Montana Tech Library Digital Commons @ Montana Tech

2014 Undergraduate Research

Other Undergraduate Research

Summer 2014

Wetting and Reactivity of Active Metal Braze Alloys on Tungsten Carbide

Hayden Peck Montana Tech of the University of Montana

Alan Meier, Ph.D. ameier@mtech.edu

Follow this and additional works at: http://digitalcommons.mtech.edu/urp_aug_2014 Part of the <u>Metallurgy Commons</u>

Recommended Citation

Peck, Hayden and Meier, Ph.D., Alan, "Wetting and Reactivity of Active Metal Braze Alloys on Tungsten Carbide" (2014). 2014 Undergraduate Research. 1. http://digitalcommons.mtech.edu/urp_aug_2014/1

This Book is brought to you for free and open access by the Other Undergraduate Research at Digital Commons @ Montana Tech. It has been accepted for inclusion in 2014 Undergraduate Research by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu.

Wetting and Reactivity of Active Metal Braze Alloys on Tungsten Carbide Hayden Peck (M&ME student Montana Tech), Dr. Alan Meier (faculty advisor)

Background

- Tungsten carbide is useful because of its hardness and strength
- Joining of dissimilar materials especially non-metallic materials is very challenging
- Active metals such as titanium can be added to a ductile filler metals such as copper to get wetting via a reduction reaction

Procedure

- Alloys were weighed and mounted on a tungsten carbide 13wt% cobalt (WC-Co) substrate (Figure 1)
- Sample underwent a thermal cycle under an argon overpressure in a vacuum furnace
- Sessile drop diameter was measured and contact angle was calculated (table 1)
- Microstructural analysis was performed with scanning electron microscopy on the crosssections

Table 1 Sessile drop test matrix

	Active Metal		Hold Time	Apparent
Base Alloy	Addition (wt%)	Hold Temp (°C)	(min)	contact angle
Ag-Cu (72-28)	None	810	30	X
Ag-Cu (72-28)	2% Ti	810	30	X
Ag-Cu (72-28)	5% Ti	810	30	X
Ag	None	1010	30	X
Ag	2% Ti	1010	30	X
Ag	5% Ti	1010	30	X
Ag	2% Zr	1010	30	X
Cu	None	1130	30	X
Cu	2% Ti	1130	30	X
Cu	5% Ti	1130	30	X
Cu	2% Zr	1130	30	X
Cu	1% V	1200	30	X

Results

- Results identified that all brazes wet the
- (WC-Co) substrates and that two different types of interfacial reactions occur: dissolution and/or reduction
- Tables 2, 3, and 4 have the apparent contact angle results for all of the tests

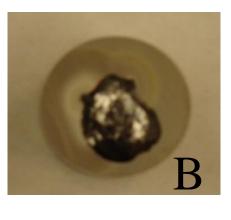

Figure 1. Sample that is prepped for the furnace (top view)

Table 2. Sessile drop test results for copper base alloys. Alloys with two results were repeat tests

		Hold Temp	Hold Time	Apparent contact
Base Alloy	Active Metal Addition	(°C)	(min)	angle (degrees)
Cu	None	1130	30	< 8
Cu	2% Ti	1130	30	14, 43
Cu	5% Ti	1130	30	8,60
Cu	2% Zr	1130	30	10, 51
Cu	1% V	1200	30	< 8

- Representative sessile drops for each alloy provided in Figures 2, 3, and 4
- Figures 5 and 6 are an example of the effect that the addition of Ti had on the Cu alloy/WC-Co interfacial microstructure

16.5 mm

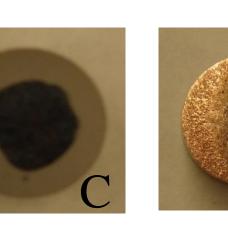


Figure 2. Base Copper Figure 5. Cu/WC-Co interface Alloy Results. A. Cu B microstructure exhibiting a 2% Zr C. 2% Ti D. 1% dissolution reaction V E. 5% Ti

Table 3. Sessile drop test results for silver –copper based eutectic

Base Alloy	Active Metal Addition
Ag-Cu (72-28)	None
Ag-Cu (72-28)	2% Ti
Ag-Cu (72-28)	5% Ti

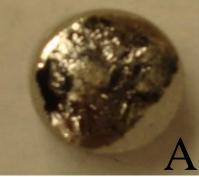
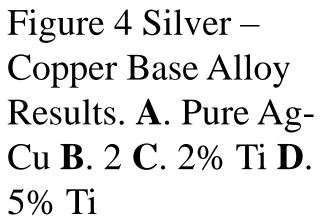
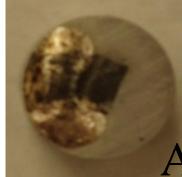
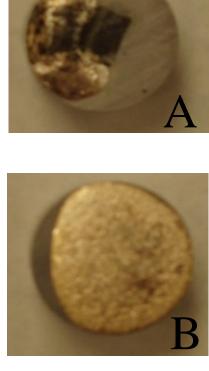
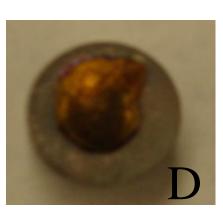
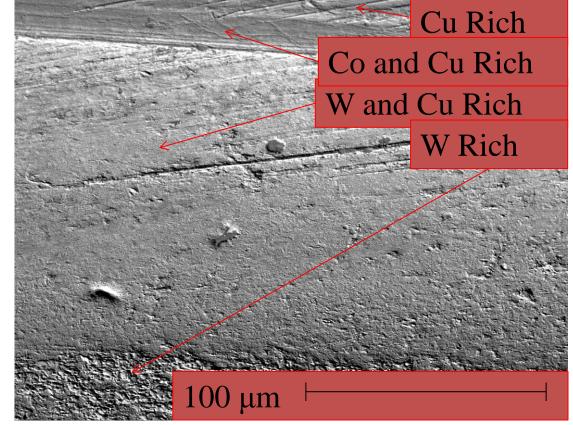





Figure 3. Silver Base Alloy Results. **A**. Pure Ag **B**. 2% A Zr C. 2% Ti D. 5%





Hold Temp	Hold Time	Apparent contact
(°C)	(min)	angle (degrees)
810	30	36, 21
810	30	9
810	30	<7

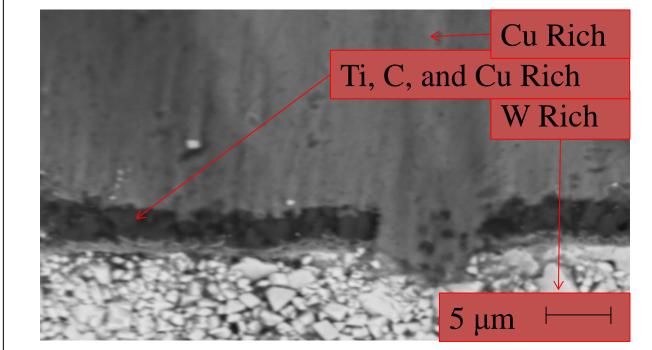


Figure 6. Cu + 2% Ti/WC-Co interface microstructure exhibiting a reduction reaction

Fable 4. Sessile drop test results for silver base alloys				
	Active			
	Metal	Hold Temp		Apparent contact
Base Alloy	Addition	(°C)	Hold Time (min)	angle (degrees)
Ag	None	1010	30	10, 16
Ag	2% Ti	1010	30	19
Ag	5% Ti	1010	30	29
Ag	2% Zr	1010	30	8

Table 4. Sessile drop test results for silver base alloys					
	Active				
	Metal	Hold Temp		Apparent contact	
Base Alloy	Addition	(°C)	Hold Time (min)	angle (degrees)	
Ag	None	1010	30	10, 16	
Ag	2% Ti	1010	30	19	
Ag	5% Ti	1010	30	29	
Ag	2% Zr	1010	30	8	

• Figures 7 and 8 illustrate of the effect that the addition of Ti had on the silver-copper alloy/WC-Co interfacial microstructure

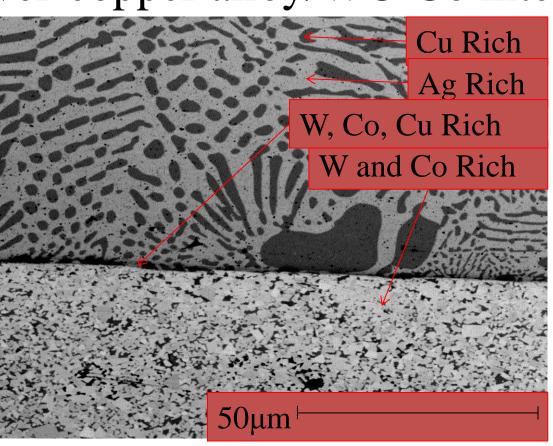


Figure 7. Ag-Cu/WC-Co eutectic interfacial microstructure exhibiting dissolution reaction

- and reduction reactions

Future work

- Braze to other covalent materials

Acknowledgements

- Montana Tech SURF program Funding

- vacuum furnace

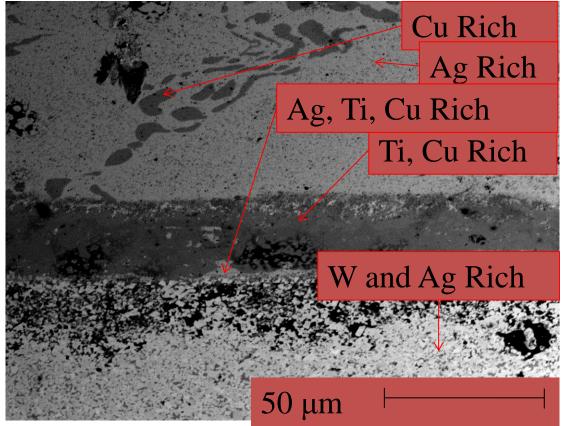


Figure 8. Ag-Cu + 5% Ti/WC-Co interfacial microstructure exhibiting dissolution reaction

Conclusions

All alloy conditions wet the tungsten carbide/cobalt substrates Two different interfacial reaction types were observed: dissolution

An important issue has been identified: the braze interface

reactions change the chemistry of the braze alloy which change the interaction between the braze alloy and the other material substrate

Varying furnace times to understand kinetics

Gary Wyss – Assistance with scanning electron microscope Ronda Coguill – Assistance with vacuum furnace Dr. William Gleason – Assistance with scanning electron microscopes and