor Data Parsing 
Using fopen is necessary for the textscan function to get data out of the file. The parameters of the 

textscan function are the fileID variable, followed by several character types which appear in a specific 

order relative to how the data is organized in the csv file.  The textscan function also requires you to 

define how many header lines are in the csv file and how it is delimited. 

for k=1:length(freq_mod_value) 

    infileID=['Phasor_FreqSweep_' freq_mod_value{k} 'Hz.csv']; 

    fileID = fopen(infileID); 

    CP = textscan(fileID,... 

        '%f%c%f:%f:%f%f%c%f:%f:%f %f %f %f %f %f %f %f %f %f ',... 

        'Headerlines',1,'Delimiter',','); 

    fclose(fileID); 

 

    % The Data is now parsed and seperated out in large columns that are 

    % contained in cells.  To make this data more accesable and easier to know 

    % exactly what the data represents it will be removed from the cells to be 

    % stand alone vectors that are named accordingly. 

 

    % Define PMU Time Stamp Variables 

    PMUtStampYMD = CP{1}; 

    PMUtStampHour = CP{3}; 

    PMUtStampMin = CP{4}; 

    PMUtStampSec = CP{5}; 

 

    % Define c37 Time Stamp Variables 

    c37tStampYMD = CP{6}; 

    c37tStampHour = CP{8}; 

    c37tStampMin = CP{9}; 

    c37tStampSec = CP{10}; 

 

    % Define Voltage Phase Varables 

    posSeqVol = CP{11}; 

    posSeqAng = CP{12}; 

    PhasorAVol = CP{13}; 

    PhasorAAng = CP{14}; 

    PhasorBVol = CP{15}; 

    PhasorBAng = CP{16}; 

    PhasorCVol = CP{17}; 

    PhasorCAng = CP{18}; 
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    PhasorFreq = CP{19}; 

 

    % This section of the code is used to obtain the time the test was run. 

    % There are two sets of time stamp data.  Total test time will be 

    % determined for both the PMU time stamps and the c37 time stamps.  Each 

    % set of data will also have a time vector used for plotting. 

 

    % This section is used to shift the data to start at time = 0 seconds. 

    zeroPMUPhasorTime = (PMUtStampHour(1) * 60 * 60) +... 

        (PMUtStampMin(1) * 60) + (PMUtStampSec(1)); 

 

    zeroC37PhasorTime = (c37tStampHour(1) * 60 * 60) +... 

        (c37tStampMin(1) * 60) + (c37tStampSec(1)); 

 

    zeroTime1 = zeroPMUPhasorTime; 

 

    % New time vectors.  Takes the time vectors from the hour, min, and seconds 

    % and then converts all to seconds.  Then we shift the scale to start at 

    % zero. 

    PMUtimeVector = (PMUtStampHour * 60 * 60) + (PMUtStampMin * 60) +... 

        PMUtStampSec - zeroTime1; 

    c37TimeVector = (c37tStampHour * 60 * 60) + (c37tStampMin * 60) +... 

        c37tStampSec - zeroTime1; 

Analog Data Parsing 
See the above comment for a description on the textscan function 

    infileID=['Analog_FreqSweep_' freq_mod_value{k} 'Hz.csv']; 

    fileID = fopen(infileID); 

    CA = textscan(fileID,'%f%c%f:%f:%f %f %f %f %f ','Headerlines',1,... 

        'Delimiter',','); 

    fclose(fileID); 

 

    % As described above this section of the code is pulling the data columns 

    % out of cells and naming them for easier access and use. 

    AnalogtStampHour = CA{3}; 

    AnalogtStampMin = CA{4}; 

    AnalogtStampSec = CA{5}; 

 

    % This section is used to make sure the plots start at time zero 

    zeroAnalogTime = (AnalogtStampHour(1) * 60 * 60) +... 

        (AnalogtStampMin(1) * 60) + AnalogtStampSec(1); 

 

    % New time vectors.  Takes the time vectors from the hour, min, and seconds 

    % and then converts all to seconds.  Then we shift the scale to start at 

    % zero. 

    AnalogTimeVector = (AnalogtStampHour * 60 * 60) +... 

        (AnalogtStampMin * 60) + AnalogtStampSec -... 

        zeroTime1; 

 

    % Give variable names to the 3 phases 
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    AnalogAphase = CA{6}; 

    AnalogBphase = CA{7}; 

    AnalogCphase = CA{8}; 

    AnalogTrig = CA{9}; 

 

%     Voltage plot.  Good for checking that the data is ok. 

%     figure 

%     plot(PMUtimeVector,PhasorAVol,'*-r') 

%     hold on 

%     plot(AnalogTimeVector,AnalogAphase/sqrt(2),'b') 

%     xlabel('Time') 

%     ylabel('Magnitude') 

%     legend('A Phasor Voltage','Analog A Phase') 

%     grid 

%     title(freq_mod_value{k}) 

%     axis([-10 60 -150 150]) 

 

    %  This code is used to find a specific voltage magnitude for the 

    %  timing trigger.  By finding the index of the trigger at the desired 

    %  point we can capture a known input signal time length and a known 

    %  PMU output time length. 

    DataStart = find(AnalogTrig>139.8); 

    DataStart = DataStart(1); 

    % Use the time vectors to relate Analog and Phasor data. 

    PMUstart = find(PMUtimeVector>AnalogTimeVector(DataStart)); 

    % Starting point of interst for PMU data. 

    PMUstartIndx = PMUstart(1) 

 

    % Isolating Phasor frequency, A phase magnitude, and A phase angle data 

    % of interest from PMU. 

    PhasorFreq_Freq = PhasorFreq(PMUstartIndx:PMUstartIndx + 1800); 

    PhasorAVol_Mag = PhasorAVol(PMUstartIndx:PMUstartIndx + 1800); 

    PhasorAAng_Ang = PhasorAAng(PMUstartIndx:PMUstartIndx + 1800); 

    % Using the for loop index to step through 'freq_mod_value' and save 

    % the data above as '.mat' files. 

    outfileMag=['PhasorFreqSweep_Mag_' freq_mod_value{k} 'Hz.mat']; 

    outfileAng=['PhasorFreqSweep_Ang_' freq_mod_value{k} 'Hz.mat']; 

    outfileFreq = ['PhasorFreqSweep_Freq_' freq_mod_value{k} 'Hz.mat']; 

    save(outfileMag,'PhasorAVol_Mag') 

    save(outfileAng,'PhasorAAng_Ang') 

    save(outfileFreq,'PhasorFreq_Freq') end; 

Appendix D: Data Loader / Transfer Function Calculator / Bode Plotter 

Data Loader / Transfer Function Calculator / Bode Plotter  
This script loads the A phase voltage, A phase angle, and frequency output data from the PMU.  From 

here a numerical derivative is done on the A phase angle to get frequency.  Then the fft is done on the 

frequency to get eqn. 4 from the 'Frequency Estimation for Inter-Area Oscillation Feedback Damping 

Controller' paper.  The input term in the denominator is simple since we know the derivative of the 

frequency/phase term in the phase modulation signal which was sent to the PMU for processing.  With 

this derivative we also know the fft of this will be Aphi*wm < wm*to. 
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close all; 

clear all; 

clc; 

Setting up an array for the modulation values. 
Set up frequency sweep for the phase modulation in a cell array. 

freq_mod_value={'00.1','00.2','00.3','00.4','00.5','00.6','00.7','00.8',... 

    '00.9','01.0','01.1','01.2','01.3','01.4','01.5','01.6','01.7',... 

    '01.8','01.9','02.0','02.1','02.2','02.3','02.4','02.5','02.6',... 

    '02.7','02.8','02.9','03.0','03.1','03.2','03.3','03.4','03.5',... 

    '03.6','03.7','03.8','03.9','04.0','04.1','04.2','04.3','04.4',... 

    '04.5','04.6','04.7','04.8','04.9','05.0','06.0','07.0','08.0',... 

    '09.0','10.0','12.0','14.0','16.0','18.0','20.0','22.0','24.0',... 

    '26.0','28.0','30.0','35.0','40.0','45.0','50.0','55.0','60.0'}; 

Transfer Function Calculation 

for k=1:length(freq_mod_value)-1 % Steps through each frequency. 

 

    % Assigns a variable with index of k to a file location which also 

    % steps through the naming convention using ' freq_mod_value{k} ' 

    Angstr{k}=['C:\Users\jhperigo\Desktop\PMU Testing\New PMU with Updated Firmware\Transfer     

Function Test 1\PhasorFreqSweep_Ang_' freq_mod_value{k} 'Hz.mat']; 

    Magstr{k}=['C:\Users\jhperigo\Desktop\PMU Testing\New PMU with Updated Firmware\Transfer 

Function Test 1\PhasorFreqSweep_Mag_' freq_mod_value{k} 'Hz.mat']; 

    Freqstr{k} = ['C:\Users\jhperigo\Desktop\PMU Testing\New PMU with Updated Firmware\Transfer 

Function Test 1\PhasorFreqSweep_Freq_' freq_mod_value{k} 'Hz.mat']; 

 

    % Sets up modulation frequency by pulling values out of freq_mod_value 

    % and converting them to with str2num. 

    modfreq(k)=str2num(freq_mod_value{k}); % Hz 

 

    % Now sets a variable for Magnitude and Angle which loads from the 

    % variable set up at lines 32 and 33. 

    AMag{k} = load(Magstr{k}); 

    AMag{k} = AMag{k}.PhasorAVol_Mag; 

    AAng{k} = load(Angstr{k}); 

    AAng{k} = AAng{k}.PhasorAAng_Ang; 

    PMUfreq{k} = load(Freqstr{k}); 

    PMUfreq{k} = (PMUfreq{k}.PhasorFreq_Freq-60)*2*pi; % In rads/sec 

 

    % Taking the numerical derivative of the AAng{k} to get frequency. 

    Theta = AAng{k}; 

    Theta = pi/180.*Theta; % Radians 

    X = angle(exp(1i*Theta(2:end))./exp(1i*Theta(1:end-1))); 

    %FEuler{k} = [0;X]*60; % in radians/sec: Used for comparing freqs. 

    FEuler{k} = X*60; % in radians/sec: Used for bode plotting 

 

    % Doing fft of FEuler{k} to get to the transfer function mentioned 
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    % above. Then we break up the fft vector into its magnitude and angle 

    % so that the division of phasors can be done. 

    FFTofFhat{k} = 2/length(FEuler{k})*fft(FEuler{k}); %exp(-1*2*pi*modfreq(k)*3/60); 

    FFTofFhatMag{k} = abs(FFTofFhat{k}); 

    FFTofFhatAngle{k} = angle(FFTofFhat{k}); 

 

    % Now for the frequency that was calculated by the PMU we'll call the 

    % variable PMUfreq and then use the fft funtion on it.  Then as above 

    % I'll split the complex number into it's magnitude and angle to make 

    % the polar division easier. 

    FFTofPMUfreq{k} = 2/length(PMUfreq{k})*fft(PMUfreq{k}); %*exp(-1i*2*pi*modfreq(k)*3/60); 

    FFTofPMUfreqMag{k} = abs(FFTofPMUfreq{k}); 

    FFTofPMUfreqAngle{k}= angle(FFTofPMUfreq{k}); 

 

    % If the FFTofFhatMag is plotted there will be two spikes that 

    % correspond to the modulation frequency being fed to the PMU.  'i' is 

    % used to find the index of these peaks so that the magnitude and angle 

    % at this index can be easily aquired. 

    i(k) = round(length(FFTofFhatMag{k})/60*modfreq(k)+1); 

 

    % Transfer function Division 1. 

    % The following 4 lines are calculating the transfer function using the 

    % frequency values that were calculated using the numerical derivative. 

    % 'GMag' is doing the division in the transfer function. 

    GMag(k) = FFTofFhatMag{k}(i(k))/(0.1*2*pi*modfreq(k)); 

    % 'GAng' is doing the subtraction in the transfer function. 

    GAng(k) = FFTofFhatAngle{k}(i(k)) - (2*pi*modfreq(k))*(22) - pi/2 - 2*pi*modfreq(k)*3/60; 

 

 

    % Transfer function Division 2. 

    % The following 4 lines are calculating the transfer function using the 

    % frequency values that were calculated by the PMU. 

    % 'GMag_PMUfreq' is doing the division in the transfer function 

    GMag_PMUfreq(k) = FFTofPMUfreqMag{k}(i(k))/(0.1*2*pi*modfreq(k)); 

    % 'GAng_PMUfreq' is doing the subtraction in the transfer function. 

    GAng_PMUfreq(k) = FFTofPMUfreqAngle{k}(i(k)) - (2*pi*modfreq(k))*(22) - pi/2 - 

2*pi*modfreq(k)*3/60; 

 

    % Plotting the magnitudes of the fft's both from the numerical 

    % derivative frequency and the PMU frequency to check for leakage. 

    subplot(211) 

    stem(FFTofFhatMag{k},'k') 

    hold on 

    title('Normalized FFT of FEuler and PMU Freq') 

    ylabel('Magnitude') 

    legend('FFT on Numerical Derivative Frequency') 

    xlim([0 900]) 

    grid 

    subplot(212) 

    stem(FFTofPMUfreqMag{k},'b') 

    hold on 

    ylabel('Magnitude') 

    legend('FFT on PMU Frequency') 
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    xlim([ 0 900]) 

    grid 

 

 

end 

 

Dan's Code 

% Plot Freq resp 

% clear all; close all; clc 

 

% load('FreqResp1A','Test','fSample2'); %kx=0.1, ka=0.1, sinusoid model,Nonlin.nCycles = 1, 

nCycles=1 

% load('FreqResp1B','Test','fSample2'); %kx=0.1, ka=0.1, rampled sinusoid model, Nonlin.nCycles = 

1, nCycles=1 

% load('FreqResp1C','Test','fSample2'); %kx=0.1, ka=0.1, rampled sinusoid model, Nonlin.nCycles = 

2, nCycles=1 

load('FreqResp1D','Test','fSample2'); %kx=0.1, ka=0.1, rampled sinusoid model, Nonlin.nCycles = 

2, nCycles=2 

Create spectrum data 

kC = [1:71]'; 

Gbode.PMU.F = zeros(length(kC),1); 
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Gbode.PMU.FB = zeros(length(kC),1); 

Gbode.f = zeros(length(kC),1); 

for k=1:length(kC) 

    if Test{kC(k)}.Sig.Param.fm>7 

        nCy = ceil([0.2*Test{kC(k)}.Sig.Param.fm; 0.8*Test{kC(k)}.Sig.Param.fm]); 

        if abs(round(nCy(1)/2)-nCy(1)/2) > 0.1; nCy(1) = nCy(1) + 1; end 

        if abs(round(nCy(2)/2)-nCy(2)/2) > 0.1; nCy(2) = nCy(2) + 1; end 

    else 

        nCy = [3;7]'; 

    end 

    tR = nCy./Test{kC(k)}.Sig.Param.fm; %Range for plotting in sec. 

    nSig = [round(tR(1)*Test{k}.Sig.fSample):1:round(tR(2)*Test{k}.Sig.fSample)-1]'; 

    tSig = (1/Test{k}.Sig.fSample)*[0:length(Test{kC(k)}.Sig.f)-1]'; 

    ne = round(((nCy(2)-nCy(1))/Test{kC(k)}.Sig.Param.fm)*fSample2*60); 

    [~,ns] = min(abs(tR(1)-Test{1}.PMU.t)); 

    nPMU = [ns:1:ne+ns-1]'; 

    clear ns ne tR 

 

    %Freq fesp 

    Gbode.f(k) = Test{kC(k)}.Sig.Param.fm; 

    f = (fSample2*60/length(nPMU))*[0:length(nPMU)-1]'; 

    [~,n] = min(abs(Gbode.f(k)-f)); 

    HPMU = (2/length(nPMU))*fft(Test{kC(k)}.PMU.FEuler(nPMU)); 

    HPMU = HPMU(n); 

    HPMUBD = (2/length(nPMU))*fft(Test{kC(k)}.PMU.FBesselD(nPMU)); 

    HPMUBD = HPMUBD(n); 

    f = (Test{kC(k)}.Sig.fSample/length(nSig))*[0:length(nSig)-1]'; 

    [~,n] = min(abs(Gbode.f(k)-f)); 

    Hact = (2/length(nSig))*fft(Test{kC(k)}.Sig.f(nSig)); 

    Hact = Hact(n); 

    Gbode.PMU.F(k) = HPMU/Hact; 

    Gbode.PMU.FB(k) = HPMUBD/Hact; 

    clear n f HPMUBD HPMU HZeroCrossB HZeroCross HNonlinB HNonlin nZer nSig nNon nPMU nCy 

end 

clear k 

 

%1-Hz Delay 

[~,n] = min(abs(Gbode.f-1)); 

d = unwrap(angle(Gbode.PMU.F(1:n))); 

Gbode.PMU.Fdelay = -(d(end)-d(1))/(2*pi*(Gbode.f(n)-Gbode.f(1))); 

clear n d 

 

D = unwrap(GAng(1:10)); 

derivDelay = -(D(end)-D(1))/(2*pi*(1-0.1)); 

 

E = unwrap(GAng_PMUfreq(1:10)); 

freqDelay = -(E(end)-E(1))/(2*pi*(1-0.1)); 

Plot bodes 
No Bessel filter defining the modulation frequency sweep for plotting below. 
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FreqSweep = [0.1:0.1:4.9, 5:1:10, 12:2:30, 35:5:60]; 

 

figure 

subplot(211) 

semilogx(Gbode.f,abs(Gbode.PMU.F),'r','Linewidth',2) 

hold on 

semilogx(FreqSweep(1:end -1),GMag,'k','Linewidth',2) 

semilogx(FreqSweep(1:end -1),GMag_PMUfreq,'b','Linewidth',2) 

hold off 

ylim([0 1.2]) 

xlabel('Freq (Hz)') 

ylabel('Gain (abs)') 

legend('PMU sim','PMU Angle Derivative','PMU Frequency') 

grid 

subplot(212) 

semilogx(Gbode.f,(180/pi)*angle(Gbode.PMU.F),'r','Linewidth',2) 

hold on 

semilogx(FreqSweep(1:end -1),wrapToPi(GAng)*180/pi,'k','Linewidth',2) 

semilogx(FreqSweep(1:end -1),wrapToPi(GAng_PMUfreq)*180/pi,'b','Linewidth',2) 

hold off 

ylabel('Phase (deg.)') 

xlabel('Freq (Hz)') 

legend(['Delay = ' num2str(round(1e3*Gbode.PMU.Fdelay)) ' ms'],... 

       ['Angle Derivative Delay = ' num2str(round(1e3*derivDelay)) ' ms'],... 

       ['Frequency Delay = ' num2str(round(1e3*freqDelay)) ' ms'],... 

        'Location','NorthWest'); 

grid 

 

% Loading Frequency for comparision between PMU, Numerical Derivative 

% Frequency and Matlab. 

load('PhasorFreqSweep_Freq_01.0Hz.mat') 

 

% Creating a typical input signal with desired frequency for comparison. 

t = 0:1/60:30; 

% V(t) = 169.6*cos(2*pi*60*t+0.1*cos(2*pi*0.1*t)); % typical PM voltage 

dangdt = 59.9993-0.1*sin(2*pi*1*t+1*pi/72); % DC and phase adjusted 29 0.1^2 

 

% This plot is comparing the numerical derivative frequency, PMU frequency, 

% and Matlab frequency. For this plot to work "FEuler{k} = X*60" needs to 

% be replaced with "FEuler{k} = [0;X]*60; % in radians/sec".  This is so 

% the vector lengths will match up. 

% figure 

% plot(t,PhasorFreq_Freq-0.1,'k',t,FEuler{10}/(2*pi)+60-0.1,'r',t,dangdt,'b') 

% title('Frequency Comparison') 

% legend('PMU Frequency','Derivative Frequency', 'Matlab Frequency') 

% ylabel('Frequency (Hz)') 

% xlabel('Time (sec)') 

% % ylim([59.985 60.015]) 

grid 

 

 

% 
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Appendix E: Baseline Testing Code 

Baseline Testing Signal Generation. 
Combines Steps/AM/FM/PM signals ensure PMU functionality. 

close all; 

clear all; 

clc; 

 

tic 

Signal Parameters 

fbase = 60; % In Hz 

Tbase = 1/fbase; % in seconds 

amodfreq = 0.50; % in Hz 

fmodfreq = 1.00; % in Hz 

sigmag = 6.70; % rms voltage 

ampgain = 1.00; 

pmodfreq = 0.25; 
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% Time Vector 

DACfreq = 40000; % In Hz 

tend = 40; % in seconds 

t = 0:1/DACfreq:tend; 

A Phase 

Astep = 0.00.*... 

                (stepfun(t,1)-stepfun(t,4.00))+... 

        sigmag/3.5*sin(2*pi*60*t).*... 

                (stepfun(t,4.00)-stepfun(t,6.00))+... 

        sigmag/2*sin(2*pi*60*t).*... 

                (stepfun(t,6.00)-stepfun(t,8.00))+... 

        sigmag*(sin(60*2*pi*t)).*... 

                (stepfun(t,8.00)-stepfun(t,10.00)); 

 

% A AM 

Aamod = sigmag/2.5*(sin(60*2*pi*t)).*... 

                (stepfun(t,10.00)-stepfun(t,12.00))+... 

        sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t)).*... 

                (stepfun(t,12.00)-stepfun(t,14.00))+... 

        sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t)).*... 

                (stepfun(t,14.00)-stepfun(t,16.00))+... 

        sigmag/2.5*(sin(60*2*pi*t)).*... 

                (stepfun(t,16.00)-stepfun(t,18.00)); 

 

% A FM 

Afmod = sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))).*... 

                (stepfun(t,18.00)-stepfun(t,20.00))+... 

        sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))).*... 

                (stepfun(t,20.00)-stepfun(t,22.00))+... 

        sigmag*(sin(60*2*pi*t)).*... 

                (stepfun(t,22.00)-stepfun(t,24.00)); 

 

% A PM 

Apmod = sigmag*(sin(60*2*pi*t+.2*sin(fmodfreq*2*pi*t))).*... 

                (stepfun(t,24.00)-stepfun(t,26.00))+... 

        sigmag*(sin(60*2*pi*t+.2*sin(fmodfreq*2*pi*t))).*... 

                (stepfun(t,26.00)-stepfun(t,28.00))+... 

        sigmag/1.5*(sin(60*2*pi*t)).*... 

                (stepfun(t,28.00)-stepfun(t,30.00))+... 

        0.00.*... 

                (stepfun(t,30.00)-stepfun(t,tend)); 

 

Asig = Astep + Aamod + Afmod + Apmod; 
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B phase 

Bstep = 0.00.*... 

                (stepfun(t,1)-stepfun(t,4.00))+... 

        sigmag/3.5*sin(2*pi*60*t-2*pi/3).*... 

                (stepfun(t,4.00)-stepfun(t,6.00))+... 

        sigmag/2*sin(2*pi*60*t-2*pi/3).*... 

                (stepfun(t,6.00)-stepfun(t,8.00))+... 

        sigmag*(sin(60*2*pi*t-2*pi/3)).*... 

                (stepfun(t,8.00)-stepfun(t,10.00)); 

 

% B AM 

Bamod = sigmag/2.5*(sin(60*2*pi*t-2*pi/3)).*... 

                (stepfun(t,10.00)-stepfun(t,12.00))+... 

        sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t-2*pi/3)).*... 

                (stepfun(t,12.00)-stepfun(t,14.00))+... 

        sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t-2*pi/3)).*... 

                (stepfun(t,14.00)-stepfun(t,16.00))+... 

        sigmag/2.5*(sin(60*2*pi*t-2*pi/3)).*... 

                (stepfun(t,16.00)-stepfun(t,18.00)); 

 

 

% B FM 

Bfmod = sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))-2*pi/3).*... 

                (stepfun(t,18.00)-stepfun(t,20.00))+... 

        sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))-2*pi/3).*... 

                (stepfun(t,20.00)-stepfun(t,22.00))+... 

        sigmag*(sin(60*2*pi*t-2*pi/3)).*... 

                (stepfun(t,22.00)-stepfun(t,24.00)); 

% B PM 

Bpmod = sigmag*(sin(60*2*pi*t-2*pi/3+.2*sin(fmodfreq*2*pi*t))).*... 

                (stepfun(t,24.00)-stepfun(t,26.00))+... 

        sigmag*(sin(60*2*pi*t-2*pi/3+.2*sin(fmodfreq*2*pi*t))).*... 

                (stepfun(t,26.00)-stepfun(t,28.00))+... 

        sigmag/1.5*(sin(60*2*pi*t-2*pi/3)).*... 

                (stepfun(t,28.00)-stepfun(t,30.00))+... 

        0.00.*... 

                (stepfun(t,30.00)-stepfun(t,tend)); 

 

Bsig = Bstep + Bamod + Bfmod + Bpmod; 

C Phase 

Cstep = 0.00.*... 

                (stepfun(t,1)-stepfun(t,4.00))+... 

        sigmag/3.5*sin(2*pi*60*t+2*pi/3).*... 

                (stepfun(t,4.00)-stepfun(t,6.00))+... 

        sigmag/2*sin(2*pi*60*t+2*pi/3).*... 

                (stepfun(t,6.00)-stepfun(t,8.00))+... 

        sigmag*(sin(60*2*pi*t+2*pi/3)).*... 

                (stepfun(t,8.00)-stepfun(t,10.00)); 
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% C AM 

Camod = sigmag/2.5*(sin(60*2*pi*t+2*pi/3)).*... 

                (stepfun(t,10.00)-stepfun(t,12.00))+... 

        sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t+2*pi/3)).*... 

                (stepfun(t,12.00)-stepfun(t,14.00))+... 

        sigmag/2.5*(1+.2*sin(amodfreq*2*pi*t)).*(sin(60*2*pi*t+2*pi/3)).*... 

                (stepfun(t,14.00)-stepfun(t,16.00))+... 

        sigmag/2.5*(sin(60*2*pi*t+2*pi/3)).*... 

                (stepfun(t,16.00)-stepfun(t,18.00)); 

 

% C FM 

Cfmod = sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))+2*pi/3).*... 

                (stepfun(t,18.00)-stepfun(t,20.00))+... 

        sigmag*sin(2*pi*t.*(60-2*sin(fmodfreq*2*pi*t))+2*pi/3).*... 

                (stepfun(t,20.00)-stepfun(t,22.00))+... 

        sigmag*(sin(60*2*pi*t+2*pi/3)).*... 

                (stepfun(t,22.00)-stepfun(t,24.00)); 

 

% C PM 

Cpmod = sigmag*(sin(60*2*pi*t+2*pi/3+.2*sin(fmodfreq*2*pi*t))).*... 

                (stepfun(t,24.00)-stepfun(t,26.00))+... 

        sigmag*(sin(60*2*pi*t+2*pi/3+.2*sin(fmodfreq*2*pi*t))).*... 

                (stepfun(t,26.00)-stepfun(t,28.00))+... 

        sigmag/1.5*(sin(60*2*pi*t+2*pi/3)).*... 

                (stepfun(t,28.00)-stepfun(t,30.00))+... 

        0.00.*... 

                (stepfun(t,30.00)-stepfun(t,tend)); 

 

 

Csig = Cstep + Camod + Cfmod + Cpmod; 

Setup Trigger 

Trig = 0.00.*... 

                (stepfun(t,0.00)-stepfun(t,4.00))+... 

       6.50.*... 

                (stepfun(t,4.00)-stepfun(t,6.00))+... 

       0.00.*... 

                (stepfun(t,6.00)-stepfun(t,8.00))+... 

       6.50.*... 

                (stepfun(t,8.00)-stepfun(t,10.00))+... 

       0.00.*... 

                (stepfun(t,10.00)-stepfun(t,12.00))+... 

       6.50.*... 

                (stepfun(t,12.00)-stepfun(t,14.00))+... 

       0.00.*... 

                (stepfun(t,14.00)-stepfun(t,16.00))+... 

       6.50.*... 

                (stepfun(t,16.00)-stepfun(t,18.00))+... 

       0.00.*... 

                (stepfun(t,18.00)-stepfun(t,20.00))+... 

       6.50.*... 
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                (stepfun(t,20.00)-stepfun(t,22.00))+... 

       0.00.*... 

                (stepfun(t,22.00)-stepfun(t,24.00))+... 

       6.50.*... 

                (stepfun(t,24.00)-stepfun(t,26.00))+... 

       0.00.*... 

                (stepfun(t,26.00)-stepfun(t,28.00))+... 

       0.00.*... 

                (stepfun(t,28.00)-stepfun(t,30.00)); 

 

% Plot checking signals before being sent to Relay/PMU 

% figure 

% plot(t,Asig,'r') 

% hold on 

% plot(t,Bsig,'g') 

% plot(t,Csig,'b') 

% plot(t,Trig,'k') 

% legend('Asig','Bsig','Csig','Trig') 

% grid 

DAQ Communication 
Setup Session, Add Channels and Configure Parameters.  

% Create the data acquisition session. 

% cDAQ = daq.createSession('ni')  

% Dataout = [Asig’ Bsig’ Csig’ Trig’]; 

% % Create analog output channel on board ID 'cDAQ1Mod1', channel # 'ao0', with signal type 

'Voltage'); 

% cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao0', 'Voltage'); 

% cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao1', 'Voltage'); 

% cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao2', 'Voltage'); 

% cDAQ.addAnalogOutputChannel('cDAQ1Mod1','ao3', 'Voltage'); 

% 

% cDAQ.Rate = DACfreq; % Refresh rate of DAQ [Hz]. 

% 

% queueOutputData(cDAQ,dataOut); 

% startForeground(cDAQ); 

% 

% % Clean up and release hardware. 

% 

% cDAQ.release(); 

% delete(cDAQ); 

% clear cDAQ; 

% toc 

 

 

% End 
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Appendix E: Baseline .csv Reader 

Baseline .csv Reader 
Takes two sets of data and compares the two side by side.  An established baseline data set can be 

compared against a new baseline test using the signal generation code provided in the report and then 

loaded using the following code. 

close all; 

clear all; 

clc; 

Established Phasor Baseline Data Set 

fileID = fopen('PhasorStep_AM_FM_PM_0003.csv'); 

CP1 = textscan(fileID,... 

              '%f%c%f:%f:%f%f%c%f:%f:%f %f %f %f %f %f %f %f %f %f ',... 

              'Headerlines',1,'Delimiter',','); 

fclose(fileID); 

 

% The Data is now parsed and seperated out in large columns that are 

% contained in cells.  To make this data more accesable and easier to know 

% exactly what the data represents it will be removed from the cells to be 

% stand alone vectors that are named accordingly. 

 

% Define PMU Time Stamp Variables 

PMUtStampYMD1 = CP1{1}; 

PMUtStampHour1 = CP1{3}; 

PMUtStampMin1 = CP1{4}; 

PMUtStampSec1 = CP1{5}; 

 

% Define c37 Time Stamp Variables 

c37tStampYMD1 = CP1{6}; 

c37tStampHour1 = CP1{8}; 

c37tStampMin1 = CP1{9}; 

c37tStampSec1 = CP1{10}; 

 

% Define Voltage Phase Varables 

posSeqVol1 = CP1{11}; 

posSeqAng1 = CP1{12}; 

aVol1 = CP1{13}; 

aAng1 = CP1{14}; 

bVol1 = CP1{15}; 

bAng1 = CP1{16}; 

cVol1 = CP1{17}; 

cAng1 = CP1{18}; 

freq1 = CP1{19}; 

 

% This section is used to make sure the plots start relative to time zero. 

zeroPMUPhasorTime1 = (PMUtStampHour1(1) * 60 * 60) +... 

                     (PMUtStampMin1(1) * 60) + (PMUtStampSec1(1)); 
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zeroC37PhasorTime1 = (c37tStampHour1(1) * 60 * 60) +... 

                    (c37tStampMin1(1) * 60) + (c37tStampSec1(1)); 

 

% New time vectors.  Takes the time vectors from the hour, min, and seconds 

% and then converts all to seconds.  Then we shift the scale to start at 

% zero. 

PMUtimeVector1 = (PMUtStampHour1 * 60 * 60) + (PMUtStampMin1 * 60) +... 

                 PMUtStampSec1 - zeroPMUPhasorTime1; 

c37TimeVector1 = (c37tStampHour1 * 60 * 60) + (c37tStampMin1 * 60) +... 

                 c37tStampSec1 - zeroPMUPhasorTime1; 

New Phasor Data for Baseline Comparison 

fileID = fopen('PhasorStep_AM_FM_PM_0008.csv'); 

CP2 = textscan(fileID,... 

              '%f%c%f:%f:%f%f%c%f:%f:%f %f %f %f %f %f %f %f %f %f ',... 

              'Headerlines',1,'Delimiter',','); 

fclose(fileID); 

% Define PMU Time Stamp Variables 

PMUtStampYMD2 = CP2{1}; 

PMUtStampHour2 = CP2{3}; 

PMUtStampMin2 = CP2{4}; 

PMUtStampSec2 = CP2{5}; 

% Define c37 Time Stamp Variables 

c37tStampYMD2 = CP2{6}; 

c37tStampHour2 = CP2{8}; 

c37tStampMin2 = CP2{9}; 

c37tStampSec2 = CP2{10}; 

 

% Define Voltage Phase Varables 

posSeqVol2 = CP2{11}; 

posSeqAng2 = CP2{12}; 

aVol2 = CP2{13}; 

aAng2 = CP2{14}; 

bVol2 = CP2{15}; 

bAng2 = CP2{16}; 

cVol2 = CP2{17}; 

cAng2 = CP2{18}; 

freq2 = CP2{19}; 

 

% This section is used to make sure the plots start at time zero 

zeroPMUPhasorTime2 = (PMUtStampHour2(1) * 60 * 60) +... 

                     (PMUtStampMin2(1) * 60) + (PMUtStampSec2(1)); 

 

zeroC37PhasorTime2 = (c37tStampHour2(1) * 60 * 60) +... 

                    (c37tStampMin2(1) * 60) + (c37tStampSec2(1)); 

 

% New time vectors.  Takes the time vectors from the hour, min, and seconds 

% and then converts all to seconds.  Then we shift the scale to start at 

% zero. 

PMUtimeVector2 = (PMUtStampHour2 * 60 * 60) + (PMUtStampMin2 * 60) +... 
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                 PMUtStampSec2 - zeroPMUPhasorTime2; 

c37TimeVector2 = (c37tStampHour2 * 60 * 60) + (c37tStampMin2 * 60) +... 

                 c37tStampSec2 - zeroPMUPhasorTime2; 

Established Analog Baseline Data Set 
See the above comment for a description on the textscan function 

fileID = fopen('AnalogStep_AM_FM_PM_0003.csv'); 

CA1 = textscan(fileID,'%f%c%f:%f:%f %f %f %f %f ','Headerlines',1,... 

              'Delimiter',','); 

fclose(fileID); 

 

% As described above this section of the code is pulling the data columns 

% out of cells and naming them for easier access and use. 

 

AnalogtStampHour1 = CA1{3}; 

AnalogtStampMin1 = CA1{4}; 

AnalogtStampSec1 = CA1{5}; 

 

% This section is used to make sure the plots start at time zero 

zeroAnalogTime1 = (AnalogtStampHour1(1) * 60 * 60) +... 

                 (AnalogtStampMin1(1) * 60) + AnalogtStampSec1(1); 

 

% New time vectors.  Takes the time vectors from the hour, min, and seconds 

% and then converts all to seconds.  Then we shift the scale to start at 

% zero. 

AnalogTimeVector1 = (AnalogtStampHour1 * 60 * 60) +... 

                    (AnalogtStampMin1 * 60) + AnalogtStampSec1 -... 

                    zeroPMUPhasorTime1; 

 

% Give variable names to the 3 phases 

Aphase1 = CA1{6}; 

Bphase1 = CA1{7}; 

Cphase1 = CA1{8}; 

New Analog Data for Baseline Comparison 

fileID = fopen('AnalogStep_AM_FM_PM_0008.csv'); 

CA2 = textscan(fileID,'%f%c%f:%f:%f %f %f %f %f ','Headerlines',1,... 

              'Delimiter',','); 

fclose(fileID); 

 

% As described above this section of the code is pulling the data columns 

% out of cells and naming them for easier access and use. 

 

AnalogtStampHour2 = CA2{3}; 

AnalogtStampMin2 = CA2{4}; 

AnalogtStampSec2 = CA2{5}; 

 

% This section is used to make sure the plots start at time zero 

zeroAnalogTime2 = (AnalogtStampHour2(1) * 60 * 60) +... 
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                 (AnalogtStampMin2(1) * 60) + AnalogtStampSec2(1); 

 

% New time vectors.  Takes the time vectors from the hour, min, and seconds 

% and then converts all to seconds.  Then we shift the scale to start at 

% zero. 

AnalogTimeVector2 = (AnalogtStampHour2 * 60 * 60) +... 

                   (AnalogtStampMin2 * 60) + AnalogtStampSec2 -... 

                    zeroPMUPhasorTime2; 

 

% Give variable names to the 3 phases 

Aphase2 = CA2{6}; 

Bphase2 = CA2{7}; 

Cphase2 = CA2{8}; 

Plotting For Comparison 

figure 

subplot(211) 

plot(AnalogTimeVector1,Aphase1/sqrt(2),'b') 

hold on 

plot(PMUtimeVector1,aVol1,'LineWidth',2,'Color',[0 1 0]) 

legend('Aphase Analog Input','A Voltage Phasor Output') 

title('Establishe Baseline Case.') 

xlabel('PMU Internal Time (sec)') 

ylabel('Voltage') 

subplot(212) 

plot(AnalogTimeVector2,Aphase2/sqrt(2),'b') 

hold on 

plot(PMUtimeVector2,aVol2,'LineWidth',2,'Color',[0 1 0]) 

legend('Aphase Analog Input','A Voltage Phasor Output') 

title('New Data Set for Baseline Comparison') 

xlabel('PMU Internal Time (sec)') 

ylabel('Voltage') 

 

figure 

plot(AnalogTimeVector2,Aphase2/sqrt(2),'b') 

hold on 

plot(PMUtimeVector2,aVol2,'*','LineWidth',2,'Color',[0 1 0]) 

legend('Aphase Analog','A Voltage Phasor') 

title('PMU Response to Steps/AM/FM/PM.') 

xlabel('PMU Internal Time (sec)') 

ylabel('Voltage') 

 

%end 
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Appendix F: Math Document  

Math Doc for PMU Testing Project                                            Version: 4 

                               Date: 2/20/16 

 

Terms 

𝐴0 = 𝐷𝐶 𝑜𝑓𝑓𝑠𝑒𝑡 

𝐴1 = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 

𝐴𝑖  𝑓𝑜𝑟 𝑖 > 1 𝑎𝑟𝑒 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑡𝑒𝑟𝑚𝑠 

𝜑 = 𝑝ℎ𝑎𝑠𝑒 𝑎𝑛𝑔𝑙𝑒 

𝑛𝑚 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑛𝑜𝑖𝑠𝑠𝑒 

𝑡 = 𝑡𝑖𝑚𝑒 

∆𝑓𝑟 =  𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Frequency for phase ramp term 

𝑢(𝑡 − 𝑡𝑟) = 𝑢𝑛𝑖𝑡 𝑠𝑡𝑒𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡𝑟 

𝑓(𝑡) = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑣(𝑡) 

𝑅𝑓 = 𝑅𝑎𝑚𝑝 𝑟𝑎𝑡𝑒 𝑖𝑛
𝐻𝑧

𝑠
 

𝑅𝑓 = 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑅𝑎𝑚𝑝 𝑅𝑎𝑡𝑒 

𝑓𝑚 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑝ℎ𝑎𝑠𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 

 

 

Below is a list of all the equations as they appear in “Frequency Estimation for Inter-Area Oscillation 

Feedback Damping Control” and how they will appear in testing form.    

 

Equation 1 Paper Form 

Point on Wave (POW) model. This is the fundamental form for our test signals which will be translated 

to three phase.  The equation in its current form would represent the A phase.  The B and C phases will 

need to be shifted in phase by 2π/3 rad.  For our current studies we are neglecting the harmonic and 

noise part of the signal contained in the summation.     

𝑣(𝑡) = 𝐴0 +  𝐴1(𝑡) cos(2𝜋60𝑡 +  𝜑(𝑡)) + ∑ 𝐴𝑖 cos(𝑖2𝜋60𝑡 + 𝑖𝜑(𝑡) +  𝜑0𝑖) + 𝑛𝑚(𝑡)

∞

𝑖=2

 

 

Equation 1 Testing Form 

 

𝑉𝑎(𝑡) = [𝐴𝑜𝑓𝑓𝑠𝑒𝑡 + 𝐴1(𝑡) cos(2𝜋𝑓𝑜𝑡 + 𝜑(𝑡)] [𝑢(𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡) − 𝑢(𝑡 − 𝑡𝑒𝑛𝑑)] 

 

Equation 2a Paper Form 

 

𝐴1(𝑡) =  𝐴1,0(1 + 𝑘𝑥 cos(2𝜋𝑓𝑚𝑡)) 

Equation 2a Testing Form 

 

𝐴1(𝑡) =  𝐴1,0{1 + 𝑘𝑥 cos(2𝜋𝑓𝑚𝑡) [𝑢(𝑡 − 𝑡𝐴𝑚𝑜𝑑𝑂𝑛) − 𝑢(𝑡 − 𝑡𝐴𝑚𝑜𝑑𝑂𝑓𝑓)] + ⋯ 

… + 𝐴𝑠𝑡𝑒𝑝[𝑢(𝑡 − 𝑡𝐴𝑚𝑝𝑆𝑡𝑒𝑝𝑂𝑛) − 𝑢(𝑡 − 𝑡𝐴𝑚𝑝𝑆𝑡𝑒𝑝𝑂𝑓𝑓)]} 

 



41 

 

 

Equation 2b Paper Form 

 

𝜑(𝑡) =  𝜑0 + 2𝜋∆𝑓𝑟(𝑡 −  𝑡𝑟)𝑢(𝑡 −  𝑡𝑟) + 𝑘𝑎 cos(2𝜋𝑓𝑚𝑡) 

 

Equation 2b Testing Form 

 

𝜑(𝑡) =  𝜑𝑜𝑓𝑓𝑠𝑒𝑡 + 2𝜋∆𝑓𝑟(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑅𝑎𝑚𝑝𝑂𝑛)[𝑢(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑅𝑎𝑚𝑝𝑂𝑛) − 𝑢(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑅𝑎𝑚𝑝𝑂𝑓𝑓)] + ⋯ 

… + 𝑘𝑎cos (2𝜋𝑓𝑚𝑡)[𝑢(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑀𝑜𝑑𝑂𝑛) − 𝑢(𝑡 − 𝑡𝑃ℎ𝑎𝑠𝑒𝑀𝑜𝑑𝑂𝑓𝑓)] 

 

Equation 3 

Point on wave instantaneous frequency 

𝑓(𝑡) = 60 + (
1

2𝜋
)

𝑑𝜑(𝑡)

𝑑𝑡
 𝐻𝑧 

 

Equation 4 

Actual Phase Angle, for frequency ramp test. 

 

𝜑(𝑡) = 𝜋𝑅𝑓𝑡2  𝑟𝑎𝑑 

 

Equation 5 

Estimated Phase Angle, for frequency ramp test.  

 

�̂�(𝑡) = 𝜋𝑅�̂�𝑡2  𝑟𝑎𝑑 

 

Equation 6 

Transfer Function 

 

𝐺(𝑓𝑚) =  
𝐹{𝑓(𝑡)}

𝐹{𝑓(𝑡)}
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