
Montana Tech Library Montana Tech Library

Digital Commons @ Montana Tech Digital Commons @ Montana Tech

Computer Science & Software Engineering Faculty Scholarship

2014

An Active Learning Module for an Introduction to Software An Active Learning Module for an Introduction to Software

Engineering Course Engineering Course

A. Frank Ackerman, Ph.D.
Montana Tech of the University of Montana

Follow this and additional works at: https://digitalcommons.mtech.edu/sw_engr

 Part of the Engineering Education Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Ackerman,, A. Frank Ph.D., "An Active Learning Module for an Introduction to Software Engineering
Course" (2014). Computer Science & Software Engineering. 2.
https://digitalcommons.mtech.edu/sw_engr/2

This Article is brought to you for free and open access by the Faculty Scholarship at Digital Commons @ Montana
Tech. It has been accepted for inclusion in Computer Science & Software Engineering by an authorized
administrator of Digital Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu.

https://digitalcommons.mtech.edu/
https://digitalcommons.mtech.edu/sw_engr
https://digitalcommons.mtech.edu/fac_schr
https://digitalcommons.mtech.edu/sw_engr?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1191?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtech.edu/sw_engr/2?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sjuskiewicz@mtech.edu

An Active Learning Module for an Introduction to Software
Engineering Course

A. Frank Ackerman
Montana Tech

Abstract

Many schools do not begin to introduce college students to software engineering until

they have had at least one semester of programming. Since software engineering is a

large, complex, and abstract subject it is difficult to construct active learning exercises

that build on the students’ elementary knowledge of programming and still teach basic

software engineering principles. It is also the case that beginning students typically

know how to construct small programs, but they have little experience with the

techniques necessary to produce reliable and long-term maintainable modules. I have

addressed these two concerns by defining a local standard (Montana Tech Method

(MTM) Software Development Standard for Small Modules Template) that step-by-step

directs students toward the construction of highly reliable small modules using well

known, best-practices software engineering techniques. “Small module” is here defined

as a coherent development task that can be unit tested, and can be carried out by a

single (or a pair of) software engineer(s) in at most a few weeks. The standard describes

the process to be used and also provides a template for the top-level documentation. The

instructional module’s sequence of mini-lectures and exercises associated with the use of

this (and other) local standards are used throughout the course, which perforce covers

more abstract software engineering material using traditional reading and writing

assignments. The sequence of mini-lectures and hands-on assignments (many of which

are done in small groups) constitutes an instructional module that can be used in any

similar software engineering course.

Overview
The instructional module begins with a small group assignment to look at a small

program problem statement and its coded solution, and then to discuss what additional

activities/tasks might be applied in the case that this program was a key component in a

mission critical system. The instructional sequence continues by using mini-lectures

followed by a group or individual activity that addresses the particular software

engineering technique covered in the mini-lecture. The example used in the mini-lectures

is simpler than the problem the students are addressing. Software inspections are

introduced early in the module and are used across groups as a technique for focusing

critically on the work of each group. In this way the module covers requirements (at the

small module level); design (using simple UML diagrams and a standardized pseudo-

code language); unit test design (constrained by requiring a complete, logical,

hierarchical partitioning of the input space); test cases for each leaf partition; coding to a

specified standard; coverage testing (including random test case generation); and

correctness proofs. Along the way the concept of size and effort estimation is introduced

as well as the necessity of capturing in-process data for estimates-to-actuals comparison.

The final exercise in this module is an individual (or pair) assignment to take another

problem with a small module solution and apply the module requirements, design, and

test case design and execution techniques covered in the module (time constraints have

978-1-4799-4970-0/14 c© 2014 IEEE CSEE&T 2014, Klagenfurt, Austria

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

190

so far prohibited the use of proofs of correctness and inspections in this exercise).

Finally, a class period is devoted to one-by-one submitting the completed programs to a

robot judge for either an “accepted” or “reject” verdict and keeping score – all of the

excitement of a TV quiz show!

The MTM standard provides a framework for all the commonly known module level

best practices techniques which I have found over many decades of experience to be

effective in the development of highly reliable software modules. The keyword is

“framework.” The standard, and specifics of each technique, can be modified to suit a

wide variety of software engineering teaching or development environments. All of the

materials used or referenced in the presentation are available from the Montana Tech

Computer Science Department web site under a Creative Commons Attribution-

ShareAlike License, and thus can be modified as desired for particular teaching or

development environments.

Please remember that these materials are for novice software engineers. My

experience is that providing a very specific documentation framework for thi s level of

student enables them to concentrate on effectively learning the techniques of software

engineering that are covered in the instructional module.

How effective is the set of techniques covered in this presentation? How does one

measure effectiveness? The effectiveness measure that I use is that upon initial delivery

(and the delivery of any subsequent modifications), the software will fully satisfy all

run-time functional requirements (the verification of all other requirements can be

addressed in reviews). In my case, I use the UVa (uva.onlinejudge.org)

competitive programming site to assess the initial delivery acceptance rate as described

above. I just introduced the use of the UVa repository the last time I taught our

introduction to software engineering course, so I have just one hard data point: my

students had better than a 70% “first shot” acceptance rate. The overall UVa acceptance

rate for this problem (by competitive programmers all over the world making multiple

submissions was, at the time a little better than 45%. The next time I teach our

introductory software engineering course I will use a standardized programming aptitude

test at the start of the course, and will begin this module by having the students attempt a

judged solution before working on the techniques covered in this instructional module. It

would also be most helpful if other faculty teaching similar courses would use their own

modifications of this instructional module and collect and report capability and

effectiveness data on their classes.

The techniques covered in this presentation are aimed at achieving the highest

possible reliability, not the shortest development time. However, in cases where

reliability may be traded off for quicker delivery some techniques (e.g., correctness

proofs) may be dropped and some of the techniques may be modified (e.g., unit testing)

to reduce development time. However, the basic principles of software engineering

should be adhered to. That is, these techniques are not applicable to one-shot, hack-out-

as-quickly-as possible software.

This presentation will be accompanied by a fully completed MTM standard template

example, and standardized code and unit tests for a small module. The presentation will

explain each section of the completed template; whether or not it is an essential

component of my set of techniques, and how a section might be modified for a variety of

teaching or development environments.

191

	An Active Learning Module for an Introduction to Software Engineering Course
	Recommended Citation

	/var/tmp/StampPDF/5PdfdDcbkI/tmp.1400189664.pdf.gcTXB

